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2Precision Livestock Farming as One Health Technology
The One Health concept states that infections are travelling around from water, 
soil and air to wildlife, next to livestock and then to humans. Planet earth counts 
today around 150 billion wildlife animals (not considering birds and sea animals), 
every year over 70 billion animals are slaughtered for the worldwide food demand 
and there are around 7.8 billion humans. In human diseases, more than 60 per 
cent of them are zoonotic and 75 per cent of new, “emerging” infectious diseases 
are zoonotic. While we did not yet get rid of the Covid-19 pandemic, the question 
is not whether another pandemic will come, the question is when.

Animal protein remains a very efficient way to feed humans. Especially in de-
veloping countries, livestock plays an important role to produce food and to give 
social status to people. Due to growing population and changing diets, the world-
wide demand for animal products is increasing with over 65% by 2050. It is how-
ever unthinkable that we would keep more animals in the livestock sector. The 
worldwide livestock sector is facing huge problems such as animal health in re-
lation to human health, animal welfare, lack of efficient process management 
leading to unacceptable environmental impact. Today, governments struggle with 
keeping a balance between the polluting livestock sector, the use of water and 
the protection of the nature and biodiversity. Rather than investing in technical 
and management solutions, in different countries legislation aims to reduce the 
number of farms and animals per farm while the worldwide demand for animal 
products is increasing.

Each of us should contribute to the solution. We need to improve the efficiency 
of the core process in the livestock sector: transforming feed energy, especially 
which is not suitable for human consumption into animal product. Here, it is par-
ticularly important to avoid unnecessary energy and product losses (meat, eggs, 
milk), e.g. as a result of suboptimal husbandry conditions and diseases. We need 
more animal product with less feed input and consequently less environmental 
impact. The continuous real-time monitoring 24/7 allows to realize active man-
agement solving problems when they occur, opposite to detecting problems after 
the facts in the slaughterhouse or once a year in a visit. The PLF technology has 
the potential to create a worldwide infection monitoring system for humans, for 
livestock and for wildlife. This will help fast detection and early warning of diseas-
es, allowing immediate actions and reduce spreading of infections.

We are the ones to create science and knowledge required by the livestock sector 
and the world. Therefore, we must produce solutions by collaborating in a most 
professional way within and between our different research disciplines, with 
farmers, industrial partners and governments to bring solutions for a more sus-
tainable planet earth.
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Editorial

We are happy to welcome all participants of the 10th European Precision Livestock Farm-
ing Conference to Vienna, Austria.

The last years have shown us how closely animal and human health, and their shared en-
vironment are interlinked. In this context Precision Livestock Farming (PLF) has the poten-
tial for prudent use of resources and for early detection of disease so that both intra- and 
inter-species disease transmission can be reduced. Prevention and early treatment of dis-
orders can contribute to a reduction in the use of pharmaceuticals and minimise antibiotic 
resistance. Therefore, PLF technology is a key element in the One Health initiative to achieve 
the Sustainable Development Goals (SDGs) and looking to the brighter future. 

Focus on the One Health initiative will be highlighted in the opening session of the con-
ference by keynote speakers but also in several scientific sessions on pigs, cows and poul-
try. Growing importance of computer vision in Precision Livestock Farming is represented 
by many sessions such as Computer Vision in Weaners and Growers or Computer Vision 
and Vibration Sensors in Sows. Unique sessions of the conference will be dedicated to 
Adoption and Barriers of PLF; Decision and Economics; Product Development and Over 
the Fence: Use of PLF in other Species. 

During the conference, Vienna is the central meeting point for the world’s leading scien-
tists, manufacturers, farmers, veterinarians and other stakeholders interested in Preci-
sion Livestock Farming technologies. One of the key elements for further development 
and adoption of new technologies in livestock farming is education of a new generation 
of students in the interdisciplinary field of Precision Livestock Farming. This topic will 
also be addressed in scientific sessions and a workshop. 

We are happy to announce the opening of a unique, new master programme on Precision 
Animal Health offered by Vetmeduni Vienna and its partners. This master programme will 
support students in acquiring skills to understand and explain the technological basis and 
principles underlying the application of information driven technologies in the areas of 
veterinary medicine, animal husbandry and agricultural production. 

Our thanks to the Committee of the EA-PLF for accepting our bid to host the 10th ECPLF; 
we hope that we can continue the tradition of high quality and impactful meetings, 
which have characterised previous ECPLF Meetings.

We would like to thank all authors for their papers and presentations, the numerous 
reviewers for their important comments and contributions which have helped to ensure 
the high quality of the papers. We want to thank our organising committees and confer-
ence partners. We especially would like to thank our sponsors and supporters, without 
whom we could not run this conference successfully.

We hope that the 10th European Conference on Precision Livestock Farming will stimulate 
fruitful discussions and networking, identify common goals and develop new research 
collaborations. We hope that delegates enjoy their visit to Vienna.

Maciej Oczak, Michael Iwersen, Karen Wagener ECPLF2022
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Table of contents

The conference was organised as a joint event of ECPLF and PDC. Only 
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Abstract
Dairy cows may display a variety of behaviours throughout the day. The behavioural 
patterns of cows differ between individuals, and deviations from an individual cow’s 
normal behaviour may indicate a change of state, such as onset of disease or oestrus. 
In the Intelligent Ear Tags project, we are developing machine learning-based models 
to classify the behaviour of dairy cows from 3D-accelerometer data collected with sen-
sors housed in the cows’ ear tag. The annotated accelerometer data were used to train 
random forest models. In this preliminary study, we systematically compared various 
strategies for data pre-processing and model training on a sub-set of our available data. 

Key words: Behaviour classification, dairy cow, tri-axial accelerometer

Introduction
The monitoring of animal activity and behaviour is often a part of welfare and health 
control in production facilities, and solutions for wearable accelerometers exists for 
this purpose (Hendriks et al., 2020). These generally make the sensors part of additional 
equipment, which the farmer would not otherwise need to buy. Since per EU regulation 
(EU, 2019) all cows need to be ear-tagged, it seems sensible to investigate the utility of 
acceleration data collected by ear tags for monitoring purposes. The long-term goal 
with these models is to be able to monitor the behaviour of individual cows, automat-
ically learn the normal behaviour pattern of each individual, and detect and classify 
significant deviations from these normal patterns. It is well known that the cow’s be-
haviour will change while the cow is in heat, and some studies have also shown that 
changes in behaviour can be seen shortly after the onset of mastitis (e.g. Yeiser et al., 
2012). This is intended to be a preliminary study with the aim of identifying an optimal 
set of parameters and strategies for classifying dairy cow behaviour based on 3D-ac-
celerometer data. 

Materials and methods

Data collection and annotation
Ear tags were placed on 14 lactating cows for different periods between October 31st 
2020 and January 6th 2021, for a total of 364 cow-days. Acceleration data in three dimen-
sions were recorded at a rate of 10 hertz and sent by RFID to a server, resulting in 864000 
rows of data/day. Cameras were placed in the stable, and the relationship between 
time stamps from the cameras and the ear tags was determined in a synchronisation 
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experiment, as described in a separate paper. The 14 cows were painted with different 
symbols on both sides of their bodies, so that the individuals could be identified from 
the videos (see Figure 1). The videos were stored and used for manual annotation of 
the accelerometer data. A total of five different people would have the task of watch-
ing the stored videos, and noting down the behaviours whenever a marked cow was 
in frame. The labellers were thoroughly instructed by one of the authors in order to 
ensure consistent labelling. A total of eight different behaviours were recorded, namely 
lying, standing, walking, feeding, milking robot, mounting other cows, being mounted 
by other cows, and drinking. Mounting and being mounted were omitted, since these 
only observed 26 and 44 times and only in 3 and 5 individual cows, respectively. Drink-
ing was omitted, as the labellers could not consistently label this behaviour. The dif-
ferent labellers were assigned different cows and/or dates to annotate, with no overlap 
between the various labellers.

For this study, only data from one cow was used. This cow had data available for a total 
of 15 days of labelled observations, all of which were labelled by the same person. 

Figure 1:  A: the intelligent ear tag (orange). B: An example of how the cows were marked for 
identification from video when manually recording the cows’ behaviours

Data pre-processing
All pre-processing of the data and model training was done using R version 3.5 (R Core 
Team, 2017). A unique event is a coherent period where the cow performs one behav-
iour. Individual behaviour events which had lengths shorter than the 2.5th quantile or 
longer than the 97.5th quantile for the event’s behaviour class were removed as outliers. 

Each variable of the 3D data (X, Y, Z) were transformed using summary statistics (min-
imum, 1st quartile, mean, median, 3rd quartile, and maximum) applied over a running 
window. Different window lengths were systematically used, namely 10, 50, 100, 200, 
500, 1000, 1200, 1500 observations. Ten observations corresponds to 1 second.  

Three different methods of balancing the training data were compared: no balancing, 
balancing by random re-sampling, and balancing using Borderline SMOTE (BL-SMOTE) 
(Han et al., 2005). For the random-resampling, three different levels were used: (1) simple 
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under-sampling, where the all classes are randomly sampled without replacement, 
so that all classes were represented with a number of observations corresponding to 
the size of the smallest class, (2) random re-sampling to the size of the median class; 
classes smaller than the median are sampled with replacements, classes larger than 
the median are sampled without replacement, and (3) simple over-sampling where the 
classes smaller than the largest class are sampled with replacement to reach the size 
of the largest class. For BL-SMOTE, only the median and the largest classes were used. 
Only the training set was balanced, while the test set was kept unbalanced. 

Model building
The training and testing was done in a 10-fold cross-validation. For each of the five be-
haviour classes, all unique events were randomly assigned a number between 1 and 10. 
All events with a given number would then iteratively be assigned to the test set, while 
all events with different numbers would be assigned to the training set. Data balancing 
was performed after each split into training and test sets. 

The (balanced) training set was then used to train a random forest with a given number 
of trees. This number was kept constant at 10 trees, except during the experiment to 
determine the optimal number of trees. During this experiment, the number of trees 
were defined by 2j, where j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9 10}, following the example of (Oshiro 
et al., 2012)the associated literature provides almost no directions about how many 
trees should be used to compose a Random Forest. The research reported here analyzes 
whether there is an optimal number of trees within a Random Forest, i.e., a threshold 
from which increasing the number of trees would bring no significant performance 
gain, and would only increase the computational cost. Our main conclusions are: as 
the number of trees grows, it does not always mean the performance of the forest is 
significantly better than previous forests (fewer trees. Additionally, 10 trees were also 
used in this experiment. 

The random forest was trained to take an input vector of 21 values (the X, Y, and Z val-
ues for a given observation as well as the rolling summary statistics associated with 
that observation), and provide the probabilities for five behaviour classes (lying, stand-
ing, walking, feeding, milking robot) as its output. The class with the highest probability 
was the final predicted class for a given observation. 

The predicted and observed classes were combined from each iteration of the 10-fold 
cross-validation, and the overall per-class accuracies were calculated as the number 
of observations within a given class which was correctly labelled as that class by the 
random forest. Finally, the major mean accuracy (MMA) was calculated as the simple 
mean of the five per-class accuracies. In some experiments, a mean MMA was also 
calculated as the simple average of the MMAs from each of the 10 test sets of the 
cross-validation, and the standard deviation of these were used to calculate the 95 % 
confidence interval (CI).
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Results and Discussion

Descriptive statistics
Table 1 shows the descriptive statistics for the data used for this study. For each of the 
five considered behaviour classes, the table shows the number of events, which were 
included and excluded, after the removal of outliers. 

Table 1: Descriptive statistics of the data. Ten observations corresponds to 1 second

Behaviour 
class

Included 
events

Excluded 
events

Event lengths (observations)

Median Mean 1st Qu. – 3rd Qu.

Lying 48 4 33304 39057 23192 – 50408

Standing 138 8 2703 4840 760 – 6196

Walking 103 6 367 516 228 – 706

Feeding 48 4 10516 10064 6531 – 13354

Milkning 
robot 20 2 4675 4092 3691 – 5046

Optimal window length
Table 2 shows the overall MMA as well as the per-class accuracies given the various 
window lengths, when all other parameters are kept constant. For lying and feeding, 
which have the longest event lengths, the optimal window length is 1000 observa-
tions.. Walking and milking robot both achieve their best performances with the small-
est window length, i.e. 10 observations, and their performance rapidly decrease with 
longer windows. Standing achieves the best performance with a window length of 200 
observations, and the difference compared to 100 observations is only 2 percentage 
points. The best MMA is achieved with a window length of 100 observations (i.e. 10 sec-
onds), which represents the best compromise between the different classes. Therefore, 
the window length will be kept constant at 100 observations in the following sections. 
In future studies, the utility of making class-specific models with different window 
lengths should be investigated. 

Moving averages are used as a pre-processing step in many studies related to detecting 
undesired events in production animals, e.g. mastitis in dairy cows as summarized by 
van der Voort et al. (2021). Several studies on classification of animal behaviour also ap-
plied various summary statistics to the accelerometer data, e.g. (Barwick, 2020; Fogarty 
et al., 2020; Jin et al., 2021). While Jin et al. (2021) used a rolling window approach similar 
to the ours, others calculated the summary statistics from non-overlapping windows 
(Barwick, 2020; Fogarty et al., 2020). Fogarty et al. (2020) compared window lengths of 
5, 10, and 30 seconds, and achieved their best performance with window lengths of 10 
seconds, which is the same optimal time window we find when optimizing the MMA. 
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Table 2: The major mean accuracy (MMA) and per-class accuracy given various window lengths 
used for transforming the data with a rolling summary statistics window 

window length 
(observations) MMA

Per-class accuracy

Lying Standing Walking Feeding Milking 
robot

10 0.47 0.58 0.40 0.46 0.52 0.40

50 0.52 0.70 0.49 0.38 0.65 0.37

100 0.53 0.76 0.54 0.30 0.70 0.32

200 0.52 0.81 0.56 0.20 0.75 0.30

500 0.52 0.85 0.56 0.12 0.79 0.28

1000 0.49 0.87 0.55 0.01 0.80 0.22

1200 0.48 0.87 0.54 0.01 0.80 0.18

1500 0.48 0.87 0.52 0.00 0.79 0.23

Data balancing
Table 4 shows the MMA and per-class accuracies given the various combinations of bal-
ancing methods and balancing levels. The worst MMA is achieved when no balancing 
is performed, while the best MMA is achieved when using simple down-sampling, i.e. 
when all classes are randomly sampled to only include the same number of observa-
tions as the smallest class. The three smallest classes all achieve the highest per-class 
accuracy when using simple down-sampling. In all cases, the best per-class accura-
cies and MMA are seen when using random re-sampling rather than BL-SMOTE or no 
balancing. 

Table 4: The overall major mean accuracy (MMA) and per-class accuracies given the methods and 
levels of data balancing 

Method Level MMA
Per-class accuracy

Lying Standing Walking Feeding Milkning 
robot

Nothing NA 0.45 0.88 0.45 0.06 0.70 0.17

Random 
sampling

Min 0.52 0.76 0.53 0.29 0.70 0.33

Median 0.47 0.84 0.49 0.10 0.73 0.20

Max 0.46 0.87 0.44 0.07 0.72 0.18

BL-SMOTE
Median 0.50 0.83 0.48 0.23 0.72 0.25

Max 0.47 0.82 0.51 0.15 0.70 0.20

A direct comparison between random sampling and BL-SMOTE can be made by com-
paring the MMAs achieved when these two methods are used to balance the data to the 
median and maximum class sizes. From Table 4 it is seen that BL-SMOTE outperforms 
random sampling in both of these cases, although neither outperform the simple 
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under-sampling. Table 5 shows that the differences seen for between random sampling 
and BL-SMOTE cannot be shown to be statistically significant. 

Table 5: Statistical test of the difference between the major mean accuracy (MMA) when BL-SMOTE 
and random re-sampling (RS) are used to re-size all classes to the sizes of the median class and the 
maximum class

Level Comparison
MMA

estimated 
difference

95 % CI 
estimated 
difference

p-value

Median BL-SMOTE - RS 0.03 -0.11-0.17 0.67

Max BL-SMOTE - RS 0.02 -0.11-0.15 0.80

In the literature, we found one study which did not balance the training data (Barwick, 
2020), one which compared using BL-SMOTE, under-sampling, and no balancing (Jin et 
al., 2021), one which used no balancing, random under-sampling, and over-sampling 
using SMOTE (Homburger et al., 2014), and four studies which only used random un-
der-sampling (Smith et al., 2016; Abell et al., 2017; Sakai et al., 2019; Fogarty et al., 2020). 

Simple under-sampling has the potential drawback that informative observations are 
removed from all classes, which are larger than the smallest class. Simple over-sam-
pling has the drawback that a large number of identical samples are created, which 
might cause the model to over-fit to those repeated observations (Barwick, 2020). One 
might then suspect that a reasonable middle ground could be to randomly re-sample 
all classes to the median class size. From Table 4, however, this is seen not to be the 
case. Our finding that simple under-sampling yields better MMA is in concordance 
with the findings of (Homburger et al., 2014). Similarly, our finding that balancing the 
data by any method yields better performance than no data balancing is in concord-
ance with the findings of (Jin et al., 2021). Our finding that random under-sampling is 
the optimal data balancing method is, however, in opposition to the findings of (Jin et 
al., 2021), who found that using BL-SMOTE yielded considerably and significantly bet-
ter performances than using simple random under-sampling when training a model 
to classify the behaviour of slaughter pigs from 3D-acellereomter data. Our findings 
do, however, match the findings of (Homburger et al., 2014), who found that random 
under-sampling yielded better performance than  when balancing to the size of the 
largest class using SMOTE. Given the prevalence of unbalanced data sets within our 
field, further studies on larger data sets are warranted to search for a best practice for 
data balancing. 

Number of trees
Table 6 shows the performances for random forests trained with different num-
bers of trees. The overall MMA is the MMA calculated from all predictions of the 
10-fold cross-validation while the mean MMA is the average of the 10 MMAs in the 
cross-validation. 
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Table 6: The major mean accuracy and the per-class accuracies for, given the number of trees in the 
random forest, when all other variables are kept constant 

No. of 
trees

Overall
MMA

Mean
MMA

Per-class accuracy

Lying Standing Walking Feeding Milking 
robot

1 0.45 0.45 0.64 0.45 0.26 0.58 0.31

2 0.45 0.46 0.64 0.45 0.26 0.58 0.31

4 0.50 0.50 0.71 0.50 0.29 0.65 0.32

8 0.52 0.53 0.75 0.53 0.29 0.69 0.32

10 0.52 0.53 0.76 0.53 0.29 0.70 0.33

16 0.53 0.54 0.77 0.55 0.30 0.72 0.32

32 0.54 0.55 0.78 0.55 0.30 0.73 0.32

64 0.54 0.55 0.79 0.56 0.30 0.74 0.33

128 0.54 0.55 0.79 0.56 0.31 0.74 0.33

256 0.55 0.55 0.80 0.57 0.31 0.74 0.32

512 0.55 0.55 0.80 0.57 0.31 0.74 0.32

1024 0.55 0.55 0.80 0.57 0.31 0.74 0.32

In our study, the number of observations in the training sets used in the 10-fold 
cross-validation ranged from 2,328,842 to 2,566,185 with a mean value of 2,480,284. 
The number of input variables for the random forest was 21, and the number of output 
classes was 5. Thus, according the density function defined by (Oshiro et al., 2012), the 
average density of our training data was 4.31. Thus our data meet definition of high 
density, proposed by Oshiro et al. (Oshiro et al., 2012), and the density of our data set 
is on the same order as the highest density data set analysed by Oshiro et al. (Oshiro 
et al., 2012). 

Oshiro et al. (2012) found that the performance of a random forest trained of high den-
sity data sets did not, on average, improve when the number of trees went beyond 32. 
This is well in concordance with our findings, where the mean MMA peaks with a value 
of 0.55 at 32 trees. At 32 trees, the overall MMA is 0.54, and it does not increase to 0.55 
until the number of threes is 256. Furthermore, the increase in overall performance 
when going from 16 to 32 trees is only 0.01. Similarly modest improvements beyond 16 
and 32 trees are seen for all behaviour classes. Thus, for the full version of our data set, 
training a model with either 16 of 32 trees will likely be sufficient. 

Final performance
Figure 1 shows the final normalized confusion matrix resulting from the predictions 
and observations from all iterations of the 10-fold cross-validation, when the following 
parameters were set: rolling window length = 100 observations, data balancing method 
= random under-sampling, number of trees = 32. This results in an overall MMA of 0.54 
and a mean MMA from the 10-fold cross-validation of 0.55. The per-class accuracies 
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can be seen from the diagonal of Figure 1. As is seen, the two most well-represented 
classes (Lying and Feeding) achieves the best per-class accuracies, even though the 
data have been balanced. Similarly, the least well represented class (Walking) achieves 
the worst class-performance. Standing is most often mistaken for Lying, which makes 
sense as these are both passive behaviours. Milking robot is mostly mistaken for Feed-
ing, followed by Standing/Lying. This makes sense, because the cow will eat and stand 
while in the milking robot. When Feeding is misclassified, it is mostly mistaken for 
Standing. This makes sense, as the cow will stand while eating. 

Figure 2: The normalized confusion matrix resulting from the final 10-fold cross-validation. 1 = 
Lying, 2, Standing, 3 = Walking, 4 = Feeding, 5 = Milking robot 

Conclusion
In this preliminary study, we compared the performances of random forests for clas-
sifying behaviours of one dairy cow, using different strategies for data pre-processing 
and model training. The final parameters resulted in an average MMA of 0.55. The final 
parameters will be used in a follow-up study involving data from multiple cows. 
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Abstract
Sensor-based monitoring of animal behaviour can provide valuable insights into ani-
mal health and welfare. A prerequisite for using sensor technologies is their validation, 
which has already been performed, e.g., for the RumiWatch system (RWS, Itin + Hoch 
GmbH, Liestal, Switzerland) on pasture. To our knowledge, HOBO-loggers (HBL, HOBO 
Pendant G logger, Onset Computer Corporation, Bourne, MA) and the SMARTBOW sys-
tem (SBS, Smartbow GmbH/Zoetis LLC, Weibern, Austria) have not been evaluated for 
detecting lying behaviour and rumination on pasture yet. The main objective of this 
study was to validate the SBS for rumination and both systems (SBS, HBL) for lying be-
haviour under grazing conditions. Another aim was the direct comparison among three 
different RumiWatch Converter (RWC) versions in different time resolutions. The study 
was conducted at the Teaching and Research Farm of our University. Ten lactating cows 
were equipped with the SBS, RWS and HBL concurrently during four non-consecutive 
weeks. Cows spent 2 to 6 hours a day on pasture for fifteen days in total. Animal behav-
iour was video recorded with a drone-mounted camera. Preliminary analyses showed 
moderate correlations between 1-min lying data of visual observation (VO) and SBS 
(rS = 0.51; CCC = 0.44) and almost perfect correlation between VO and HBL (rS = 0.95; 
CCC = 0.95). Correlations of 1-min rumination data between VO and SBS were rS = 0.84 
and CCC = 0.84. The agreement of the three RWC versions between each other was 
almost perfect (CCC > 0.9). These findings suggest that HBL are suitable for estimating 
lying times and the SBS for rumination times on pasture, respectively. There are only 
minor deviations between the RWC versions comparing rumination times.

Keywords: cow behaviour, lying and rumination monitoring, pasture, sensor 
technology, accelerometer, validation

Introduction
The use of precision livestock farming (PLF) technologies in research and dairy farming 
has rapidly increased over the last decades. These technologies can help alleviate the 
manual monitoring of the herd, not only in large-scale farms, but also for small and 
part-time farms. In research, automated monitoring of animal behaviour can supple-
ment or replace the time consuming task of visual observation of study animals (Perei-
ra et al., 2021). Independent validations of technical devices and sensor systems are of 
high importance to determine their reliability and accuracy. Many PLF-technologies 
have been introduced to agriculture. However, most of them are used under confined 
conditions in intensive livestock farming. Extensive research has already been car-
ried out in order to validate a variety of sensor systems under different conditions, as 
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reviewed by Chapa et al. (2020) and Stygar et al. (2021). The ear-attached accelerometer 
system SMARTBOW (SBS, Smartbow GmbH/Zoetis LLC, Weibern, Austria) has been val-
idated for rumination and heat detection under indoor housing conditions (Borchers et 
al., 2016; Reiter et al., 2018; Schweinzer et al., 2019) and for grazing behaviour on pasture 
(Pereira et al., 2020). However, this system has not been evaluated for monitoring rumi-
nation and lying behaviour on pasture.

HOBO-loggers (HBL, HOBO Pendant G logger, Onset Computer Corporation, Bourne, MA) 
have already been validated for the use on cows and calves in the barn to classify 
standing and lying position (Ito et al., 2009; Ledgerwood et al., 2010; Bonk et al., 2013). 
They were also employed in research for cows on pasture (Sepúlveda-Varas et al., 2014). 
However, to our knowledge, these accelerometers have never been validated for the 
use on pasture, although there might be a difference in performance, possibly due to 
uneven terrain, which is often found on pastures in mountainous regions. 

Another sensor system, which comprises a noseband-pressure sensor combined with 
accelerometers on the halter and the leg (RumiWatch system, RWS, Itin + Hoch GmbH, 
Liestal, Switzerland), was already validated by many researchers in the barn (Zehner et 
al., 2017) and on pasture (Werner et al., 2018). As a result, further development led to 
adjustments of the classification software. Currently, different versions of the convert-
er software are available. Some studies have already compared two converter versions 
with each other or one converter version with visual observation (Steinmetz et al., 2020; 
Norbu et al., 2021; Pereira et al., 2021), but a direct comparison of all three versions 
within the same dataset has not yet been conducted. In order to complement the cur-
rent state of scientific validations, this study focused on further evaluation of three of 
the above mentioned sensor systems on pasture: SMARTBOW ear-tag, RumiWatch sys-
tem and HOBO-loggers. To our knowledge, this is the first study that evaluated several 
sensor technologies for their use in cows on pasture by using video observation with 
a drone-mounted camera as reference. The main objective of this study was the vali-
dation of the SBS for classifying rumination and lying behaviour on pasture as well as 
the validation of HBL for detecting lying behaviour on pasture by using indirect visual 
observation as gold standard. The second objective was the direct comparison of three 
different RWC versions in different time resolutions.

Material and methods
All procedures that involved animals were discussed with the ethical committee (ETK) 
of the University of Veterinary Medicine and approved by the Austrian Federal Ministry 
of Education, Science and Research (BMBWF) (GZ: 2021-0.236.444).

Experimental farm
The study was conducted during the grazing periods in 2020 and 2021 at the Teaching 
and Research Farm (VetFarm) of the University of Veterinary Medicine Vienna, Austria. 
On the farm, approximately eighty Simmental cows are kept in a free-stall barn with 
cubicles. The lactating herd is milked twice daily in a tandem milking parlour. The pas-
ture area available for this study was approximately 1.5 ha in total.
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Study design
Ten lactating cows were enrolled in the study during four non-consecutive weeks 
throughout the grazing season. Each period consisted of four days a week, on which 
only the study cows were moved to pasture in the morning for 2 to 6 hours. In the 
second week of the experiment, they were also moved to pasture after the evening 
milking for 2 to 2.5 hours. In the remaining time, they were housed indoors within the 
herd. For the validation experiment, the cows were equipped with different sensor sys-
tems: accelerometers (ear-attached and leg-mounted) and noseband sensors. Indirect 
visual observation by using a camera-equipped drone (DJI Phantom 4 Pro V 2.0, SZ DJI 
Technology Co., Shenzen, China) was carried out during the time on pasture to serve as 
a gold standard for the behavioural classification. Noseband sensors, pedometers and 
data loggers were always mounted on Sundays, prior to the start of the experimental 
week on Monday, to allow habituation to the sensors. No further manipulation was 
necessary for the ear-tag, as this sensor system is permanently in use at the VetFarm 
for several research projects and for management purposes. During the experimental 
periods, cows were checked twice daily after the milking times for potential bruises 
caused by the sensors and to adjust sensor position if needed. Prior to the start of 
the experiment, cows were habituated step by step to the sensor systems, the grazing 
regime and the drone flight during two weeks. All sensor systems were time synchro-
nised using UTC as reference.

Sensor systems
The SMARTBOW system is an ear-tag with an integrated accelerometer, which collects 
data at 10 Hz frequency for research purposes. Data are sent to receivers and passed on 
to the on-farm server, where raw data are classified into, inter alia, ruminating, stand-
ing and lying. For outdoor use, there are specific receiver stations, which are supplied 
by solar-powered batteries. The SBS is described in more detail by Schweinzer et al. 
(2019).

The HOBO data loggers are accelerometers with gyroscope function. The logging fre-
quency was set to log once per minute. Raw data were written to an internal mem-
ory and read out by using a proprietary cable. The data loggers were cushioned and 
fixed with bandage material to the cows´ left hind legs for capturing standing and lying 
times.

The RumiWatch system consists of two parts: The first part is a halter with a pressure 
tube integrated into the noseband as well as an accelerometer on one side of the cheek. 
The second part is a pedometer and can be attached to any leg of a cow. Both parts can 
be used separately. In terms of animal behaviour, the RWS is able to detect rumination 
and lying behaviour. A more detailed description of the RWS can be found in Zehner et 
al. (2017).

Visual observation
A drone was used to record cow behaviour on pasture with a mounted RGB-camera by 
following the group of animals. Therefore, the whole study group was visible on almost 
the entire video footage. This facilitated the analysis and behaviour classification in 
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the video recordings in a highly efficient manner. Another advantage of this obser-
vation strategy was to avoid the influence of animal behaviour by human presence. 
Due to the maximum flight time of 30 min (limited by the battery) the video footage of 
cow behaviour could not be recorded continuously. Two independent observers labelled 
the video footage using the software Mangold® Interact (Mangold International GmbH, 
Arnsdorf, Germany). The behaviours were classified as ‘lying’ and ‘not lying’ as well as 
‘ruminating’ and ‘not ruminating’, if the cow was visible in the video and behaviour 
was identifiable.

Data preparation
Data from SBS were provided by the company. Each minute was classified as ‘ly-
ing’/’standing’ and ‘rumination’/’nothing’ by their proprietary algorithms, according 
to the predominant behaviour. The HBL had to be read out manually. Raw data were 
available as acceleration and tilt data in the x-, y- and z-axes and were classified into 
‘standing’ and ‘lying’ in 1-min time resolution as described by Ito et al. (2009). Correc-
tions of erroneous values were carried out according to Ledgerwood et al. (2010). Rum-
iWatch raw data were read out using the RumiWatch Manager 2 software (RumiWatch 
Manager 2.2.0.0., Itin + Hoch GmbH, Liestal, Switzerland). Raw data were converted into 
classified csv files (10-min and 1-hour time resolution) using the three latest Rumi-
Watch Converter (Itin + Hoch GmbH, Liestal, Switzerland) versions: V0.7.3.36 (RWC36), 
V0.7.4.5 (RWC05) and V0.7.4.13 (RWC13). Classified data were merged by sensor identi-
fication number (ID) and timestamp. The output of indirect visual observation (VO) was 
resampled to 1-min time resolution (originally seconds) and merged with ear-tag data 
and the lying/standing-classification of the data loggers.

Statistical analyses
For statistical analyses, the software SPSS (version 27, IBM Corporation, Armonk, NY) 
and R (version 4.0.4, Copyright 2021, The R Foundation for Statistical Computing) were 
used. Inter-observer-reliability of indirect VO was assessed by calculating Cohen´s kappa 
coefficient (κ) from randomly selected overlapping labelled video footage. Sensor data 
were checked for normal distribution using Shapiro-Wilk test and histograms. For calcu-
lation of sensitivity, specificity, positive predictive value and accuracy a confusion matrix 
was computed, for HBL (lying) versus VO, SBS (lying) versus VO and SBS (rumination) 
versus VO, respectively. For assessing the agreement between each sensor system and 
VO, the concordance correlation coefficient (CCC) and Spearman´s rank correlation coef-
ficient (rS) were calculated. For the comparison between the three different RumiWatch 
Converter versions (RWC36, RWC05 and RWC13), the concordance correlation coefficient 
(CCC) and Spearman´s rank correlation coefficient (rS) were calculated for each version 
with the other two, both in 10-min time resolution and in 1-hour time resolution.

Results and Discussion
Results of the validation of the two systems SBS and HBL by VO are presented sepa-
rately from the comparison of the three different RWC versions with each other. Due 
to the initial objectives of this study and the preliminary available time resolutions of 
the data, a direct comparison between RWS and VO was not carried out in preliminary 
analyses.
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Validation of SBS and HBL on pasture
For the validation experiment, data of eleven days were available for analysis. Four 
days were excluded due to significant data loss of one sensor system. On one day, cows 
were not brought to pasture because of rainy conditions. As one cow was dried-off one 
week prior to the end of the experiment, only nine cows were available for the last 
three days. For the comparison of sensor data against the gold standard (VO), approxi-
mately two thirds of labelled video footage were available for preliminary analysis. The 
number of valid minutes for analysis after merging sensor with VO data is presented in 
Table 1. From the total amount of analysed video footage, 10 % were classified as rumi-
nation behaviour and 23 % as lying behaviour by visual observation. Inter-observer-re-
liability was calculated from 728 overlapping minutes. Cohen´s kappa was κ = 0.96 for 
rumination and κ = 1.0 for lying, considered as a ’perfect agreement’ between observers 
according to Landis and Koch (1977). Results from computing the confusion matrix and 
correlation coefficients for each sensor system are shown in Table 1.

Table 1: Agreement measures for 1-min time resolution data of visual observation and the two sensor 
systems (HBL = HOBO-logger, VO = visual observation, SBS = Smartbow system, SE = Sensitivity, 
SP  =  Specificity, AC = Accuracy, PPV = Positive predictive value, CCC = concordance correlation 
coefficient, rS = Spearman´s rank correlation coefficient, N = number of minutes)

Parameter 
and system SE (%) SP (%) AC (%) PPV (%) CCC rS N (min)

Rumination

SBS vs. VO 82.0 99.0 90.5 90.2 0.84 0.84 8,747

Lying

HBL vs. VO 95.5 99.3 97.4 97.5 0.95 0.95 8,929

SBS vs. VO 35.4 99.2 67.3 92.9 0.44 0.51 8,910

Other studies that compared hourly rumination data of the SBS to visual observa-
tion under housed conditions reported agreement of CCC = 0.96 (Borchers et al., 2016) 
and correlation of r > 0.99 (Reiter et al., 2018). The lower results of the current study 
(CCC = 0.84, r = 0.84) are due to an underestimation of rumination time by the SBS. 
This is expressed by the sensitivity and specificity given in Table 1 and can possibly be 
explained by the conditions on pasture. As observed in the video footage, searching for 
food while ruminating (leading to low head position and irregular rumination chews) 
and intense head shaking induced by increased amount of insects could cause misclas-
sifications. As we were mainly interested in time budget measures in this study, and 
the swallowing and regurgitation of cuds could not be detected clearly on the entire 
video footage, rumination was defined as the onset of rumination until the last bolus 
was swallowed. Therefore, we did not take into account the pauses between two ru-
mination bouts, which in turn could rather be considered an overestimation by visual 
observation. Further investigation of the data, including the comparison of the SBS to 
the RumiWatch rumination data, can help to understand this in more detail. When 
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comparing those two systems with each other, it has to be considered that RWS was 
intended to be used for research purposes and SBS for commercial applications.

HBL showed almost perfect agreement with VO for lying behaviour. Even though the 
results in this study are slightly lower than reported by Ledgerwood et al. (2010), HBL 
can still be considered suitable for detecting lying and standing behaviour of cows on 
pasture. There is only a moderate agreement (CCC = 0.44) between SBS and VO for lying 
behaviour. Although insects on pasture could also explain misclassification to some 
extent, it is obvious that the detection of lying and standing position in cows by HBL is 
more accurate.

Comparison of RumiWatch Converter versions
For the comparison of the different RWC versions, sensor data of eight entire days were 
included for preliminary analysis. In total, 1796 data points of 1-hour and 10815 data 
points of 10-minute time resolution were available for each converter version. Results 
of overall correlation measures for 10-min-classification and hourly data are given in 
Table 2.

Table 2: Lin´s concordance correlation coefficient (CCC) and Spearman´s rank correlation coefficient 
(rS) for the comparison of three different RumiWatch Converter versions (7.3.36, 7.4.5, 7.4.13) in two 
different time resolutions (10-minute-resolution, hourly resolution)

Converter versions CCC
10 min

rS

10 min
CCC
hour

rS

hour

Lying

   RWC36 vs RWC05 1 1 1 1

   RWC36 vs RWC13 1 1 1 1

   RWC05 vs RWC13 1 1 1 1

Rumination

   RWC36 vs RWC05 > 0.999 > 0.999 > 0.999 > 0.999

   RWC36 vs RWC13 0.993 0.984 0.998 0.997

   RWC05 vs RWC13 0.993 0.984 0.998 0.996

According to the results, a perfect agreement between the different converter versions 
was found. This provides evidence that these RWC versions can be used interchange-
ably for the classification of lying behaviour. Nevertheless, minor deviations for rumi-
nation were detected. This has to be evaluated in more detail. In this study, the data 
for agreement in terms of time spent ruminating were examined. It was not differen-
tiated whether data were collected in the barn or on pasture for preliminary analysis. 
Other studies investigated parameters such as rumination chews, prehension bites 
and mastication chews. Norbu et al. (2021) reported different levels of agreement with 
visual observation for RWC36 and RWC13, depending on whether cows were in the 
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barn or on pasture. Steinmetz et al. (2020) compared RWC05 against direct visual obser-
vation in 1-min and 1-hour time resolution and found high agreements for rumination 
(r = 0.95) and ruminating chews per bolus (r = 0.96). Although those results cannot be 
compared directly with the findings of the current study, they provide evidence for 
different performances of the RWC versions. Werner et al. (2018) evaluated the RWC36 
for rumination in 1-hour time resolution under grazing conditions and reported almost 
perfect agreement with direct visual observation (CCC = 0.99, rS = 0.98). Further aims 
of the current study include the comparison of VO with the different RWC versions for 
a better understanding of the preliminary results. More detailed analyses are currently 
being conducted.

Conclusion
The preliminary findings of this study show a lower agreement of rumination time on 
pasture between the SBS and VO compared to results from studies under confined con-
ditions. However, the influence of the video labelling process as well as the algorithms 
that were used can be discussed and need further investigations. Preliminary evalua-
tion of the HBL yielded only slightly lower results compared to studies conducted in the 
barn. Thus, it was concluded that the HBL is appropriate for the use on pasture. First 
results for detection of lying behaviour by the SBS suggest that adaptions of the current 
classification algorithm are needed for the conditions on pasture. Currently, the use of 
leg-mounted sensors for estimating lying times is recommended. Using the pedome-
ters of the RWS, no significant differences between the three RWC versions were found. 
However, when comparing the three different systems used in this study, it has to be 
taken into account, that SBS is designed for commercial purposes, whereas both RWS 
and HBL are mostly being used as research tools. Further in-depth analysis using the 
video footage and sensor data in different time resolutions is currently in progress.
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Abstract
Social interactions of group-living farm animals can have important implications for 
animal welfare, health, and productivity. Understanding which factors can affect social 
behaviour is thus important to improve management strategies. We investigated the 
social structure of a group of 19 lactating dairy cows during a 14-day period through 
the use of proximity loggers. The proximity devices collected data on dyadic proximity 
of cows. The devices are non-invasive, weight 2.7 g, are powered by a lithium coin bat-
tery (3 g). The sensors have been attached to the cows by using custom collar-mounted 
cases, and were set to detect proximity events within a distance of 1–1.5 m. Colocation 
of animals at this distance indicated a close-contact situation, during which social in-
teractions between animals might occur. In addition, proximity sensors were placed 
in strategic locations of the barn (e.g., feeding trough, drinkers, cubicles) as fixed tags 
in order to evaluate the use of the space and resources by the cows. Video observations 
of the cows, their interactions and their location were used to assess the repeatability 
of the measurements produced by the sensors. At the time this paper was written, data 
analysis was still ongoing. Preliminary results indicate the proximity sensor technol-
ogy used in this study has the potential to provide high resolution data that can be 
used to monitor the social behaviour and the location of dairy cattle. Further analysis 
is deserved to better evaluate the functioning of these type of proximity sensors within 
common dairy cow housing, especially in freestall barns. 

Keywords: proximity sensors, dairy cows, validation, contact patterns, social behavior

Introduction
Gregarious animals form social relationships with group members, and there is grow-
ing evidence that social behaviors are positively correlated with the survival and repro-
ductive success of individuals (Silk, 2007). In production settings, management practic-
es can modify the social interactions of group-living farm animals, depending on group 
composition and available space (Keeling, 2001). Nevertheless, the social behavior of 
farm animals is plastic and dynamic, and allows animals to adapt to varying envi-
ronmental and social conditions within a confined group (Estevez et al., 2007). In re-
cent years the livestock production industry has intensified efforts to improve animal 
health and well-being due to increasing ethical issues and public concern about animal 
welfare. Animal welfare is influenced by the social environment and by the opportunity 
to express certain social behaviors despite the limitations due to bounded space and 
management practices (Sevi et al., 2001). Moreover, social behavior plays an important 
role in the spread of infectious diseases, and where the contact rates vary markedly 
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between individuals, the dynamics of directly transmitted infections might better be 
predicted using contact or proximity networks (Craft, 2015).

Nevertheless, social behavioral analysis of animals is non-trivial. Recent technologi-
cal advances allow us to measure animal social interactions using proximity sensors, 
in a variety of contexts, at very different spatial and temporal scales (e.g., Boyland et 
al., 2016; Wilson-Aggarwal et al., 2019). Automatic data collection by proximity sensors 
provide objective data that are relatively cost effective, and overcome many of the er-
rors encountered in recording and interpreting visually observed behavior. Visual ob-
servations require extensive labor and training, are not continuous, necessitate observ-
ers to simultaneously identify and assess multiple animals at the same time and the 
presence of observers can alter the animals’ behavior. The development of automated 
data collection using proximity sensors that are attached to animals has enabled great-
er insight into both individual and group behaviors not previously possible, although 
they cannot reliably detect all behaviors that a human-observer can (Rushen et al., 
2012). However, while visual observations provide the most descriptive assessment of 
an individual’s behavior, these may not be the most appropriate to meet the criteria of 
a reliable and valid welfare assessment criteria in extensively managed livestock pro-
duction enterprises. There is a need for studies that use continuous behavioral meas-
ures to identify the direct links between independent measures of stress and changes 
in social interactions, which will provide greater detail on welfare assessments than 
what has previously been achieved using visual observations.

Proximity sensors can gather data on animal proximity and social interactions in an 
objective way and by means of non-obtrusive methodologies. Although it seems to 
have been assumed that the use of proximity loggers for recording social interaction 
removes sampling problems, the data from proximity loggers can be prone to error 
(Boyland et al., 2013), for example signals can be interfered with by metal or other 
objects, in particular in indoor settings. Whilst this innovative technology has been 
rapidly embraced by the scientific community, devices for recording contact patterns 
are often deployed without thorough testing or consideration of the potential sampling 
biases. We propose that such assumptions requiring thorough testing and validation in 
performance is likely to result in fundamental errors in data collected for animal social 
networks, such as the presence of false-positives (i.e., the contacts did not occur but 
were registered by the sensor) or false-negatives (i.e., the contacts took place but were 
not registered by the sensors). The main objective of this study was to validate RFID-
based proximity sensors applied to dairy cows housed in freestall barns. 

Material and methods

Proximity sensors
The proximity sensing platform has been designed by the SocioPatterns collaboration 
consortium (http://www.sociopatterns. org). The hardware is open-source and based 
on the design developed by the OpenBeacon project (http://www.openbeacon.org). The 
proximity sensors used in this study have been previously deployed in social network 
studies on animals (Wilson-Aggarwal et al., 2019; Ozella et al., 2020; Fielding et al., 
2021; Ozella et al., 2022). The devices measure 3 cm in diameter and weight 2.7 g, are 
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powered by a lithium coin battery (3 g CR2032), leading to a final weight < 6 g. Sensors 
in close proximity exchange with one another a maximum of about 1 power packet 
per second, and the exchange of low-power radio-packets is used as a proxy for the 
spatial proximity of the animals wearing the sensors (Cattuto et al., 2010). In particular, 
close proximity is measured by the attenuation, defined as the difference between the 
received and transmitted power. 

In this study we set the attenuation threshold at -75 dBm to detect proximity events 
between devices situated within 1–1.5 m of one another. This distance between sen-
sors allows detection of a close-contact situation, during which social interactions be-
tween animals might occur and during which a communicable disease infection might 
be directly transmitted, either by airborne transmission or by direct physical contact. 
A “contact event” was identified when the devices exchanged at least one radio pack-
age during a time interval of 20s. After a contact is established, it is considered ongo-
ing as long as the devices continue to exchange at least one radio package for every 
subsequent 20s interval. Conversely, a contact was considered broken if a 20s interval 
elapses with no exchange of radio packages. Each device has a unique identification 
(ID) number that is used to link the information on the contacts established by the 
individual carrying the device. 

For the present study, the system was operated in a distributed fashion: contact data 
was stored in the local memory of individual devices. After collecting the devices at the 
end of the study, data from individual devices were downloaded and the time-resolved 
proximity networks recorded by individual devices were combined to build a global, 
time-resolved proximity data set. The output from each proximity sensor provides a re-
cord of the date and time of the start of every contact with any of the other proximity 
sensors, each of which has its own individual identification number, and the duration 
of each contact.

Animals and data collection 
The study took place on a commercial dairy farm located in the province of Mantova, 
Italy, over a 14-day period in June 2021. Nineteen adult Holstein cows were involved in 
the study. All the animals were fitted with a sensor tag. The tags were placed in a cus-
tom 3d-printed plastic container that was designed to be attached to a neck collar. The 
sensors were held on the upper-left side of the cows’ neck, by means of a weight at-
tached to the lower part of the collar (Figure 1). During the course of the study, the cows 
were continuously housed in a free stall barn (Figure 2). Additional tags were placed 
within the barn at 10 static locations, including feeding trough, drinkers and cubicles.

In order to acquire visual observations of proximity events, 5 cameras were installed 
within the barn. At the end of the experiment, two trained human operators observed 
the video recordings and manually recorded proximity events, which were defined as: 
1) two tagged animals get within 1.5 m of each other or 2) one tagged animal get within 
1.5 m of a static tag. 

The operators observed a 2h video footage for every tagged cow involved using a focal 
animal sampling method. For each contact event, the operators recorded the date and 
time of the start and of the end of the event as well as the animals and/or the static tags 
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involved. Direct behavioral observations were recorded at 1 min resolution. The video 
recordings contained a time reference that was synchronized with the sensors. This 
allowed to compare the data generated by the sensors and by the human observers. 

Figure 1: A cow wearing the proximity sensor

Figure 2: An overview of the freestall barn where the experiment was carried out

Data analysis
All data analysis was carried out using R (version 3.6.1.). Various tests were conducted 
to evaluate the agreement between the sensors and the visual observations. The con-
tact events generated by the sensors were analyzed in comparison with the data re-
corded by the human observers, which were considered as the gold standard. For con-
tact event detection (qualitative), sensitivity was calculated using the package “caret”. 
The package “epiR” was used to calculate the concordance correlation coefficient (CCC) 
for the duration of contact events (numeric). For events duration, Bland–Altman plots 
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and related statistics were also obtained using the package “BlandAltmanLeh”. Briefly, 
Bland–Altman analysis was developed to visually evaluate the agreement between two 
quantitative measurements by plotting the difference of the two paired measurements 
against the mean of the two measurements.

Results and Discussion
In total, 292 interaction or dyadic proximity events (within a 1.5 m range) have been 
recorded by the human observers. Confirmed events lasted from 1 min to 120 min 
(recorded on 2-h observation periods). Shorter interactions tended to be quick social 
interactions among animals, with both animals standing or walking, while the longer 
interactions were recorded when cows were lying in close proximity (i.e. in two adja-
cent freestalls). The sensors were capable of detecting 222 out of the 292 confirmed 
interactions, resulting in a sensitivity of 0.76. Most of the events that have not been 
detected by the sensors were short interactions, typically lasting less than 2 min.

The sensors tended to split single proximity events into multiple recorded interactions. 
On average the sensors recorded 3.16 interactions (range from 1 to 52) for every confirmed 
event of dyadic proximity. This often occurred for events that lasted for more than 3-4 
minutes and is likely due to signal losses that may have occurred during the same actual 
proximity event. As water (which constitutes a large proportion of animals’ body tisses) is 
known to affect the radio signal used by the sensor system, it is possible that movements 
of the animals or the position of the tags affected signal quality during some interactions.

The Bland and Altman analysis carried out on the 292 confirmed interactions (Figure 
3) indicated that the sensors significantly underestimated the duration of the events. 
The mean difference (or bias) between the duration of proximity events recorded by 
the sensors and by the human observers resulted to be -454 s, or -7.56 min. Figure 3 
indicates that the sensors’ error increased with increasing actual event duration. The 
CCC for the duration of contact events resulted to be 0.48, which also highlighted a low 
to moderate agreement between the sensors and human observations.

Similar to water, metal is also known to affect radio signals so the equipment installed 
within the barn (e. g. freestalls, posts, fences, feed barrier) is likely to have affected the 
functioning of the sensors. To our knowledge, most previous experiences regarding the 
application of this type of proximity loggers on cows and small ruminants involved 
grazing animals while studies with housed animals, especially dairy cows in freestall 
barns, are still very sparse. This can partially explain why the sensitivity and accuracy 
of the sensors tested in the current study are somehow modest and generally lower 
than those reported in other studies involving similar RFID-based proximity loggers 
(Milwid et al., 2019; Fielding et al., 2021).  

At the time this paper was written, data analysis was still ongoing so the results pre-
sented in this paper have to be interpreted as preliminary. The data generated by the 
sensors revealed a very complex structure which required the adoption of specific data 
handling and analysis techniques. Further analysis will be performed to assess false 
positive records and specificity of the sensors. Also, to reduce the error induced by the 
extensive presence of metal within the housing environment, different settings for the 
data filtering algorithm will be tested.
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It is also worth noticing that the sensors tested in the current study are intended to 
monitor dyadic proximity events. The sensors, at least at the current stage of devel-
opment, are unable to detect whether actual social interactions occurred nor inform 
about the type of interaction. Dyadic proximity events, however, have the potential to 
provide valuable information about the social behavior of dairy cows and better under-
stand the complex social dynamics that exist in cattle herds. Proximity loggers could 
also be used to monitor the position of the cows within the barn and particularly the 
animal attendance in key areas such as close to the drinkers or at the feed fence. 

Figure 3: Agreement between the sensor measurements and human observations of contact events 
duration, displayed in Bland–Altman plot (dashed lines indicate bias, upper and lower limits of 
agreement, each with 95% CI)

Conclusions
The results, although still preliminary, indicated that RFID-based proximity sensors 
can be a viable tool to automatically monitor social proximity in dairy cows. However, 
the relatively low sensitivity and significant bias recorded in the current study high-
lighted that these sensors need to be thoroughly tested and validated before being em-
ployed in scientific studies or even in practical herd management applications. Further, 
as for most RFID-based technologies, the application of this type of proximity sensors 
within common livestock housing, especially freestall barns, can suffer from the pres-
ence of metallic equipment and structural elements. 
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Abstract
As has been shown in several studies, behavioural activities of animals provide im-
portant parameters for the evaluation of their health and welfare. In recent years the 
use of wearable sensors to record animal activity has become an important practice 
especially in extensive farms, where there is an infrequent farmer-to-animal contact. 
Accelerometers allow the measurements of movements of a body in space and are 
currently very popular in the zootechnical field for monitoring livestock, as they can 
be worn without being invasive for animals. The objective of this work was to address 
the task of classifying cow behavioural activities using a Convolutional Neural Net-
work (CNN) to discriminate five classes: feeding in standing position, feeding while 
walking, walking, lying and rumination in lying position. To carry out this study, ac-
celerometer data were acquired at 4 Hz by customized devices attached to cow collars, 
containing triaxial accelerometers. The acquired samples were previously labelled by 
using video-labelling, and then grouped in windows and pre-processed. The developed 
model is a CNN with 1D convolutions, which receives as input a 3-channel batch of 
windows, where channels are the three axes. Firstly, the model processes the data in 
parallel branches, which analyse different combination of channels. Features maps ob-
tained from each branch are concatenated and provided as input to another cascade of 
convolutional layers. The model finally returns the prediction of the behavioural class. 
Our approach classified the five behavioural classes with an average F1 score of 81.51%. 
When merging the feeding in standing position and feeding while walking classes, F1 
score reached 90.01%.

Keywords: sensor-based systems, MEMS, cow welfare, automated monitoring 
systems, convolutional neural networks, deep learning 

Introduction
The use of wearable sensors is becoming a key technology for monitoring the health 
and welfare of animals in farms. In the literature several sensors have been used to 
monitor animals, and among these the most used are accelerometers. They are not 
expensive and  can be worn by breed animals by using collars or pedometers. By pro-
cessing the large volume of data provided by pedometers, it is possible to acquire new 
knowledge on the behaviour, habits, and health of animals supporting the develop-
ment of automatic monitoring systems. Over the years, various monitoring systems 
based on wearable sensors have been developed using different approaches, such as 
manual identification of thresholds (González et al., 2015) (Arcidiacono et al., 2017a, 
2017b), statistical models (Konka et al., 2014), machine learning (Benaissa et al., 2019) 
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and more recently deep learning (Rahman et al., 2016). While initial studies involving 
the use of accelerometers focused on the analysis of indoor behaviour, in recent years 
the scientific community, in accordance with the development and improvement of In-
ternet-of-things (IoT) technologies, is showing a growing interest in solutions that can 
be adopted in extensive farms. In these, obviously, the need for automatic monitoring 
systems is greater because due to the large extension of the farms, the contact between 
the cattle and breeder is much less frequent than indoor. For example, in extensive 
livestock farms, especially those with a large number of animals, the monitoring of 
the daily budget of each behavioural activity (e.g., feeding, lying or rumination) be-
comes an essential information to allow farmers to both solve management issues and 
identify early some health-related problems (Mattachini et al., 2016; Anzai and Hirata, 
2021). Martiskainen et al. (2009) proposed a method based on Support Vector Machines 
to classify and detect eight behavioural activities in dairy cows (e.g., feeding, rumina-
tion, lying, and standing) using tri-axial accelerometer data, the accuracy achieved was: 
over 80% in each behavioural class, with overall precision of 78%. Smith et al., (2016) 
proposed an ensemble model to classify five classes of cow behaviour activities based 
on the union of binary classifiers, one for each considered cow behavioural activity, 
trained to discriminate each cow behaviour activity from the other ones. Recently, re-
search has increasingly employed deep learning (DL) techniques, which, despite the 
greater computational cost, allow for better generalizability and less human interven-
tion in their design, since discriminative features are learned by the model itself. Con-
volutional Neural Networks (CNNs) were employed in Kasfi & Hellicar (2016)  to classify 
cow behaviours; the model achieves 82.5% precision and 89.6% recall, though perfor-
mance analysis is carried out by considering the majority class (grazing) against all 
other classes, due to dataset imbalance. In Peng et al., (2019), a recurrent model based 
on Long Short-Term Memory networks classifies eight livestock behaviour classes us-
ing inertial measurement units (IMU), with 88% of accuracy, precision, and recall. CNNs 
are also proposed by (Pavlovic et al., 2021), achieving 84% precision, 82% recall and 82% 
F1 score on three classes (rumination, eating and other). 

The goal of this study is to propose a Convolutional Neural Network model to classify 
behavioural activities of grazing cows, which processes data in parallel branches con-
sidering various combinations of the channels (x, y, z) of the input data.

Material and methods

The herd
Data collection is carried out in a 180 hectares semi-natural pasture, located in Sicily 
(Italy) and characterized by good availability of meadow and cultivated grazing areas. 
This farm adopts “cow-calf line” breeding system, that involves keeping calves with 
mothers during the lactation period until weaning (6-8 months). Cows live in pasture 
all year. Data were acquired on 18-22 May 2021 and 27-30 June 2021, during a period 
of the day from 7:00 AM to 6:00 PM, when animals are confined in a large enclosure of 
about 2 ha, near the farmer’s house; during the remaining hours of the day, they are 
moved to the pasture. This study monitors two 19-month-old cows, which are part of 
a group of 10 Limousines replacement heifers. 
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Data acquisition and labelling
The data required to classify grazing cow behaviours were acquired by a customized 
device equipped with tri-axial MEMS accelerometers, omnidirectional antennas, 32bit 
Cortex Microcontrollers, GSM/GPRS quad band modules, LiSOCL2 high-capacity bat-
teries and flash memories. One of these devices was placed at the neck of each of two 
cows under analysis, with a leather-reinforced mesh collars having dimensions 130 
cm × 4 cm. To avoid rotation of the device around the neck, a 1-kg weight was hung to 
the collar. This made it possible to choose the right distance of the device from the jaw 
to detect the accelerations due to the rumination phase. Acceleration measurements 
are acquired through the x, y, z axes at a 4 Hz rate. Collected data are sent every hour 
through GSM/GPRS network to a cloud service for storage. During the day, cow activi-
ties were video recorded by an operator. Subsequently, the data acquired by the devices 
were labelled by using video labelling technique. The data were acquired on two-time 
intervals, from 6:00 AM to 10:00 AM and then from 6:00 PM to 9:00 PM. Since video 
recordings were acquired by an operator, those time intervals avoided possible health 
risks during the hottest hours of the day. Climate conditions in the monitoring period 
were very critical since they reached on average approximately 27 °C, with maximum 
value around 41 °C on 30th June 2021. Each sample was labelled into one of the follow-
ing classes: Feeding in standing position (F-S), Feeding while walking (F-W), Walking 
(W), Lying (L) and Rumination in lying position (R-L). 

Pre-processing
Collected data are pre-processed to normalize the statistical distribution and to re-
move samples or sequences of samples that clearly represent outliers. Examples of 
outlier values, in the acquired dataset, were determined by minor cow behaviours, such 
as ear movement or chasing flies; they acted as an interruption of the observed behav-
ioural activities and therefore introduced noise into the dataset. Sometimes between 
the end of one video (used for manual labelling) and the beginning of the next, there 
were discontinuities in labelling. If such discontinuities are shorter than 2 seconds (8 
samples at 4 Hz), they were corrected, and the corresponding labels replaced by the one 
identified by the operator before and after the discontinuity. Data are provided to the 
classification model in windows of 20 samples (5 seconds) with consistent labels, so 
that each window can be assigned a single behaviour class. After splitting the dataset 
into training, validation, and test sets (described in the next section), Z-score normali-
zation is carried out for each axis.

Model and training procedures
The model processed input data sequences in several parallel branches which ana-
lysed different combinations of axial measurements (Fig. 1), arranged as input feature 
channels. The key idea is to encourage the model to learn meaningful features from all 
axes, by implementing an inhibition mechanism that selectively excludes data from 
a subset of axes. This approach is motivated by the results of preliminary experiments 
(Porto et al., 2021), where it emerged that for some behavioural activities the accelera-
tions along all three axes were not required for the recognition. Therefore, the model 
was designed to ensure that a portion of the extracted features is guaranteed to depend 
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on specific inputs only. In detail, multiple branches of 1D convolutional layers were 
introduced in the model, such that each branch received as input samples from only 
a subset of axes, for all possible subsets that include at least two axes. Additionally, to 
take into account features associated to single channels, a branch with shared kernels 
between all channels was included to capture global relations while forcing the model 
to learn axis-agnostic features. The last branch processed the whole input, i.e., all three 
channels at the same time. After that, features from all branches were concatenated 
and further processed by a cascade of convolutional layers, interleaved with max pool-
ing blocks to reduce dimensionality. Finally, features were flattened and fed to a linear 
classifier. Figure 1 illustrates the resulting architecture, with details on the structure of 
each convolutional layer.

Figure 1: Architecture of the proposed model to classify cow behavioural activities

Each convolutional layer was followed by batch normalization and hyperbolic tangent 
as activation function. As a regularization method, dropout is employed before the 
classification layer. The model was trained for 70 epochs with AdamW (Loshchilov and 
Hutter, 2019) optimizer with a learning rate of 10-5 and 5×10-3 weight decay. As a classi-
fication loss function, cross-entropy was employed. 
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In order to deal with class imbalance, weighted random sampling was performed at 
training time, so that the model received on average the same number of inputs from 
each class, with repetitions.

Results and Discussion
Due to the different time spent by cows in each monitored behavioural activity during 
the time intervals of observation, samples related to the behavioural classes were un-
balanced (Tab. 1). Therefore, we report results in terms of average precision, recall and 
F1 score over classes, weighted by number of samples in each class, employing 10-fold 
stratified cross validation. At each cross-validation iteration, 10% of the training data 
are used as a held-out set to perform model selection among instances at different ep-
ochs. Results were reported in terms of mean and standard deviation over the 10 folds.

Table 1: Behavioural activity samples in pre-processed dataset

Behaviour Samples Percentage (%)

Feeding in standing position 12185 15.17

Walking 15498 19.30

Feeding while walking 16222 20.19

Lying 9194 11.45

Rumination in lying 27220 33.89

Total 80319 100.00

Two different experiments were carried out, considering two sets of different classes: 
in the first, all classes are included (5-class scenario); in the second, activities related 
to feeding (feeding in standing position and feeding while walking) were merged into 
a single class (4-class scenario). In this study, the proposed model was compared with 
two baseline neural network architectures: a 1D CNN model that process data from all 
axes and consists of a variant of the proposed model when only a single branch is used 
(the bottom one in Fig. 1); a multi-layer perceptron (MLP). Results of the experiments 
of the two scenarios were reported, respectively, in Table 2, showing that the proposed 
architecture significantly outperforms the baselines and is at least on par, if not better, 
than state-of-the-art approaches (although a direct comparison is not possible, due to 
the usage of different datasets and the lack of released implementations). It is inter-
esting to note that all models performed better in the 4-class scenario than in 5-class 
scenario (Tab. 2). In particular, the performance of the branched model was lower for 
the feeding activities in the 5-class scenario (Tab. 3). This could be partially attributed 
to the similarity of the acceleration values recorded for the two behavioural classes. 
The confusion matrix illustrated in Figure 2 confirms that the source of indecision for 
the model is associated to the feeding while walking and feeding in standing position 
classes: when the two classes were merged, the accuracy of the model in recognizing 
the feeding activity was very high (Tab. 4).
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Table 2: Test performance of the different models

Model Scenario F1 Score (%) Precision (%) Recall (%) 

Branched model 5-class 81.50 ± 1.29 81.00 ± 0.81 80.75 ± 0.95

Simple 1D CNN 5-class 78.96 ± 0.97 79.01 ± 1.02 78.93 ± 1.06

MLP 5-class 74.76 ± 1.26 75.11 ± 1.14 74.42 ± 1.32

Branched model 4-class 90.01 ± 1.49 90.10 ± 1.20 89.89 ± 0.91

Simple 1D CNN 4-class 87.26 ± 0.35 87.21 ± 0.75 87.32 ± 0.62

MLP 4-class 84.79 ± 0.65 85.13 ± 1.10 84.45 ± 1.36

Table 3: Test performance of the branched model in the 5-class scenario

Behavioural activity class F1 Score (%) Precision (%) Recall (%)

Feeding in standing position (F-S) 62.00 ± 6.87 65.75 ± 7.08 58.75 ± 7.50

Walking (W) 84.20 ± 2.38 83.75 ± 2.21 85.75 ± 3.40

Feeding while walking (F-W) 76.75 ± 4.11 73.75 ± 4.01 80.25 ± 3.94

Lying (L) 78.50 ± 5.32 74.00 ± 8.60 83.75 ± 1.50

Rumination in lying position (R-L) 86.25 ± 3.50 92.50 ± 2.08 88.75 ± 2.50

Weighted average 81.50 ± 1.29 81.00 ± 0.81 80.75 ± 0.95

Table 4: Test performance of branched model in the 4-class scenario

Behavioural activity class F1 Score (%) Precision (%) Recall (%)

Feeding (F) 95.25 ± 0.50 95.50 ± 0.57 95.00 ± 0.81

Walking (W) 85.00 ± 3.70 84.75 ± 3.60 85.00 ± 4.01

Lying (L) 81.25 ± 4.00 79.25 ± 2.50 83.25 ± 4.50

Rumination in lying position (R-L) 90.25 ± 2.75 91.50 ± 3.02 90.00 ± 2.16

Weighted average 90.01 ± 1.49 90.10 ± 1.20 89.89 ± 0.91

Conclusions
The results obtained in this study seem promising and the comparison with other neu-
ral network models shows that input processing through parallel branches, analysing 
different axes combinations, can be a valid approach for the classification of behav-
ioural activity in cows using accelerometer data. The results obtained in this study are 
preliminary as the dataset used is small. The performance obtained when considering 
the 5-class scenario can be increased by acquiring more data, in different periods and 
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considering a larger group of animals. However, the merging of the two classes related 
to feeding activity made it possible to increase the values of F1 score, precision and 
recall by about 8.51, 9.10 and 9.14 percent points, respectively. Taking into account the 
relevance for the farmer of the feeding activity, regardless of position assumed by the 
cows, i.e., standing or while walking, further experiments will regard the optimization 
in terms of computational cost of the 4-class branched model with the final aim to be 
implemented in a device to be worn by the cows. 

Figure 2: Confusion matrix of branched model for the 5-class scenario (a) and for the 4-class 
scenario (b). Accuracies are normalized per class
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Abstract
In the last decades many automatic methods have been developed to detect indicators 
of reduced welfare in dairy cows. However, there is still a need to integrate data from 
single sources to obtain a complete picture of cow welfare. We designed a prototype of 
an integrated system to monitor cow behaviour and environmental conditions in the 
barn. From a literature review we identified the main issues that challenge cow wel-
fare (e.g. heat stress) and well-established indicators (e.g. lying behaviour) that could 
detect these issues on the farm. We also started the development of a prototype of an 
integrated system, based on existing automatic methods to monitor barn climate and 
cow behaviour. In our approach we identified several indicators, e.g. reduced feed in-
take, that are common to most welfare issues and that are therefore suitable to detect 
reduced welfare in general, while other indicators mainly identify one welfare issue, 
e.g. increased respiratory rate or ambient temperature, as indicators of heat stress. 
Combining these two different types of indicators would result in efficient integrated 
automatic welfare monitoring. The main environmental parameters included in the 
designed prototype are: internal air temperature, humidity and speed, black globe tem-
perature, gas concentrations (NH3, H2S, CO2), sound level, drinking water temperature 
and intake, presence of flies; while cow behaviour (lying, standing, eating and rumi-
nating) is detected with a neck accelerometer. Combining these parameters provides 
a good starting point towards integrated automatic welfare monitoring that could as-
sist farmers in detecting reduced cow welfare on their farms.

Keywords: barn climate, cow behaviour, accelerometers, Precision Livestock Farming

Introduction
Even though the welfare of dairy cows has long been underestimated by both public 
and legislation, recently dairy cow welfare was identified as the second greatest animal 
welfare problem in the EU (Nalon & Steveson, 2019). Therefore, there is an urgent need 
to improve cow welfare on the farm, for which an accurate assessment is the first step. 
With increasing farm sizes and automation in farming, the need to assess cow welfare 
automatically, as is dictated in the concept of Precision Livestock Farming (PLF), has 
also risen. This has resulted in various strategies based on both environmental and 
animal-based sensors to automatically monitor cow welfare on the farm (e.g. Halachmi 
et al., 2019). However, for an accurate welfare assessment, the three different welfare 
aspects (i.e. biological functioning, affective state and natural behaviour; Fraser et al., 
1997) should be integrated into a complete picture. An integrated system would provide 
such a complete picture. On the one hand it could facilitate a broader assessment of 
reduced animal welfare in general. On the other hand, it could enable the differen-
tiation between different welfare issues (e.g. between lameness and heat stress). To 
meet these opportunities, however, a careful selection of suitable indicators is needed. 
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Moreover, it is also important to test the feasibility of integrating data from different 
sources in practice. To promote the development of integrated systems for assessing 
cow welfare on the farm we first conducted a literature review to obtain an overview of 
the major issues that determine dairy cow welfare and to identify reliable environmen-
tal and animal-based indicators of these welfare issues. Second, we started to develop 
a prototype of an integrated system, using existing as well as new automatic methods 
to monitor barn climate and cow behaviour.

Literature review
The main issues that determine cow welfare were extracted from two international wel-
fare reports, i.e. the Welfare Quality Assessment Protocol (2009) and a report from the 
European Food Safety Authority (Algers et al., 2009), as well as two books on cow welfare 
(Philips, 2002; Rushen et al., 2008). In total, 17 welfare issues were identified, of which eight 
related primarily to biological functioning, six to affective state and three to natural liv-
ing (see Figure 1; Leliveld & Provolo, 2020). A maximum of five reviews were consulted 
for each welfare issue as well as for each welfare concern in general. From each review, 
references of indicators that could be measured automatically were counted (references 
that overlapped between reviews were only counted once) and the direction of the associ-
ation between the welfare issue and indicator was noted. To determine which indicators 
best reflect reduced cow welfare in general, the indicators were ranked according to the 
number of welfare issues they were reported to associate with and on the number of ref-
erences. To identify indicators that allow to single out specific welfare issues, a binomial 
test was used to test if there was a significant positive or negative association with each 
welfare issue. Associations were compared between welfare issues to identify unique as-
sociations (i.e. no similar associations existed with other issues).

Indicators of reduced welfare in general
Using this approach we identified 76 indicators, supported by a total of 1143 references, 
which could be categorized as environment- or animal based. With the exception of 
positive emotions, which is still much understudied, all reviewed welfare issues re-
flect reduced welfare. Therefore, indicators that associate positively with these welfare 
issues reflect reduced welfare, while indicators with negative associations reflect im-
proved welfare. Of all identified indicators, feed intake, showed the broadest and most 
consistent (in terms of direction) association with welfare, almost always indicating 
a negative association (Table 1; Leliveld & Provolo, 2020). For some welfare issues, feed 
intake was identified as a cause, e.g. metabolic disorders (Esposito et al., 2014), whereas 
for others it was a consequence, e.g. heat stress (Liu et al., 2019). Milk yield had also 
a consistent negative association with cow welfare. However, milk yield is argued to 
be an unreliable indicator of cow welfare as it can be influenced by many other factors 
(Rushen et al., 2008). While physical activity, lying behaviour and body condition score 
all also associated with many welfare issues, they did not show a consistent direction 
of association. For instance, lying increases during lameness (Dittrich et al., 2019), but 
decreases during heat stress (Hoffmann et al., 2020). This means that for an accurate 
interpretation they need to be combined with other indicators to provide context. Oth-
er indicators that showed a consistent direction of association with multiple issues are 
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e.g. rumination, standing, agonistic behaviour, body temperature, heart rate, ambient 
temperature and humidity. For these indicators, as well as for less studied indicators, 
such as feeding frequency, more research is needed to determine how broad and con-
sistent their association is with cow welfare. 

Table 1: Ranking of indicators according to the number of welfare issues they were reported to have 
associations with (only indicators associated with ≥ 4 welfare issues are shown). ↑/↓ indicates the 
total number of references indicating a positive association versus the total number of references 
indicating a negative association. Significant differences between the number of positive and negative 
associations are highlighted in bold (binomial test, p < 0.05; adapted from Leliveld & Provolo, 2020) 

Environment/ 
Animal Based Indicator No. Welfare Issues ↑/↓

animal feed intake 16 9/91

animal milk yield 15 36/102

animal lying behaviour 12 26/21

animal physical activity 12 17/19

animal rumination 11 2/24

animal body condition 10 35/24

animal body temperature 10 53/0

animal feeding time 10 1/22

animal heart rate 9 24/0

animal standing behaviour 9 20/1

animal agonistic behaviour 7 16/4

animal vocalizations 6 30/0

animal milk quality/ content 6 2/12

animal body weight 6 0/9

environment ambient temperature 5 30/3

animal somatic cell count in milk 5 10/0

animal feeding speed 5 4/4

animal social behaviour (unspecified) 5 2/4

environment humidity 4 23/1

animal abnormal behaviour 4 21/0

animal altered body posture 4 18/0

environment wet/slippery floors 4 10/1

animal feeding frequency 4 2/8

animal locomotion behaviour 4 2/7

animal milking frequency 4 6/3

animal grooming 4 4/4

animal elimination 4 5/0
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Indicators of specific welfare issues
In figure 1, the solid lines indicate unique significant associations (i.e. not existing with 
other welfare issues), meaning that the indicator could be used to identify a specific 
welfare issue. For instance, respiratory rate was only found to increase in case of heat 
stress and, therefore, could be used to identify heat stress specifically (as opposed to 
reduced welfare in general). Interestingly, welfare issues that have been studied most, 
like heat stress and lameness, have more specific indicators and may be therefore eas-
ier to identify. Therefore, care should be taken when choosing specific indicators, since 
a lack of other significant associations in the same direction may only be due to a lack 
of studies testing these associations. Further research is therefore important to better 
understand understudied associations between indicators and welfare issues. 

Figure 1: Significant associations (binomial test, p < 0.05) between indicators and single cow welfare 
issues. Straight lines indicate that the indicator has no similar association (in terms of direction) 
with other welfare issues (specific). Dotted lines indicate that a similar association occurs also with 
another welfare issue (non-specific). Positive associations are indicated by light green lines and 
negative associations by dark red lines (adapted from Leliveld & Provolo, 2020)

Further considerations
Combining indicators of reduced welfare in general with indicators of specific welfare 
issues in an integrated system would enable a broader assessment of welfare in in 
general as well as enable the identification of single welfare issues. However, several 
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considerations would have to be made to ensure good data integration. For instance, 
different indicators of the same welfare issue may not always occur simultaneously. 
This could happen if one indicator is a cause of that specific welfare issue (e.g. reduced 
feed intake for metabolic diseases) and another a consequence (e.g. altered gate for 
lameness) or if one indicator has a quicker response than another (e.g. respiratory rate 
vs. milk yield in response to heat stress). Another important consideration is the set-
ting of reliable thresholds for generating alerts. For some well-established indicators, 
fixed thresholds have been proposed. For instance, for the Temperature-Humidity In-
dex (THI) as an indicator of heat stress, thresholds have been proposed in the range of 
68-72 (e.g. Armstrong, 1994; Polsky & Keyserlingk, 2017). However, for most reviewed 
indicators there is not yet enough research done to be able to set a threshold. Moreover, 
for many animal-based indicators a dynamic threshold (i.e. based on a deviation from 
the ‘normal’ range of an individual) would be better suited for detecting potential wel-
fare risks for each individual animal (e.g. de Mol et al., 2013). 

Prototype design

Locations
The prototype system was installed on three dairy farms, located in Northern Italy. 
The farms hosts herds of 100-300 Italian Holstein cows. All farms have a loose hous-
ing system, with free stalls and straw or solid digestate as litter. All farms have forced 
ventilation above the lying area and sprinklers above the feeding area in the monitored 
sections. On farm 1, the monitored section has three lines of cubicles in a total area of 
808 m² and hosts about 90 lactating cows. The structure is open on all sides and has an 
insulated roof with a ridge opening. On farm 2, the monitored section has two lines of 
cubicles in a total area of 2121 m² and hosts about 145 lactating cows. The structure is 
open on all sides and has an insulated roof with a ridge opening. On farm 3, the mon-
itored section has two lines of cubicles in a total area of 1785 m² and hosts about 120 
lactating cows. The structure is partially closed on three sides (only one long side is 
open) and has an insulated roof with a ridge opening. 

Barn sensors
Depending on the possibilities in each monitored area, a series of custom-made sen-
sors was installed to measure the microenvironmental conditions. On all three farms 
eight sensor nodes, containing sensors to measure air temperature, black globe tem-
perature, relative humidity and light intensity, were installed. In addition, two sensor 
nodes that measure air quality (CO2, H2S, NH3) and sound level and three sensor nodes 
that measure wind speed and direction were installed. All these sensors were placed 
in different sections of the barn at a height of approximately 3 m. On farm 1 and 2 also 
four sensor nodes that measure litter temperature and humidity were installed. Fur-
thermore, sensor nodes were installed to measure the temperature and consumption 
of both sprinkler and drinking water (on farm 2, only sprinkler water consumption 
could be measured). Depending on the size of the monitored area, two (farm 1) to four 
cameras (farms 2 and 3) were installed to monitor any activities and events in the barn. 
In addition, a camera-based system was developed to monitor the prevalence of flies 
in the barn. A weather station was also developed to measure external air temperature, 
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relative humidity, wind speed and rain. These weather stations are positioned in a field 
close to the monitored barns. 

Figure 2: Schematic drawing of the system architecture (source IBT Systems s.r.l.) 

Cow sensors
In addition to the barn sensors, accelerometer-based sensors were developed to moni-
tor cow behaviour. 3D accelerometers were embedded in a custom-made device, which 
is based on a 35 x 45 mm System-on-board (SoB) and included an antenna and a host-
board with power supply circuitry and the battery holder. It works both with Bluetooth 
and a dedicated 4 GHz radio channel. The device was fitted in a hard plastic case, which 
was mounted on a neck collar with a weight to keep the sensor in place. To develop an 
algorithm to detect multiple behaviours, 32 cows (18 from farm 1, 6 from farm 2 and 
8 from farm 3) were observed while wearing these collars for a total of 108 hours. The 
following behaviours were scored: standing, lying down, standing and ruminating, ly-
ing and ruminating, eating, drinking, walking and other (i.e. behaviour that did not fit 
in the other categories). The visual observations were combined with the accelerome-
ter data to train the algorithm. For behaviour identification 10-minute intervals were 
selected and accelerations were sampled at 25 Hz. After data collection and window-
ing, features extraction, reduction and classifier learning were performed. Ten features 
(out of 64 candidate features) were kept and five classifiers plus one combined classi-
fier a-posteriori were built. The Decision Tree algorithm was concluded to be the best 
in terms of computational/memory complexity and accuracy. Training and validation 



62 Precision Livestock Farming ’22

were done using a 75%/25% of dataset partitioning. The final algorithm was able to de-
tect six behavioural categories (lying down, standing, lying and ruminating, standing 
and ruminating, feeding and other) with an average accuracy of 85.12%. At each farm 
60 cows were fitted with these neck collars. Comparisons with existing commercial 
systems are being made to validate the performance.

Data transmission and integration
All data measured by the different sensor nodes (both barn and cow-based) is sent 
every 10 minutes to a gateway via a 2.4 GHz radio channel (figure 2). This gateway then 
transmits the data to the cloud and can be remotely accessed via an online dashboard. 
On this dashboard, graphs visualize the data of single sensors as well as computed 
data, such as mean values from multiple sensors and the Temperature-Humidity-In-
dex. For further processing the data can also be extracted in excel or csv format. Fur-
ther steps will focus on combining the information gathered by the different sources 
to create a complete picture of the situation in the barn. Herd data, including health 
records and milk yield, are collected to tests the system’s suitability to detect reduced 
welfare conditions. 

Conclusions
Currently, there are many indicators of reduced dairy cow welfare that are well-es-
tablished and that could be measured automatically. Of these indicators, some would 
allow for a general detection of reduced welfare, whereas a few other indicators would 
allow to identify single welfare issues. Combing these two types of indicators provides 
a good basis for an integrated automatic welfare assessment system. A prototype of 
such a system has been developed and installed on three dairy farms, serving as a first 
step in the practical implementation of integrated automatic welfare assessment. Fur-
ther work will focus on validating the suitability of this system to detect situations of 
reduced welfare on the farm. In the end, this would enable the farmers to monitor the 
welfare of their cows continuously and remotely, thereby supporting them in their 
decision-making process.  
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Abstract
One welfare challenge of dairy cow-calf contact (CCC) rearing systems is the separation 
of the bonded cow-calf pair at weaning. Here, activity of 14 cow-calf pairs in 3 different 
CCC systems (no contact (control, CT), 4 pairs; part-time contact (PT), 5 pairs; full-time 
contact (FT), 5 pairs) was investigated. Each animal was equipped with a 3D-accelerom-
eter (sampling rate: 12.5 Hz) attached to a neck-collar from two months pre-separation 
to one month post-separation. For each animal, the magnitude of the acceleration was 
calculated and segmented into 10-minutes windows from which six accelerometer fea-
tures were computed. Each feature was modeled according to the treatment (CT, FT, PT), 
phase (pre-separation, separation, post-separation), interaction, and animal as a random 
effect. ANOVA and Tukey’s pairwise comparison test were applied. Overall, FT calves 
expressed more high energy expenditure behaviors and activity peaks than CT calves 
(p < 0.05). More high intensity behaviors were expressed in post-separation both for 
FT and PT calves (p < 0.05) but the trend observed from pre-separation to separation 
phase was different depending on the treatment (interaction ; p < 0.05). For cows, high-
er overall activity (p < 0.05), more intense behaviors (p < 0.05) and more activity peaks 
(p  <  0.05) were observed after separation compared to pre-separation, regardless of 
treatment. Ongoing experiments should help to link activity change and distress in 
order to propose recommendations in CCC systems.

Keywords: Cow-calf contact rearing system, activity, wearable 3D-accelerometer, 
distress 

Introduction
On most commercial dairy farms, calves are separated from the cow within 24 hours 
postpartum as this enables better management of calf disease exposure and colostrum 
provision. However, this practice is criticized by consumers as they view the practice as 
unnatural. Cow-calf separation at birth can lead to the expression of abnormal behav-
iors and thus may compromise cow and calf welfare (Ventura et al., 2013). In response 
to these concerns, cow-calf contact (CCC) rearing systems, where a bonding period 
and prolonged contact time between calves and dams is allowed, appear to be promis-
ing. However, separation of the bonded cow-calf pair (weaning) is still a major welfare 
challenge (Johnsen et al., 2016) and a better understanding of the stress surrounding 
this event and its long-term impact is required before recommendations can be made 
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(Meagher et al., 2019). CCC rearing systems can differ in the type of physical contact 
allowed between the dam and her calf, such as full-time CCC (i.e. unrestricted physical 
contact including suckling) or part-time CCC (i.e. contact only during specific times of 
the day). Evaluating the stress experienced during and after the separation in different 
CCC systems would be a major step forward in providing recommendations on how the 
systems should be used. Most measurements of stress focus on changes in physiology 
and behavior surrounding the stressful event (Rault et al., 2017). Measuring changes in 
behavioral activity can be done by encoding animal behavior but it is time consuming. 
Alternatively, wearable accelerometer data-loggers are already used to continuously 
monitor the activity and behavior of ruminants (Riaboff et al., 2022) in order to detect 
a change linked to reproductive events (Benaissa et al., 2020) or welfare and health 
disorders (Burgunder et al., 2018)we investigated fractal patterns in the behavioural 
activity of domestic sheep (Ovis aries. In that sense, the change in behavior and activity 
related to distress during and after the separation of the bonded pairs in different CCC 
systems could be measured with accelerometer sensors. The aim of this study is to 
investigate the change in activity of cow-calf pairs in 3 different CCC systems, control 
(no contact; CT), part-time contact (PT) and full-time contact (FT), using accelerometer 
sensors. 

Materials and Methods
This study was conducted at Teagasc Moorepark Research Farm (Fermoy, Co. Cork, Ire-
land; 50°07′N; 8°16′W) from February 1 to May 18, 2021. Ethical approval for this study 
was provided by the Teagasc Animal Ethics Committee (TAEC; TAEC2020-290) and pro-
cedure authorization was granted by the Irish Health Products Regulatory Commit-
tee (HPRA; AE19132/P124). All experimental procedures were performed in accordance 
with European Union (Protection of Animals Used for Scientific Purpose) Regulations 
2012 (S.I. No. 543 of 2012). 

Animals, Management, and Experimental Design
This experiment compared two different CCC rearing systems (full-time access (FT) 
and part-time access (PT)) to a conventional Irish rearing system (control, CT). Four-
teen cow-calf pairs were assigned to one of the different rearing systems: 4 CT pairs, 
5 FT pairs, and 5 PT pairs. Each cow received the same management up to calving, but 
the systems differed immediately post-calving. After calving, CT pairs were separated 
within 1 h and cows joined the rest of their treatment group. The FT and PT pairs were 
moved into bonding pens (approx. 17 m2) after calving, where they stayed for 2-3 d to 
allow for bonding. FT and PT calves received colostrum from suckling their dams. After 
the bonding period, the FT and PT pairs joined the rest of their respective treatment 
groups. 

CT pairs. The CT cows and calves were managed in accordance to normal, conventional 
rearing and management practices at Teagasc Moorepark Research Farm. Once sep-
arated from their dam and moved to a straw-bedded individual pen, CT calves were 
artificially fed their mothers colostrum < 2 h post-birth (quality ≥ 22% on Brix refrac-
tometer) at a rate of 8.5% of their birth weight. After receiving colostrum, calves were 
fed their own dam’s transition milk (at a rate of 10% of their birth weight) twice a day 
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for their next 5 feedings. After transition milk, calves were fed 2.5 L milk replacer (26% 
crude protein; Volac Heiferlac Instant, Volac, Hertfordshire, UK) twice a day. At 7 d old, 
CT calves were transferred to a group pen (48 m2; ~15 calves) where they were fed with 
an automatic milk feeder at a rate of 6 L/calf/day. Calves also had ad libitum access 
to hay, concentrates, and water. Calves were gradually weaned at 56 d using the au-
tomatic feeder. After calving, CT cows joined a herd of 40 cows. Cows were managed 
following typical Moorepark grazing management practices; cows were predominately 
grazed day and night, but were housed indoors during periods of inclement weather 
and offered ad libitum access to grass silage (Kennedy et al., 2009; 2011). CT cows were 
milked twice a day (7 am and 2:30 pm) and were supplemented with concentrates dur-
ing milking. CT cows did not come into contact with any calves. 

Pre-separation phase
PT Pairs. PT pairs were allowed full (unrestricted) access to each other during the night 
(16:00 to 08:00) and had no access to each other during the day (08:00 to 16:00). PT 
calves were housed in a shed in a straw-bedded pen (67 m2) during the day that was 
adjacent to a free-stall pen that they can access at night (total area: 270 m2). PT cows 
were housed indoors in this free-stall pen area during the night, and went outside to 
grass during the daytime. During daytime periods of inclement weather, PT cows were 
housed indoors in their free-stall pen, where they could see their calves but no access 
was allowed. PT cows were milked once a day in the morning (08:00). During the night, 
PT cows had ad libitum access to grass silage and water and PT calves had ad libitum 
access to grass silage, water, concentrates, hay, and milk (via dam). During the day, PT 
calves had ad libitum access to water, concentrates, and hay only. Over the course of the 
experiment, PT herd density ranged from 6 to 18 cow-calf pairs. 

FT Pairs. FT pairs were allowed full (unrestricted) access to each other and were kept 
at pasture (2501 m2), except during periods of inclement weather when they were kept 
indoors (as above) in housing identical to the PT pairs. At pasture, cows had ad libitum 
access to water and calves had ad libitum access to water, milk (via dam), concentrates, 
and grass. When housed indoors, cows and calves had ad libitum access to grass silage 
rather than fresh grass. Over the course of the experiment, FT herd density ranged 
from 6 to 14 cow-calf pairs.

Separation phase
FT and PT pairs were gradually separated and weaned over a 7-day period at 56 days 
of age. On day 1, the pairs were moved into adjacent pens, where gates allowed for the 
exchange of visual, auditory, and sensory cues, but prevented suckling. For the first 3 
d, cows and calves were allowed 1 h of unrestricted contact after the AM milking, and 
for the rest of the day could interact through the gate. For the next two days, cows and 
calves were housed in the same pens but no period of unrestricted contact was allowed. 
On day 6, cows were removed from the weaning pen after the AM milking and joined 
the general herd of cows at grass. Calves were kept in the weaning pen for another two 
days. PT cows were switched to twice a day milking at day 1 of weaning and separation. 
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Post-weaning and separation phase
After weaning and separation, all calves were moved into a group pen (33 m2) where 
they were provided with ad libitum access to grass silage, hay, water, and concentrates. 
The calves stayed in this group pen for 1-2 weeks until they were moved to pasture, 
where they stayed until the end of the experiment. At pasture, calves were provided 
with grass and ad libitum access to water and up to 1.5 kg DM concentrate. Post-wean-
ing and separation, cows were kept with the general cow herd, grazed day and night 
and were milked twice a day. 

Accelerometer sensor and device
Activity AX3 dataloggers (https://axivity.com/product/ax3) were used for the experi-
ment. Activity AX3 are MEMS 3-axis accelerometers and Flash based on-board memory 
(512 MB), measuring 23 × 32.5 × 7.6 mm and weighting 11 g. The sampling rate was 
12.5 Hz (battery life: ~ 30 days) with a range of ± 8 g. Each datalogger was wrapped in 
cling film and cotton wool, then attached to the collar with vet wrap and insulating 
tape. All data loggers were placed in the same orientation on the collar. 

Data collection 
Neck-collars were attached to the 28 cows and calves 7 days after calving. Collars 
were adjusted to ensure they remained in place on the neck, on the right side for 
cows and on the left side for calves. The x-axis detected the down-up direction, the 
y-axis detected the backward-forward direction and the z-axis detected the left-right 
direction. Neck-collars were removed every two weeks to extract the accelerometer 
data and recharge the battery, and attached again two days later. The collars were 
permanently removed about 1 month after the separation. During the whole data 
collection, health scoring was completed every 2-5 days using a system adapted from 
Barry et al. (2019). In addition, all animals were inspected daily by the farm manager. 
In the event of an adverse health event, animals were treated in accordance with nor-
mal management procedures at the research farm. If a calf required removed from 
the group pen it was placed in an individual pen for treatment, its collar was removed 
temporarily. 

Accelerometer signal preprocessing
Preprocessing was applied using R software (R Core Team, 2021; version 4.1.2). For each 
accelerometer time-series, the magnitude of the acceleration (so-called Amag) from 
which the static component has been removed was first calculated as follows:

 (1)

The Amag time-series was then split into 10 minutes-windows without overlap. A set 
of 6 accelerometer-features was calculated within each 10-minutes-window, namely 
(i) the Mean and Median as an indicator of the overall level of activity, (ii) the Stand-
ard-Deviation (SD) and the Motion Variation (MV ; see equation (2)) as an indicator of 
the level of intensity of the behaviors - quiet versus dynamic -, (iii) the Maximum as an 
indicator of the presence-absence of activity peaks and (iv) the Spectral Entropy (Hs 
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; see equation (3)) as an indicator of the periodicity of the behaviors - random versus 
predictable -.

 (2)

 (3)

For each cow and calf, accelerometer features extracted from the 10 minutes-windows 
were averaged. For each of the FT and PT cows and calves, features were also aver-
aged per phase i.e. pre-separation (~  2  months), separation (7  days) and post-separation 
(~ 1 month). There is no calculation per phase for the CT pairs as they were separated 
immediately after calving. 

Statistical analysis
Statistical analysis was carried out using R software (R Core Team, 2021; version 4.1.2). 
For cows and calves separately, a linear model was applied to model each feature in 
function to the treatment, as follows:

 (4)

Where F = feature (Mean, Median, SD, MV, Maximum or Hs), η = mean; Ti = treatment 
(i = 1: CT, i = 2: FT, i = 3: PT) and ei = residual error term. 

A second linear model was also applied to model each feature in function to the treat-
ment (FT or PT), the phase and the interaction between the treatment and phase, as 
follows:

 (5)

Where F = feature (Mean, Median, SD, MV, Maximum or Hs), = mean;   = treatment 
(i = 1: FT, i = 2: PT), Pj = phase (j = 1: pre-separation, j = 2: separation, j = 3: post-separation), 
Tj x Pj = interaction between treatment and phase, Cij = random cow/calf effect within 
the treatment i and the phase j and eij = residual error term. 

For each model, an analysis of variance (ANOVA) was applied followed by a Tukey’s post-
hoc test. Normality assumption was checked with QQ-plots and Shapiro’s test, and the 
homoscedasticity assumption was evaluated with a Spearman’s test, both applied on 
the residuals. Box-cox transformation was applied to meet the ANOVA assumptions if 
necessary. 

Results and Discussion

Effect of the treatment on the activity of cattle 
The results of the effect of the CCC treatment on cattle activity is shown in Table 1. 
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Table 1: Effect of the CCC treatment on the features of calves and cows activity

Features Mean SD Median Maximum3 MV Hs

 Calves

Treat1 NS ** NS ** ** NS

CT2 0.068A ± 0.01  0.039A ± 0.00 0.062A ± 0.01 -0.288A ± 0.06 0.022A ± 0.00 3.62A ± 0.37

PT2 0.058A ± 0.01 0.045AB ± 0.00 0.050A ± 0.01 -0.004B ± 0.05 0.026AB ± 0.00  4.26A ± 0.33

FT2 0.068A ± 0.01  0.050B ± 0.00 0.060A ± 0.01 -0.007B ± 0.05 0.029B ± 0.00  4.06A ± 0.33

Cows

Treat 1 NS NS NS NS NS NS

CT2 0.065A ± 0.00 0.064A ± 0.00 0.049A ± 0.00 1.04A ± 0.07 0.048A ± 0.00 5.68A ± 0.14

PT2 0.063A ± 0.00 0.062A ± 0.00 0.048A ± 0.00 1.20A ± 0.06 0.044A ± 0.00 5.59A ± 0.13

FT2 0.063A ± 0.00 0.066A ± 0.00 0.046A ± 0.00 1.24A ± 0.06 0.046A ± 0.00 5.80A ± 0.13

Note: 1Significance of the treatment effect: *** p<0.001, ** p<0.01, * p<0.05, ϯ p<0.1, NS: Not significant; 
2Adjusted mean ± standard-error for each treatment; A-B Groups from Tukey’s pairwise comparison; 
3Box-Cox transformation applied on this feature. Abbreviations: SD: Standard-Deviation ; MV: Motion 
Variation ; Hs: Spectral Entropy

For calves, a significant treatment effect was found for the SD, Maximum and MV fea-
tures (p  <  0.05; Table 1). An increase from CT to FT is observed for all features. SD, 
Maximum and MV are significantly higher in FT calves than CT calves. Therefore, FT 
calves expressed more high energy expenditure behaviors (e.g., walking, feeding) than 
the CT calves, and had more activity peaks (e.g., running, playing). This result match-
es the activity expected, as the FT calves were kept outdoors with their dams during 
the pre-separation phase, which provided them with more opportunities to express 
dynamic behaviors. Although offered greater than required space allowance, the CT 
calves were housed in the smallest pen and only had the opportunity for social inter-
actions with calves their own age, not with their dam and other cows, thus were less 
likely to perform high energy expenditure behaviors. 

No significant treatment effect was found for cows which may be explained by the high 
variability observed between cows within treatments (data not shown). An individual 
analysis on a larger set of cattle may be helpful to characterize the different trends 
observed in the CT cows.

Effect of the separation on the activity of cattle in the FT and PT treatments
No significant difference is found between FT and PT treatments for cows and calves 
when considering all separation phases. The results of the effect of the separation 
phase on cattle activity is shown in Table 1. 
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Table 2: Effect of the separation phase on the features of calves and cows activity

Features Mean3 SD Median3 Maximum MV Hs

Calves

Phase1 ** * ** NS *** NS

Pre-2 -13.85A ± 0.97 0.046A ± 0.00 -16.20A ± 1.43 1.03A ± 0.05 0.024A ± 0.00 4.09A ± 0.25

Sep2 -12.86AB ± 0.97 0.046A ± 0.00 -15.23AB ± 1.43 1.01A ± 0.05 0.029A ± 0.00 4.32A ± 0.25

Post-2 -11.41B ± 0.97 0.052B ± 0.00 -13.34B ± 1.43 0.98A ± 0.05 0.034B ± 0.00 4.28A ± 0.25

T x P1 ϯ * NS ϯ ϯ NS

Cows

Phase1 *** *** *** ** *** NS

Pre-2 0.060B ± 0.00 0.059A ± 0.00 0.044 B ± 0.00 1.15A ± 0.06  0.041B ± 0.00 5.803A ± 0.07

Sep2 0.053A ± 0.00 0.057A ± 0.00 0.039A ± 0.00 1.28B ± 0.06  0.037A ± 0.00 5.789A ± 0.06

Post-2 0.078C ± 0.00 0.077 B ± 0.00 0.056C ± 0.00 1.35B ± 0.06  0.057C ± 0.00 5.745A ± 0.06

T x P1 NS NS NS  ϯ NS NS

Note: 1Significance of the phase and interaction effect: *** p<0.001, ** p<0.01, * p<0.05, ϯ p<0.1, NS: Not 
significant; 2Adjusted mean ± standard-error for each phase (Pre-: Pre-separation, Sep: Separation, 
Post-: Post-separation); A-C Groups from Tukey’s pairwise comparison; 3Box-Cox transformation 
applied on these features. Abbreviations: SD: Standard-Deviation; MV: Motion Variation ; Hs: 
Spectral Entropy.

For calves, a significant phase effect was found for the Mean, SD, Median and MV features 
(p < 0.05; Table 2). The increase from pre-separation to post-separation suggests a gradual 
rise of the overall activity over the experiment, probably linked to the calf growth. For MV 
and SD, a significant increase is observed after separation for both features. These find-
ings suggest an impact of the separation, leading to more high energy expenditure be-
haviors (e.g., walking, feeding) in post-separation, which could be related to calf distress. 
Interaction between treatment and phase is significant for the SD feature (p < 0.05; Table 
2), suggested a different response to the separation between treatments. An increase of 
SD is observed in PT from the pre-separation to the separation phase while a decrease 
is observed in FT calves during the same period (figure 1). This suggests less high energy 
expenditure behaviors during separation in FT calves compared to pre-separation, prob-
ably linked to the change of housing. Conversely, PT calves expressed more high intensi-
ty behaviors during separation compared to pre-separation. As the space allowance was 
smaller during separation, this suggests that the weaning and separation process had an 
impact on calf behavior, which could be linked to calf distress. 

For cows, a significant phase effect is found for the Mean, Median, SD, Maximum and 
MV features (p < 0.05; Table 2). A significant decrease is observed for the Mean and Me-
dian from the pre-separation to the separation phase, which then significantly increase 
post-separation. These findings suggest a decrease in the overall activity during the 
separation that may be due to the change in housing. The increase in overall activity 
post-separation can also be explained by the return to pasture post-separation. This 
assumption is consistent with the trend observed for MV, suggesting less high energy 
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expenditure behaviors (e.g., grazing, searching, walking) during the separation com-
pared to previous phase, and then more high intensity behaviors post-separation. The 
SD feature is significantly increased post-separation, suggesting more dynamic activ-
ities in this phase. The Maximum feature also increased post-separation, suggesting 
more activity peaks (e.g., running, playing, fighting). It’s worth noting that these fea-
tures are significantly higher post-separation than pre-separation (see Table 2) while FT 
and PT cows were on pasture in both phases. These findings suggest an impact of the 
separation regardless of treatment, leading to an increase of the overall activity level, 
more high intensity behaviors and more activity peaks in the post-separation phase, 
that could be linked to cow distress. For the interaction effect, no significant effect is 
found, suggesting a similar response to the separation, regardless of  treatment. 

Figure 1: Interaction between phase (pre-separation, separation. post-separation) and treatment (PT, FT) 
effects for the SD feature for cows

It should be noted that (i) cattle welfare scores to align with the accelerometer 10 min-
utes-windows and features and (ii) a model to classify cattle behavior from accelerom-
eter data, including both positive (e.g., playing, grooming) and negative (e.g., tongue 
rolling, head out of pen) behaviors, would be both helpful to further interpret the ob-
served change in cattle activity in relation with distress caused by the separation. Fur-
ther experiments are in progress and should help to propose recommendations in CCC 
rearing systems.

Conclusion
In this study, the activity of 14 cow-calf pairs was measured in different cow-calf con-
tact systems (no contact, partial-time contact, full-time contact) using accelerometer 
dataloggers attached to a neck-collar. The change in activity related to the separation 
between cows and calves depending on the CCC system was also investigated. Al-
though it is difficult at this stage to conclude whether calves undergo different levels 
of distress following separation based on their CCC system, it is clear that separation 
leads to a change in the amount of high energy expenditure behaviors, with calves 
having a different response depending on the treatment. An increase of high intensity 
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behaviors and activity peaks was also observed in cows after separation compared to 
the pre-separation phase, regardless of CCC system. Further experiments are under-
way to better understand the change in activity observed in cows and calves related to 
the separation in order to propose recommendations in CCC rearing systems.
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Abstract
Tail biting (caudophagy) in pigs represents a serious yet complex problem in farm an-
imal husbandry. There is increasing evidence in scientific papers that a change in pig 
behavior can be observed up to six days before the first bloody tail lesions occur. The 
detection process described in the literature is mostly carried out using human obser-
vations where a wide margin of error exists and is too time consuming. In this paper, 
we present a software system for automatic real time tracking of different types of be-
havior. We focus on the detection of tail posture by evaluating videos from the day of 
a tail biting event up to 12 days back, because tail-posture is reported as a fundamental 
indicator of an early warning system. In general, the system can be seen as a toolbox 
and can be easily applied to analyze different forms of dynamic behavior. This is possi-
ble because body parts of pigs and their place and movement are detected.

Keywords: pigs, tail biting, tail posture, automated behavioral monitoring

Introduction
Tail biting is a serious problem in modern pig husbandry. In recent years, many stud-
ies have been conducted to identify possible risk factors for this behavioral disorder, 
providing that tail biting is a multifactorial problem (Moinard et al., 2003). Genetics, 
health status, sex, age and weight of the animals are discussed as possible endoge-
nous and external influencing factors, as well as group size, weaning age and manage-
ment, stocking density, feed, feeding technique, air quality and enrichment material 
(Schrøder-Petersen and Simonsen, 2001; Taylor et al., 2010; Sonoda et al., 2013).

To effectively prevent an outbreak of tail biting, taking timely countermeasures is es-
sential. Changes in pig behavior for early detection of an impending tail biting outbreak 
have been intensively researched in recent years. Here, it was shown that a change in 
animal behavior could already be detected up to seven days before the first bloody tail 
lesions appear (Zonderland et al., 2011; Wedin et al., 2018; Larsen et al., 2019). The resting 
periods of the animals are shortened with a simultaneous increase in activity (Zonder-
land et al., 2011; Larsen et al., 2019), the pigs increasingly sniff and nibble on the tails of 
their pen mates and the proportion of hanging or tucked tails increases (Ursinus et al., 
2014; Larsen et al., 2018; Wedin et al., 2018).

Based on these findings, more and more studies are looking at automated detection 
of altered tail position via video surveillance (D’Eath et al., 2018). This technological 
innovation of automated behavioral monitoring has great potential to integrate into 
existing operations and support early detection of disease and injury (Han et al., 2017). 
Thus, tail biting outbreaks could be reduced or even avoided.
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To come to a sound foundation for technical development with practical applications, 
some important requirements should be fulfilled by the desired system.

The system should be able to:

 — analyze the behavior in a modern pen with different functional areas and conven-
tional group size 

 — detect individual pigs and their movement (tracks) over some time
 — detect the tail posture and some actions like chasing, tail-in-mouth-behavior
 — fulfill its requirements without applying sensors or markers on the pigs
 — achieve scene detection by use of low-cost cameras

Seen from a technical perspective, recognition in a pen with different functional areas, 
as shown in Figure 1, is a much more advanced requirement compared to some previ-
ous attempts referenced in literature (Nasirahmadi et al., 2019; Li et al., 2020; Wutke et 
al., 2021, Sun and Li, 2021; van der Zande et al., 2021). Here, video scenes were recorded 
from pens with low stocking density, without functional areas inside the scene and 
with a homogeneous pen floor occupied by only a few pigs.

Figure 1: Camera View into the observed pen of our study

Material and methods

Experimental Data
The video recording for behavioral analysis was carried out in February and March 
2021 at the Agricultural Test Center VBZL Haus Duesse of the Chamber of Agriculture 
North Rhine-Westphalia in Bad Sassendorf, Germany. The experiment was conducted 
in two conventional rearing pens with a group size of 35 animals each. The animals 
were weaned at the age of 4 weeks and had an average weaning weight of approxi-
mately 7.64 ± 1.2 kg. The tails of the piglets were not docked and male piglets were cas-
trated. The housing environment was characterized by increased space allowance (0.5 
m² per animal). The pigs had ad libitum access to dry feed, open drinking bowls, and 
various enrichment materials. The behavior of the animals was continuously recorded 
on video for the entire duration of the rearing period of six weeks. For this purpose, two 
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stationary HD cameras (Bascom Bullet Camera Plus VB40, 1080p, 20 bps) were installed 
in each pen. Further evaluation took place on the basis of this video recording. 

Human Observations
For manual behavioral evaluation by human observer, we analyzed the videos of the af-
fected pen 7 days prior to and the day of tail biting outbreak (day -7 to day 0) by instan-
taneous scan sampling. Videos were analyzed by the same observer with an interval of 
10 minutes from 06:00 to 19:50 h. Tail posture was examined only in standing pigs. In 
the evaluation, a distinction was made between curled and hanging/tucked. Only pigs 
that were visible from head to tail were considered.

Technical Observation
The technical observation reported in this paper focuses on one tail-biting event. Thir-
teen days, including the day of event and the 12 days before, were recorded and auto-
matically analyzed between 14:00 and 18:00 h.  

In general, the dense tracking system can be seen as a toolbox and can be easily applied 
to analyze different forms of dynamic behavior. We will be describing its main compo-
nents in the following sections.

Temporal Input Blocks
For each pen, one single camera is continuously delivering videos. From these videos, 
consecutive blocks of frames are collected. One block contains 40 frames, correspond-
ing to two seconds followed by a break of two seconds without extracting frames. Ex-
perience in the project shows that two seconds are sufficient to detect fast movements, 
tail posture, and different interactions such as tail-in-mouth events.

Extraction of Neck, Tail and Backline
All important steps are performed by using neural networks and supervised training. 
As described in our previous paper (Wisskirchen et al., 2021) a neural network for hu-
man pose recognition (Osokin, 2020) was modified to detect neck and tail positions as 
well as a directed connection line between those (Wisskirchen et al., 2021). As training 
data, in addition to our own manual annotation, we used the public data set of the Uni-
versity of Nebraska after some modifications for fitting neck and tail positions (Psota et 
al., 2019). The network delivers heatmaps for the neck position, tail position, and two 
maps for the vector field of the backline positions. These still uncoordinated heatmaps 
are assigned to the individual pigs. For this purpose, a specific clustering of the backline 
vector field was performed.

Tracking
The detected positions are coordinated in a time sequence, resulting in short time 
tracks of maximally two seconds for each block. The pose network delivered subopti-
mal results in cases where pigs were standing or lying very close together or moving 
very fast. For generation of stable tracks we applied the IOU (intersection over union) 
principle (Bochinski et al., 2018) so the heatmaps for neck, tail position and backline are 
used to generate overlapping ellipses.
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Tail Posture Detection
Due to practical performance considerations, a simple approach was chosen to de-
tect different types of tail postures by using a small convolutional network as a deep 
classifier. Only three classes (invisible, normal, abnormal tail posture) were trained. 
Thus, hanging tails as well as fast wiping tails were labeled by the same attribute as 
abnormal. During training only fully curled tails were annotated as normal. The clas-
sifier uses patches positioned around the tail postures in the tracks. To achieve stable 
recognition, we used the entire tail track for each tail of a single pig and gave the same 
label to the 40 positions. This was possible because observation showed that tail pos-
ture changes very rarely in such a short time. The rate of positive predictions for the 
test videos from the pen is 79% for the three classes. The error rate for the normal/
abnormal relationship is less than 10%.

Pen Annotation
By use of a small interactive annotation editor as part of the toolbox, functional areas 
of the pen (feeding and drinking area, enrichment area, resting area, activity area) were 
extracted and stored as polygons, so that the location of the pigs can be easily tracked 
at any point in time. This way, the use and occupation of these areas can be easily 
collected.

Results

Human Observation
On 7 to 3 days prior to the tail biting outbreak the percentage of pigs with hanging 
or tucked tails was below 30% and had its minimum at day -6 (27.02%, Fig. 2a). Im-
mediately before the outbreak, the percentage of animals increased above 30% (day  
-2 and 0 relative to tail biting outbreak, Fig. 2a). When analyzing the course of the day, 
the manual behavioral evaluation of pigs’ behavior showed a peak of activity between 
14:00 and 17:50 h (Fig. 2b, grey line). During this period, the percentage of pigs showing 
hanging or tucked tails was higher than the rest of the day (fig. 2b, black line). For this 
reason, this period was chosen for automatic analysis.

Figure 2: Number of pigs with hanging/tucked tails as a percentage of visible standing pigs (a) per 
day relative to tail biting outbreak and (b) per hour as mean value of evaluation days (black line); the 
number of pigs standing as a percentage of y visible pigs (grey line)
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Technical Observation
Main technical observations focused on the automated detection of normal and ab-
normal tail postures. Therefore, the relation of abnormal/normal tail postures was cal-
culated. The classifier showed on testing data a deviation between the true relation 
and the predicted one of less than 10%. This performance is sufficient for statistical 
evaluations. 

Technical analysis was performed for videos between 14:00 and 18:00 h at 12 days prior 
and the day of tail biting outbreak (day -12 to day 0). The pigs were vaccinated at the 
midday of the tail biting outbreak (day 0), so this day is not described further because in 
the evaluated time window the behavior of the animals was strongly affected. 

Across the whole group, the technical analysis showed the first peak of abnormal tail 
postures 5 days before the tail biting outbreak (Fig. 3a). After this day, the ratio of ab-
normal to normal tail postures decreased until day -1 with an increasing proportion of 
pigs showing curled tail postures. With a focus on the area around the feeding trough, 
the first peak of abnormal tail postures occurred on day -6 prior to tail biting (Fig. 3b).

Figure 3: Relation of abnormal/normal tail postures on days relative to tail biting outbreak evaluated 
(a) for the whole group and (b) only for pigs standing in the feeding area

Figure 4: Activity of pigs on the days prior to tail biting outbreak as mean path length per day in pixel 

As a measure of the activities of the different afternoons, the path length (in pixels) 
was evaluated for the tracks of the pigs in all two-second blocks. Figure 4 shows a de-
crease in activity from 28.42 pixels to 23.31 pixels between day -12 to -7 relative to the 
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day of the outbreak (Fig. 4). After a peak on day -6 (mean path length of 26.46 pixels) the 
activity of the pigs increased from day -5 to -1 relative to the tail biting outbreak (23.40 
pixels to 29.05 pixels; see Fig. 4). 

Further statistical evaluation of the parameters as well as the comparison of the two 
evaluation methods are still pending at the current time.

Discussion
The human observation of the analyzed tail biting outbreak showed a moderate in-
crease of hanging or tucked tails on the two days prior to the outbreak. This corre-
sponds with the findings of Lahrmann et al. (2017), who also observed an increased 
proportion of hanging tails from around 23% on day -3 to around 33% on day -1 relative 
to the tail biting outbreak. In our findings, the proportion of hanging or tucked tails 
varied between 27% and 33% of standing pigs. This proportion is much lower than in 
Wedin et al. (2018), who observed a much higher proportion of pigs with uncurled tails 
with 45% uncurled tails on day -7 to about 55% uncurled tails on day 0. In the same 
study the proportion of tucked tails increased by about 10% as well. 

Both the human and technical observation of the analyzed tail biting outbreak showed 
an unexpected low percentage of hanging/tucked tails and abnormal tail postures on 
the day before the tail biting outbreak (day -1). This contradicts the previous findings of 
other authors who observed a constant increase of the proportion of hanging or tucked 
tails on the days prior to a tail biting outbreak (Lahrmann et al., 2017; D’Eath et al., 
2018; Wedin et al., 2018). To determine if this low proportion of abnormal tail postures 
on day -1 is a unique phenomenon in our survey, additional videos of other tail biting 
outbreaks need to be analyzed and statistically matched.

As mentioned before, in the technical observation all non-curled tail postures were 
annotated as abnormal. In human observation, only hanging or tucked tail postures 
were counted as not curled. This difference in defining behaviors results in a high per-
centage of abnormal postures than in the human observation. Besides this, the human 
observation was carried out between 06:00 and 19:50 h per day whereas the technical 
analysis was performed between 14:00 and 18:00 h per day. Both aspects must be taken 
into account in the statistical comparison of the methods, which is yet to be done.

During the technical evaluation, in addition to the analysis of tail posture, the activity 
of the animals was also evaluated. Expressed in path lengths no clear alteration of ac-
tivity was found 12 days prior to the tail biting outbreak as the activity decreased from 
day -12 to -7 prior to the tail biting and then again increased until day -1 to the same 
level of day -12. This increase in activity in the five days directly prior to a tail biting 
outbreak underlines the findings in previous studies (Zonderland et al., 2011; Larsen 
et al., 2019). However, with this result, it should be taken into account that the activity 
level 12 days earlier had a similar value as on the day directly prior to the outbreak. 
Therefore, the entire course of activity of a group should be examined in further videos 
to verify if the activity of the pigs expressed in path lengths is suitable as an indicator 
of an approaching outbreak of tail biting. 
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The algorithm should be tested on further video material of different tail biting out-
breaks to verify these results. Furthermore, a statistical comparison of the two evalua-
tion methods is still pending.

Conclusions
In the current study, we introduced the technical development of a system for auto-
mated behavior observation in pigs. Our findings showed that the automated analysis 
can be performed with low-cost 2D cameras. We were able to analyze pigs’ tail postures 
on individual basis across the whole pen with a conventional group size of pigs. Addi-
tionally, we generated statistics for pigs with specific moving patterns in different pen 
areas. 

The automated analysis of locomotion patterns of pigs in combination with their loca-
tion in different pen areas and detection of interactions between individuals such as 
tail-in-mouth behavior or chasing and their tail postures will enable detailed behavior 
analyses in farm animals without a high time investment for the observer. This will 
improve understanding of pigs’ behavior and therefore animal welfare. 

As one of the next steps in our project, the tail posture classifier will be improved by 
discriminating more classes of tail postures. Analogous to the development of a pose 
detector that uses patches around tracked tail postures, a tail-in-mouth classifier with 
patches around close mouth/tail pairs will be developed.
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Abstract
Damaging behaviours such as tail and ear biting are a major welfare and econom-
ic challenge in modern pig production. Automated monitoring of groups of pigs for 
timely detection of changes in behaviour and the onset of damaging behaviour might 
enable farmers to take immediate management actions, and thus decrease health 
and welfare issues on-farm. We aim to develop a computer vision-based tool for au-
tomated monitoring and recognition of damaging behaviour in groups of pigs using 
a pre-trained convolutional neural network (CNN) combined with a secondary artifi-
cial network (ANN). For this purpose, this preliminary project compared different data 
pre-processing and model building parameters to determine the optimal framework. 
The best model achieved a major-mean accuracy of 65% for video-based classification 
of damaging social behaviour in groups of pigs.

Keywords: Biting behaviour, convolutional neural network, pig, monitoring

Introduction
The majority of commercial pigs in the EU are raised under intensive conditions that 
are likely to increase the development of abnormal social behaviour such as ear and 
tail biting in groups of pigs (Blackshaw, 1981). As biting behaviour is associated with 
stress and pain (Munsterhjelm et al., 2013), and can in severe cases lead to an infection 
of the inflicted wounds, it is considered a major welfare and economic challenge in 
modern pig farming (Niemi et al., 2012; Harley et al., 2014). Current preventive strat-
egies include the removal of risk factors that might trigger the development of biting 
behaviour in groups of pigs, tail-docking i.e. surgically removing a part of the tail to 
hamper tail-biting behaviour, or supplying enrichment material. However, as some of 
these strategies are often considered unfeasible by the farmer or to have severe wel-
fare implications (Herskin et al., 2010; Di Giminiani et al., 2017), timely detection of the 
behaviour and early intervention still seem to be the most feasible ways of preventing 
severe biting and potential outbreaks. Within this project, we aim to predict damaging 
behaviour in groups of pigs using deep machine learning, with the long-term goal of 
developing a tool which automatically detects such behaviours from farm’s own video 
surveillance. For such a tool to enable farmers to make timely decisions regarding in-
tervention strategies, it is crucial that it reliably detects agonistic behaviour with lim-
ited misclassifications. Hence, the aim of this preliminary study is to determine the 
optimal combination of parameter regarding data pre-processing and secondary ANN 
model architecture resulting in the best performance for the given data. 
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Material and Methods

Experimental set-up and data handling 
The data used in this study were collected at a commercial Danish piggery. The piglets 
observed for this study were piglets prior to weaning (30 ± 1.6 days of age). All details 
on housing and management can be found in a previous publication (Hakansson et 
al., 2020). Video data was acquired from 26 pens, however, for the purpose of this study 
only a subsample of five pens was used. 

A GoPro Hero 3+ camera (Silver edition, hard-box case, GoPro® Inc.) was fixed approxi-
mately 2m above the floor and recorded the entire pen area. The camera recorded RGB 
videos with a resolution of 1920 x 1080 pixels in MPEG4 format and a frame rate of 59.94 
frames per second (fps). Each pen was recorded once for 60 min. Video data were man-
ually labelled by a single observer using all occurrence sampling. Biting behaviour was 
labelled according to the ethogram (see Table 1) of Hakansson and Bolhuis (2021) and 
was assessed individually for all piglets within a pen. All details of the data collection 
can be found in a previous publication (Hakansson et al., 2020).

Table 1: Ethogram of biting behaviour in piglets, adapted from Hakansson et al. 2021

Behaviour Description

Tail biting Nibbling, sucking or chewing at the tail of a pen mate, causing a reaction from 
the other pig. 

Tail-in-mouth Gentle nibbling, sucking or chewing of another pig’s tail, without causing 
a reaction in the other pig. 

Tail interest Sniffing, nosing or manipulating the tail of another pig without taking the tail 
into the mouth.

Ear-biting Nibbling, sucking or chewing at the ear of a pen mate, potentially causing 
a reaction from the other pig.

Other biting Nibbling, sucking or chewing the body of a pen mate (excl. tail and ears), 
potentially causing a reaction from the other pig.

Descriptive analysis of the data revealed that the minimum duration of the behaviours 
included was 1 s. From the continuous video data, still frames were extracted with 
a framerate of 10 fps, and the images were subsequently connected with their respec-
tive metadata. The data were manually post-processed and frames with disturbances, 
e.g. when the farm staff passed by or entered a pen, were removed. The full data set 
consisted of 149,560 images, of which 8,690 images showed any kind of biting behav-
iour (see Table 2). 

Implementation
The software used to implement the algorithms was R Version 3.6.0 (R Core Team, 2019) 
and the library Keras (Version 2.7.0). No data augmentation was applied to the images, 
but images were converted to greyscale and resized to a resolution of 224×224 pixels to 
fit the input size of the VGG-16 network. Data from four pens were labelled as outer train-
ing set and were further used to detect optimal parameter settings using cross-valida-
tion. Data from the remaining fifth pen was labelled as outer test set. The outer training 
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set was subsequently split into inner test and training sets using k-fold cross-validation 
based on penID (k=4, see Figure 1). At each iteration, one pen was labelled as the inner 
test set, while the remaining three pens were labelled as inner training set. 

Table 2: Descriptive statistics 

Pen ID No. included images No. images with biting event

1 20710 430

2 31900 3140

3 31240 1600

4 32970 1290

5 32740 2230

Moreover, from each training set 10% of the data were randomly labelled as validation 
set. Validation sets were used to assess the fit of the model during training, while test 
sets were used to assess the predictability of a built model on a new (unseen) data set. 

Figure 1: Overview of the cross-validation. Data were split into outer test set (dark grey) and outer 
train set (light grey), which was subsequently split using 4-fold cross-validation

Algorithm
Within this study, a three-step approach was applied:

1. A pre-trained convolutional neural network (CNN) was used to transform each 
pre-processed image into a one-dimensional feature vector of length 4096. 

2. Using k-fold cross-validation, feature vectors were subsequently input into sec-
ondary artificial neural networks (ANN) with different hyper-parameter settings, 
to determine the set of parameters resulting in the highest accuracy for our data. 
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3. Using the best set of parameters, a final ANN was trained based on the entire 
outer training set and tested on the outer test set. 

In this study, the pre-trained VGG-16 model (Simonyan and Zisserman, 2014) was used 
was used to extract relevant spatial features. To this end, the base architecture was 
modified so that the final output layer was removed. This modified VGG-16 network was 
used to extract spatial features for each image, resulting in a vector of length 4096 for 
each image. To reduce computational workload, features with zero variance through-
out the data set (N= 222) were removed from both, the training and testing set. Subse-
quently, the remaining features were combined with the corresponding target variable, 
and the secondary ANN was trained using these data. The secondary ANNs consisted 
of an input layer, one or more fully connected hidden layers with the ReLu activation 
function, and an output layer using Softmax classification. The network was trained 
for 100 epochs with a learning rate of 0.0001. For the purpose of parameter testing, the 
model architecture changed depending on the set of parameters used. In this study, 
the parameters tested for their effect on model performance were either applied to the 
input features (pre-processing) or to the architecture (hyper-parameter, see Table 3).

Table 3: Parameter specifications, which were compared by the cross-validation 

Tuning 
parameter Name Definition Type Levels Range

Pre-processing

Normalization Normalization of variables 
in the input vector integer 3 None, tanh, 

Sigmoid

PCA

Dimensionality reduction 
using PCA and selected 
number of extracted 
dimensions.

numeric 4 10, 100, 1000

Hyper-parameter

Layer Number of FC layers in 
the secondary ANN integer 3 1, 2, 3

Nodes
Number of nodes divided 
over the FC layers in the 
secondary ANN.

integer 3
mean, 

mean/2, 
sum

Batch size
Batch size applied to the 
training of the secondary 
ANN

numeric 4 16, 32, 64

Parameters applied to the input feature vector were normalization and principal com-
ponent analyses (PCA). Feature vectors were normalized using the hyperbolic tangent 
function or sigmoid function, or were not normalized. PCA was applied to the normal-
ized input vector and a selected number of dimensions were extracted. Parameters 
regarding the model architecture were the number of layers and nodes used in the 
model layer, and batch size. The number of hidden nodes was calculated based on the 
number of extracted PCA components, , NPC ∈ {10, 100, 1000}, and the number of target 
classes (NC=2) using the mean of NPC and NC (“mean”), the mean of NPC and NC divided 
by two (“mean/2”), or the sum of NPC and NC (“sum”). Consequently, we compared the 
effects of training nine separate pre-processing parameter and 27 separate ANN archi-
tectures, resulting in a total of 486 combinations of parameter for each fold of the CV. 
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Model performance was measured with respect to detecting biting behaviour using 
major-mean accuracy (MMA) and the F1-score (F1). In this paper, MMA and F1-score are 
calculated as follows using the number of true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN):

 (1)

 (2)

Identification of optimal parameter settings
Optimal parameter settings for the secondary ANN were identified from the output 
of the CV. For this purpose, two linear mixed-effect models (LMEM) were made, re-
spectively using F1 or MMA as the dependent variable. The LMEW included penID as 
a random effect, and the pre-processing and hyper-parameters as the independent 
variables. 

Final model fine-tuning
To further fine-tune the final model, the models resulting in the highest performance 
with a given set of pre-processing and hyper-parameter settings were used to train 
the final model on the full outer training set, which was then tested on the outer test 
set.  At this stage, different dropout rates (no dropout, 0.2%, 0.4% and 0.5%) were imple-
mented after each fully connected layer for comparison. These rates were chosen as it 
is often proposed that dropout rates around 0.5% can result in increased performance 
(Srivastava et al., 2014; ByungSoo et al., 2017). Similarly, two different learning rates 
(0.0001 and 0.00001) were tested for their effect on final model performance. 

Results and discussion

Parameter testing using cross-validation
Table 4 shows the performance measures aggregated from the output of the cross-val-
idation, as well as from the best-fit model. 

Table 4: Results of the cross-validation using the inner train/test sets, with median major-mean 
accuracy (MMA) (min-max), mean F1-score (F1) (± SD), as well as MMA (95% CI) and F1-score (95% 
CI) for the best-fit model

median MMA (min-max) [%] mean F1 (± SD) [%]

All models 50.0 (29.0-73.0) 37.4  (± 23.0)

Best-fit model 72.9 (72.1-73.7) 76.6 (75.3-77.1)

Visually inspecting the data showed that the strategy resulting in the highest perfor-
mance in regard to MMA and F1-score was using sigmoid normalization of the input 
features, reducing the dimensionality of the input data to 100 principal components 
(PC), and using a secondary ANN with 1 hidden layer, 51 nodes (mean) and a batch size 
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of 32. When analysing the output of the cross-validation using LMEM, the number of 
layers (F=25.28, p<0.001) and hidden nodes (F=3.54, p=0.03) in the secondary ANN, and 
the number of PC extracted from the features (F=43.88, p<0.001) all showed a significant 
effect on F1. Similar, the number of PC (F=5.89, p<0.01) and number of layers (F=6.10, 
p<0.01) had an effect on the MMA when only considering MMA values above 50. Using 
both ten and 100 PC significantly increased F1 and MMA compared to using 1000 PC. 
Similarly, using one layer compared to two and three layers increased both F1 and 
MMA, while using ‘mean/2’ compared to ‘sum’ or ‘mean’ for the number of nodes sig-
nificantly only increased the F1. 

Hence, from the results of the visual inspection of the data and the output of the LMEM, 
we decided to use the following parameter to fit final secondary ANN using the outer 
train set: 100 PC, one and two model layer, ‘mean’ and ‘mean/2’ and a batch size of 32 
and 64. Additionally, varying dropout and learning rates were implemented. The final 
ANNs were trained on the outer training set and evaluated using the outer test set. 

Final model evaluation
When applied to the outer test set, the final model with the best strategy resulted in 
a MMA of 65.8% and a F1-score of 66.0% (Table 5), and was implemented by using the 
following set of parameters:

 — Sigmoid normalization of the input features
 — PCA of the input features, and 100 extracted PC
 — Secondary ANN architecture with 2 layers, 13 nodes per layer
 — No dropout
 — Batch size of 64
 — 0.0001 learning rate

Table 5: MMA and F1-score of the secondary ANN model evaluation using the outer test-set, with 
varying dropout and learning rates

Learning rate Dropout rate % MMA (95% CI) % F1-score (95% CI)

0.0001

No dropout 53.9 (51.8-56.0) 40.3 (35.3-45.1)

0.2 56.4 (54.2-58.6) 46.6 (42.4-51.2)

0.4 56.9 (54.5-59.3) 50.0 (45.5-54.5)

0.5 53.9 (51.8-56.0) 62.0 (59.4-64.4)

0.00001

No dropout 65.8 (63.7-67.9) 66.0 (62.7-69.3)

0.2 58.8 (56.4-61.2) 58.2 (54.3-62.1)

0.4 54.5 (52.0-57.0) 58.1 (54.6-61.8)

0.5 53.9 (51.5-56.3) 58.9 (55.8-62.0)

This study showed that applying PCA to reduce the dimensionality of the extracted 
image feature data and using the first 100 principal components is a viable pre-pro-
cessing strategy for the video image data used in this study. Moreover, using a shallow-
er network with fewer layers and nodes compared to a network with more layers and 
a high number of nodes increased the performance of our secondary ANN. This is in 



88 Precision Livestock Farming ’22

line with discussions on model complexity and the notion that a too complex model 
architecture has the potential to decrease model performance (Sun et al., 2021). When 
tested again with a lower learning rate, the final model performed better than a model 
with the original learning rate. It is often discussed that implementing dropout within 
a network has the potential to effectively reduce overfitting and to have positive effects 
on the ability of a network to generalize on a new set of data. For our data set, however, 
implementing dropout did not enhance model performance. 

Figure 2 shows the accuracy and loss curves when training the final model with the 
specified parameters. With the optimal set of parameters regarding data pre-process-
ing and network architecture, the final model converged with a validation accuracy of 
77.4% and a validation loss of 0.47, with nearly identical values for training accuracy 
and loss. This indicates that the network is not overfitting. 

Figure 2: Accuracy (left) and loss (right) curves of the sec. ANN for training and validation set

Our final optimized model has a relatively low performance, as it misclassifies approxi-
mately 34% of the images in the final test set. This is likely due to the fact that our mod-
el classifies each frame individually, without taking the context of surrounding frames 
in the video into account. In a similar study, Liu et al. (2020) presented an approach to 
detect biting behaviour in groups of pigs using a tracking algorithm followed by a com-
bination of CNN and a long-short term memory (LSTM) algorithm. The authors were 
able to achieve an accuracy of 96.34% on their training set, indicating that the tempo-
ral component of the data holds explanatory value. However, no performance of the 
predictive ability of their model on an independent test set is presented, which makes 
it difficult to compare their results to those of our study. Furthermore, while Liu et al. 
(2020) focused entirely on tail-biting behaviour, the current paper focused additionally 
on other biting behaviour such as ear biting and biting the body. The inclusion of ear 
and other biting behaviour could have enhanced the informational load of the data, 
thus making it harder for a model to successfully distinguish biting from non-biting be-
haviour. It seems reasonable to assume that utilizing time-series analysis considering 
temporal features of the data (such as e.g. a CNN + LSTM network) has the potential to 
increase performance when predicting biting behaviour. In future studies, we will aim 
to optimize the parameters for a two-step approach with an LSTM as the secondary 
model, thus ensuring a fair comparison between the two types of secondary models. 
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Conclusion
Within this preliminary study, we systematically compared different pre-processing 
strategies and model architectures to identify the optimal set of parameter for classi-
fication of biting behaviour in groups of pigs based on individual video frames. Vary-
ing strategies were compared using cross-validation, and a final network was trained 
with varying dropout and learning rates. The single best strategy for this classification 
problem and the current data yielded a major-mean accuracy of 65.8% when evaluated 
on a test set. The optimal pre-processing strategies for this modelling approach were 
using sigmoid function and applying principal component analysis to the input fea-
tures, implementing a model architecture with two layers, 26 nodes, no dropout and 
a learning rate of 0.00001. Similar to previous work, this paper demonstrates that mon-
itoring damaging behaviour in groups of pigs using deep machine learning techniques 
is possible, and has the potential to be instrumental to pig farmer. 
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Abstract
The performance of play behaviour may be a measure of animal well-being in young 
pigs. However, play events are usually short in duration and occur sporadically in time. 
Thus, the use of play behaviour as a measure of animal welfare would benefit greatly 
from remote, real-time monitoring. We here present a preliminary study into remote 
detection of play behaviour with computer vision in young pigs, investigating the pos-
sibility of recognising locomotor play from other forward movement, using methods 
requiring low computing power. Two pens of pigs were observed between 1800-2200 h 
the day after weaning and labelled for events of locomotor play, running and walking. 
To quantify behavioural intensity, Gaussian mixture models were applied to the videos 
producing a low and high activity video stream with the background subtracted, from 
which 10 and 15 frames movement maps were produced for the events of behaviour. 
From the movement maps, contours were detected, and six contour features were cal-
culated as behavioural descriptor. 1000 behavioural descriptors per class were used 
as inputs to several classification algorithms of which random forest had the highest 
accuracy (0.799). Only 76% and 72% of play and running contours were correctly clas-
sified, whereas recall was 91% for walking contours. Based on this, it was decided that 
stronger classifiers would be needed to recognise play from other high-activity forward 
movements such as running, and that the current method could function as initial 
classifier of locomotor play to reduce the data amount to be classified with more so-
phisticated models.

Keywords: animal behaviour, animal welfare, Gaussian mixture model, movement 
map, contour detection, machine learning

Introduction
Play has been identified as a potential indicator of animal welfare as it can be meas-
ured noninvasively, it is often observed in the absence of fitness threats and its mere 
performance may be rewarding (Held & Spinka, 2011). For pigs in a semi-natural en-
vironment, the performance of play peak between week 2 to 6 of age with locomotor 
play being the most dominant play type (Newberry et al., 1988). However, locomotor 
play in pigs are short-lasting events that occur spontaneously, making it improbable to 
monitor for a farmer or other stakeholder of the pig production. Thus, to use locomo-
tor play in young pigs for welfare assessment will demand automatic detection of the 
behaviour continuously across the day. It has been attempted to detect play in calves 
from accelerometer data (Gladden et al., 2020; Rushen et al., 2012), while accelerometer 
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data have been used in pigs to detect positive social interactions (Rodriguez-Baena et 
al., 2020). In pigs, 2D cameras has been used to detect manipulation towards the drink-
er and enrichment objects (Chen et al., 2020a, b), which could resemble object play. To 
the authors knowledge, no similar attempt has been made to detect locomotor play 
in pigs using sensor data. Due to the low economic value of each individual pig, it is 
unlikely that one sensor per animal, such as accelerometers, will result in a profitable 
technology. Thus, the aim of project AutoPlayPig was to take the first steps in develop-
ing an algorithm for automatic detection of locomotor play in young pigs, by using 2D 
cameras that monitor the entire pen of pigs with one sensor and that do not disturb the 
pigs. This paper presents the results of a preliminary study investigating the possibility 
of using methods requiring relatively low computational power to automatically dis-
tinguish locomotor play from other forward moving behaviours (running and walking). 

Material and methods

Data origin and labelling
Data included in the study were collected in the experimental facilities of Department 
of Animal Science, Aarhus University, Denmark, in accordance with the Ministry of 
Food, Agriculture and Fisheries, The Danish Veterinary and Food Administration under 
act 474 of 15 May 2014 and executive order 2028 of 14 December 2020, and under con-
sideration of the Arrive Guidelines (du Sert et al., 2020).

Data included video recordings of two pens of pigs on the day after weaning from 1800-
2200 h (most locomotor play observed during these hours, without any human dis-
turbances). The pigs were weaned by removing the sow and housing the pigs in their 
respective farrowing pen designed for loose housing of the sow during lactation. One 
pen housed 12 pigs of the Danbred sow hybrid, weaned at day 25 of age with an average 
weaning weight of 6.56 ± 1.57 kg. The other pen housed 10 pigs of the Topigs Norsvin 
TN-70 sow hybrid, weaned at day 28 of age with an average weaning weight of 8.99 ± 
1.56 kg. The two pens were identical, but mirrored, and located in the same room (see 
Figure 1). Dimensions of the pens were 3.0 × 2.2 m with half solid and half slatted floor-
ing. Each pen included a corner creep area for resting and warmth (0.9 m2), an 80 × 28 
cm polyconcrete feed trough (Jyden A/S, Denmark) and a 31 × 17 × 11 cm water trough 
(Aqua-Level system with hinged trough; Jyden A/S, Denmark). In the morning hours, 
each pen was provided with 130 g chopped wheat straw on the solid floor and 400 g saw 
dust in the creep area. The room temperature was set to 24 °C and artificial light was on 
from 0700-2200 h. Pigs were fed ad libitum with a standard pelleted weaner diet with no 
medical zinc oxide added to it. Male pigs were castrated on day 4 postpartum. No pigs 
were tail-docked or teeth-clipped. 

A 2D camera (model DS-2CD2145FWD-I, Hikvision, China) was positioned 2.3 m above 
each pen, providing a top-view image of the entire pen and recording video with 15 fps. 
During the 8 hours of included video, events of locomotor play and running were ob-
served continuously with start and stop times. Walking was also observed continuous-
ly, but only within the first 5 minutes of each hour. See ethogram of the three behaviour 
classes in Table 1. 
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Figure 1: Raw images of the two pens included in the study

Table 1: Ethogram of labelled behaviours

Behaviour Description

Locomotor play

At least 2 forward hops or gallop-like energetic forward movement (the two 
forelimbs move in phase, followed by the two hind limbs). Often associated 
with vigorous ear flapping, moving across a large area of the pen, and 
occasionally bouncing into other pigs.

Running Fast forward movement without hops or gallop-like movement.

Walking Slow forward movement with one leg at a time.

Movement maps and contour detection
To quantify behavioural intensity, a Gaussian Mixture Model algorithm (Zivkovic & Van 
Der Heijden, 2006), detecting moving pixels, were applied to the two 4-hour videos pro-
ducing ‘all activity’ (learning rate = 0.001) and ‘high activity’ (learning rate = 0.02) video 
streams with the background and shadows subtracted. ‘Low activity’ video streams 
were produced by subtracting the ‘high activity’ from the ‘all activity’ video stream. To 
lower the amount of noise in the resulting video streams, contours detected by Canny 
edge detection (thresholds of 30 and 150) with an area below 1000 pixels were removed 
from each frame.

The ‘low activity’ and ‘high activity’ video streams were cropped into events of loco-
motor play, running and walking of varying duration based on the start and stop times 
of the labelling of the raw video. For each event, the respective ‘low activity’ and ‘high 
activity’ video streams were summarised into 10-frames (2/3 sec) and 15-frames (1 sec) 
movement maps throughout the frames of the event, with ‘low activity’ pixels rep-
resented by light grey (intensity = 85), ‘high activity’ pixels represented by dark grey 
(intensity = 170) and overlap in ‘low activity’ and ‘high activity’ pixels represented by 
white (intensity = 255). See an example of a movement map for each of the three la-
belled behaviour classes in Figure 2.
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Figure 2: Example of a 15-frames (1 sec) movement map and the segmented contour for each of the 
three behaviour classes: locomotor play, running and walking

Prior to contour detection, each movement map was median blurred with a 15 × 15 
kernel and dilated with a 3 × 3 kernel of ones to close the contours. Contours were de-
tected using Canny edge detection (thresholds of 30 and 150). For each contour in the 
movement map with a contour area above 5000 pixels and that did not only consist of 
low activity pixels (dark grey), the minimum area rectangle was produced, and 6 con-
tour features were calculated: 

1. Aspect ratio (length of min area rectangle / width of min area rectangle)
2. Extent (area of contour / area of minimum area rectangle)
3. Mean intensity of the contour
4. Ratio of low activity pixels (number of low activity pixels / contour area)
5. Ratio of high activity pixels (number of high activity pixels / contour area)
6. Ratio of overlap pixels (number of overlap pixels / contour area)

These contour features were chosen as they are all relative measures and may not 
depend on the size of the pig or the distance between the camera and the pigs; thus, 
hopefully making the model more generalisable. 

Modelling and testing
From the data pool of contours, 1000 contours were randomly selected from each of the 
three behaviour classes: locomotor play (events = 219), running (events = 64), and walk-
ing (events = 130). This number was chosen due to limitations on number of running 
events and thereby running contours.

Differences in mean values of each contour feature between the three behaviour class-
es were analysed using the non-parametric Kruskal-Wallis test and Dunn’s test for post 
hoc comparison with Benjamin-Hochberg adjustment for multiple comparisons. None 
of the contour features were constant (had no variation) or had a Pearson correlation 
coefficient to other features higher than 0.6. Thus, no contour feature variables were 
excluded based on these two criteria. The mutual information value was calculated for 
each feature, representing the dependency between the feature and the classification 
labels.
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For algorithm training and testing, the contour data were split into training data (play: 
n = 764; running: n = 735; walking: n = 751) and test data (play: n = 236; running: n = 265; 
walking: n = 249) with an approximately 75:25 split.

The normalised contour features were used as input for several multi-level classifiers: 
k-Nearest Neighbour (KNN), Naive Bayes, Logistic regression, Support vector machines 
(SVM) and Random forest. Hyperparameters were tuned using 4-fold cross validation 
on the training data. The set of hyperparameters resulting in the highest accuracy for 
each classifier were chosen for further training and testing (KNN: n_neighbors = 5, met-
ric = ‘euclidean’, weights = ‘distance’; Naive Bayes: var_smoothing = 0.001; Logistic reg.: 
solver = ‘lbfgs’, penalty = ‘l2’, C = 1.0; SVM: kernel = ‘rbf’, gamma = ‘scale’, C = 10; Random 
forest: n_estimators = 100, max_features = ‘sqrt’, criterion = ‘gini’).

The performance of each trained classifier was evaluated on the test data with the fol-
lowing performance metrics calculated (equation 1-4):

Accuracy (1)

Recall (2)

Precision (3)

f1 (4)

Where TP is the number of correctly classified locomotor play contours, TN is the num-
ber of correctly classified running and walking contours, FN is the number of locomotor 
play contours classified as running or walking, and FP is the number of running and 
walking contours classified as locomotor play. Accuracy is the only performance met-
ric evaluating the performance on classification of all three behaviour classes, while 
recall, precision and f1-score evaluates the performance of classifying the locomotor 
play class only. The area under the precision-recall curve with varying classification 
thresholds was also calculated for all three behaviour classes (mAP).

Results and Discussion

Contour features
The mean of each contour feature was different between at least two of the three be-
havioural classes, but the ranges overlapped and thus, not a single contour feature 
could alone solve the classification problem (see Table 2). The ratio of low activity pix-
els and the ratio of high activity pixels showed the greatest dependency with the be-
havioural classes, probably as there for these two contour features were clear differ-
ence between walking and the fast movements (locomotor play and running). Based 
on ranges in Table 2, simple rules to distinguish walking and fast movements can be 
made: if the ratio of low activity pixels ≥ 0.54 or the mean intensity < 104, the contour 
should be classified as walking. These simple rules would correctly classify 26% of the 
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walking contours in the current data sample. As a high proportion of contours in a re-
al-life setting will represent walking and even slower movements, these simple rules 
could prove valuable in reducing the number of contours that needs to be classified 
by more complicated techniques, which could reduce computational power needed to 
automatically detect locomotor play and other fast movements.

Table 2: Mean and range of each contour feature for each of the three behaviour classes and the 
mutual information (MI) for each contour feature based on 1000 locomotor play, running and 
walking contours. Difference in lower-case letters indicate statistical significance on at least a 5% 
significance level 

Contour feature Locomotor play Running Walking MI

Mean Range Mean Range Mean Range

Aspect ratio 3.17a 1.03-6.60 3.42b 1.01-7.95 2.90c 1.12-4.92 0.129

Extent 0.59a 0.34-0.81 0.64b 0.36-0.83 0.71c 0.49-0.85 0.180

Mean intensity 165a 122-206 172b 104-203 142c 76-206 0.188

Low activity ratio 0.07a 0.00-0.42 0.07a 0.00-0.53 0.41b 0.00-0.92 0.418

High activity ratio 0.54a 0.05-0.95 0.43b 0.02-0.98 0.12c 0.00-0.82 0.409

Overlap ratio 0.18a 0.00-0.56 0.28b 0.00-0.58 0.28b 0.00-0.65 0.082

Performance on the test data

Performance of each classifier on the test data is shown in Table 3. The highest accu-
racy, f1-score and mAP were found for the Random forest classifier. Confusion matrix 
and precision-recall curve for all three behaviour classes for the Random forest classi-
fier can be seen in Figure 3. The classifier performs best in classifying walking with 91% 
of the walking contours correctly classified; especially when distinguishing walking 
from locomotor play. On the other hand, the classifier performs worse when classifying 
locomotor play and running with 76% of the locomotor play contours and 72% of the 
running contours being correctly classified; especially when distinguishing between 
locomotor play and running resulting in many false positives and false negatives. This 
is not surprising, as locomotor play and running are both behaviours involving fast 
and forward motion, and it can even be difficult for the human observer to distinguish 
between them from a top-view angle. Thus, other and perhaps more sophisticated 
techniques are needed to distinguish between locomotor play and other types of fast 
movements such as running. The minimum area rectangle produced for each contour 
could be used to segment the raw video into contour videos that could feed as input 
for e.g. a deep learning classifier that considers both the spatial and temporal patterns 
in such a video. To lower the computational power needed, the current method could 
work as an initial classifier to lower the number of contour videos that need to be clas-
sified with the more sophisticated methods. In that case, the classification threshold 
of the current method should be set to maximise recall of the locomotor play class, as 
false positives will be inevitable. 
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Table 3: Performance metrics of each classifier on the test data with a classification threshold of 
0.50 (locomotor play: n = 236; running: n = 265; walking: n = 249)

Classifier Accuracy Recalla Precisiona f1a mAPb

KNN 0.784 0.725 0.737 0.731 0.825

Naive Bayes 0.751 0.720 0.667 0.692 0.703

Logistic reg. 0.768 0.779 0.687 0.730 0.721

SVM 0.778 0.746 0.715 0.730 0.797

Random forest 0.799 0.763 0.756 0.759 0.828

a Recall, precision and f1 score for the locomotor play class.
b mAP: area under the precision-recall curve for the locomotor play class.

Figure 3: Confusion matrix (A) and precision-recall curve (B) with associated area under the curve 
(mAP) for the Random forest classifier on the test data, divided between the three classes: locomotor 
play (n=236), running (n=265) and walking (n=249)

Conclusions
This paper presents a first attempt on automatic detection of locomotor play in young 
pigs. The presented method was successful in classifying locomotor play from slow for-
ward movement, here represented by walking, but struggled with classifying locomotor 
play from other fast forward movements, here represented by running. The presented 
method could be used as an initial classifier of locomotor play resulting in a reduced 
data amount to be classified with more sophisticated classification techniques, thereby 
reducing the computational power needed to automatically detect locomotor play in 
pigs.
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Abstract
This study evaluated the impact of different vaccination strategies on piglet’s activi-
ty using modern camera techniques. Pigs were vaccinated 8 days after weaning with 
a combination of the same antigens, group W (n=256) with a water-carbomer adjuvant 
combined with an oral vaccine. Group MO (n=256) was vaccinated IM with a mineral oil 
adjuvant. Water intake was logged every 6 hours separately for each treatment group 
and fed into a lineal regression model. Animal activity was monitored using cameras 
and expressed as the changed pixels percentage between two sequential photos. The 
resulting data structure representing activity was treated as a time series and analyzed 
using an Auto-Regressive and Moving Average (ARMA). The ARMA model forecasted ap-
propriately since the observed values were mainly within the predicted 95% CL. Results 
from group MO highlighted the fact that piglets did not behave as expected. Differences 
between expected and observed values overtime differed significantly between groups 
(p<0.0001). This was further supported by the differences in drinking water intake. Pigs 
from the MO group dropped 74% for 1 day (87 ml/kg BW to 21 ml/kg BW) whereas pigs 
from group W dropped 6% (84 ml/kg BW to 79 ml/kg BW) the day after vaccination and 
these differences were significant when the 42 hours period was compared between 
groups. Animal behavior monitoring with objective and noninvasive techniques like 
camera analysis and drink water intake monitoring proved to be a useful way of as-
sessing animal activity and to compare the effect of two different vaccine platforms.

Keywords: vaccination, side effect, welfare, automated camera, drinking water 
monitoring, piglet activity

Introduction
Vaccination is one of the most applied interventions to prevent diseases and reduce 
the use of antibiotics  (Bergevoet et al., 2019). Vaccinations are mostly administered 
by the intramuscular route (IM), but oral administration of vaccines can also be ap-
plied, the mostly for enteric pathogens. Vaccination of pigs can result in side effects 
including pain and elevated rectal temperature that may impact animal activity, and 
consequently affect the welfare of the pigs. Mineral oil-based emulsions are known 
to induce local adverse reactions, especially when combined with reactive antigens 
like inactivated bacteria (Charerntantanakul, 2020) and vaccines based on alpha to-
copherol acetate (Miller et al., 2019). One way of recording the response and welfare of 
pigs following vaccination is evaluating piglet behavior by recording the willingness to 
approach people (Fangman et al., 2010). These observations of pig activities are time 
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consuming and can be biased due to the presence of researchers and their interaction 
with the animals. Measurement using camera systems have been proven valuable in 
replacing human observations for the evaluation of behavioral pig activities (Ott et al., 
2014). This study aimed to evaluate the impact of two different vaccination strategies 
on pig activities using modern camera techniques together with other variables (i.e., 
water intake, rectal temperature).

Material and methods
A total of 512 24-days old, weaned pigs was equally distributed among 2 study groups 
accordingly to sow parities.  Pigs were vaccinated 8 days after weaning with a combina-
tion of PCV2, Mycoplasma and Lawsonia antigens. Group W (n=256) was IM vaccinated 
with a water-carbomer adjuvant platform (Ingelvac CircoFLEX® and Ingelvac MycoF-
LEX®, Boehringer-Ingelheim VetMedica) and with an oral live vaccine via drinking water 
(Enterisol Ileitis, Boehringer-Ingelheim VetMedica). Group MO (n = 256) was IM vacci-
nated with a mineral oil adjuvant platform (Porcilis PCVMH, Porcilis Lawsonia, MSD 1 
IM injection of 2ml). All vaccines were used according to the label including warming of 
the MO vaccines. At 6 hours post vaccination, rectal temperature was recorded for one 
randomly selected pig per pen (24 pigs/group). To record the water intake, the drinking 
waterline between the two treatment groups was split and a digital water logger using 
the lora network was installed (Maddalena SPA, Italy). Water records were logged four 
times a day (1.00 hrs; 7.00 hrs; 13.00 hrs; 23.00 hrs). A linear regression model was used 
to study the association between water intake and vaccine group. The variable “vacci-
nation period” (i.e., pre-vaccination or 42 hours-period prior vaccination, vaccination or 
48 hours post-vaccination, and post-vaccination) and their possible interactions were 
also considered as predictors in the model. 

Figure 1: View from one camera overseeing the whole floor of two adjacent pens

To record animal activity, cameras (Healthy Climate Monitor, HCM) were positioned in 
the middle of the barn, overseeing the full floor surface of the two middle pens (Figure 
1). Animal activity was expressed as percentage of the changed pixels between two 
sequential photos and was continuously monitored by group every 5 minutes. Each 
photo was screened for quality and abnormal photos were excluded for analysis (e.g., 
fly on the lens, digital damaged photos). Percentage of daily changed pixel observations 
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during the period prior to vaccination was modeled through an Auto-Regressive and 
Moving Average model (ARMA) to appropriately consider the data’s temporal auto- 
correlation structure. Results from the model were used to predict (forecast) the next 
12hrs point values and their confidence limits to compare with the observed values.

Results
A total of 6 pigs from Group MO showed signs of anaphylactic shock immediately after 
vaccination, which was statistically higher when compared with Group W in which no 
anaphylactic shocks were observed (p<0.05; Fisher exact test). Rectal mean temper-
ature of Group MO was significantly more elevated compared to Group W (40.7°C, 24 
animals vs 39.7°C, 24 animals; p<0.001; t -test; Figure 2). 

Figure 2: Rectal temperature of both groups 6 hours post vaccination. From both groups 24 animals 
were at random selected. Rectal temperature of the MO group was significant higher when compared 
to group W (40.7 vs 39.7 p<0.0001)

Figure 3: ARMA and prediction models for animal movement after vaccination event by treatment 
group. Continuous line: observed movement; dashed line: predicted movement; Grey area 95% CL. 
Time of vaccination indicated by the arrow. Y-axes movement indicated by pixel change (%), x-axes 
calendar day’s relative to the timepoint of vaccination
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Results from the ARMA process and forecast are shown in Figure 3. The graph for Group 
W shows that the model forecasted appropriately since the observed values are mainly 
within the predicted 95% Confidence Level (CL) (dark grey areas). On the other hand, 
results from Group MO highlight the fact that pigs did not behave (dashed line) as 
expected (continuous line). Mean square differences between expected and observed 
values overtime differed significantly between groups (p-value < 0.0001).  

Figure 4 describes the drinking water intake by intervals of 6 hr difference post vacci-
nation event for the two monitored groups. Pigs from MO and W groups experienced 
a drop of 74% (87 ml/kg BW to 21 ml/kg BW) and 6% (84 ml/kg BW to 79 ml/kg BW) re-
spectively during a 24h period after vaccination. In addition, the estimated linear mod-
el showed that water intake, as an overall, differed between groups (p value = 0.0083). 
More specifically, this difference was significant only during the “vaccination period” 
(or 42 hrs post vaccination shown in Figure 4) between groups (p value = 0.0135), being 
lower for the group MO (Figure 4).   

Figure 4: Drinking water intake (ml/kg of piglet body weight for the past 24h) for both groups during 
the post-vaccination period. Each unit of time refers to a 6hr interval

Figure 5: The mean water intake per pig over a 14-day period post vaccination. Water intake showed 
a consistent variation by time of the day. Pigs drank consistently more during the afternoon (13.00-19.00 
hrs.) when compared to the morning (7.00-13.00 hrs.), evening (19.00-1.00 hrs.) and night (1.00-7.00 hrs.)
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Another important result collected by both the camera and water logging systems 
demonstrated variable behaviors at different times of the day.  Variation of water intake 
over a 14 day period shows a marked difference in different parts of the day (Figure 5). 
The piglet activity levels during 24 hours as measured by the cameras can be seen in 
Figure 6. Pigs in this setting were more active during daytime.

Figure 6: The activity of the pigs, expressed as a percentage relative to the hour with most activity 
(16.00-17.00 hrs.). Pigs showed higher activity during the daytime. During the day, pigs were most 
active between 15.00 and 19.00 hrs. Light intensity is expressed as the percentage relative to the 
hour with the highest light intensity (13.00-14.00 hrs.). The feeding machine starts at 9.00 hrs., daily 
inspection by the animal caretaker starts at about 11.00 hrs

Conclusions and Discussion: 
Results from this study demonstrated a significant impact in pig wellbeing after vacci-
nation with mineral oil adjuvant-based vaccines when compared to those vaccinated 
with water- carbomer adjuvant-based vaccines. Pigs from Group MO showed a high 
incidence of anaphylactic shock immediately after vaccination as well as a significant 
increase of rectal temperature and a decrease in water consumption when compared 
to Group W. Animal behavior monitoring with objective and noninvasive techniques 
like camera analysis and drink water intake monitoring proved to be a useful way of 
assessing animal welfare and to compare the effect of two different vaccine platforms.

Beside the direct effect on animal welfare, the economic performance of a swine herd 
might also be affected due to vaccine related side effects. In general, most piglets are vac-
cinated during the late suckling period, potentially reducing their willingness to suckle. 
The temporary cessation of suckling is associated with lactation estrus (Zimmerman et 
al., 2020) and can increase the weaning to estrus interval. Vaccination can also be applied 
at or shortly after weaning. The weaning process is associated with an increase of local 
inflammation in the intestines due to the anorexia phase(McCracken et al., 1998). It is 
known that postweaning anorexia is an important risk factor in postweaning E.coli diar-
rhea (Madec et al., 1998). In this way, the choice of vaccines might influence the outcome 
and severity of post weaning E.coli diarrhea or other disease processes.
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It has been well documented that a reduction of water intake is associated with lower 
feed intake in post weaning pigs (Barber et al., 1989; Horn et al., 2014). Water consump-
tion of pigs is easier to measure when compared to the feed intake and could therefore 
be used to predict reduced feed intake. However, the literature regarding the normal 
drinking behavior of pigs in the post-weaning period remains scarce. This study pro-
vides further insights into piglet drinking behavior and piglet activity patterns.

Further studies to assess the impact of different vaccines are needed for veterinarians 
to choose the best vaccination regime to maintain the health and wellbeing of the pigs 
under their care.
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Abstract
Body temperature is an important characteristic for the vitality and survivability of pigs, 
especially for newborn piglets with a low birth weight. Suboptimal body temperatures 
might indicate or lead to increased stress or diseases. More and more thermal imaging 
technologies are available at the market which offer the opportunity to determine body 
temperature in a non-invasive, stress less manner including potentially reduced man-
ual effort. Current approaches often use multiple close-up images of different parts of 
the body (ear, eye, back, forehead and many more) to estimate the rectal temperature, 
which is laborious under practical farming conditions. Our approach only needs a sin-
gle (top view) thermal image of a piglet. We first trained a convolutional neural network 
(YOLOv3-SPP) for detection of relevant areas such as whole body, head, back and rear 
end (mAP@0.5= 0.98) followed by a background segmentation using the Otsu-algorithm 
to generate precise mean, median and max temperatures of each detected body part. 
By using a partial least square regression, the predicted rectal temperature RMSE of our 
method was 0.46 °C with a R² = 0.65. The used setup consists of a ‘FLIROnePro’ (ther-
mal camera) attached to an Android tablet. To sum up, the presented approach is an 
appropriate method with sufficient accuracy to generate an automatic indication on 
piglet vitality and with that could be an important assistance tool in animal monitoring 
under research and practical farming conditions.

Keywords: rectal temperature, thermal images, object detection, piglet vitality, non-
invasive

Introduction
Body temperature, along with other traits such as APGAR (Appearance, Pulse, Grimace, 
Activity und Respiration) -score (Revermann et al., 2018), or birth weight, is an impor-
tant trait for the vitality of a piglet. Temperatures that are too high or too low may indi-
cate increased stress or disease (Feng et al., 2019). The current standard to monitor body 
temperature is to manually measure rectal temperature with a thermometer. This, in 
turn, requires an intervention for each piglet by which behavior, and thus body temper-
ature, of the piglet is affected (Kammersgaard et al., 2013). In extreme cases, this might 
cause the spread of diseases (Jia et al., 2020). In contrast, estimating rectal temperature 
using thermal imaging is a non-invasive method and could reduce the manual effort. 
Feng et al. (2019) and Jia et al. (2020) used close-up images of various body parts (ear, 
eye, back, forehead, and more) to estimate rectal temperature of sows. Kammersgaard 
et al. (2013) took a similar approach and used images of the piglet from the back, side 
and ear to estimate its rectal temperature while Xiong et al. (2018) used the max, min 
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and mean temperature of the back of a piglet ear as well as the temperature drop to 
the ear tip. However, all these approaches have a common drawback. Multiple, and 
sometimes largely close-up images of different body parts, are used to estimate the 
rectal temperature of an animal. Thus, the effort remains high and the practicality of 
the applications remains doubtful. The goal of this work was to reliably estimate rectal 
temperature with effort as little as possible by keeping the result as reliable as possible. 
For this purpose, thermal images of piglets (top view) were recorded and automatical-
ly evaluated regarding the surface temperature for the total body as well as the body 
parts head, back and back end using computer vision algorithms (YOLOv3-SPP and Ot-
su-algorithm). These temperatures were used to generate 60 regressor variables. Which 
were, together with two environmental variables, fed into various regression approach-
es to estimate rectal temperature which serves as gold standard for body temperature.

Material and methods

Experimental data
The thermal images were recorded at the experimental farm of the University of Göt-
tingen (Relliehausen) with interruptions (Covid-19) in three runs from March 2020 – 
August 2020. The piglets were removed from the pen after 30 minutes of life and exam-
ined. The examinations took place according to a standardized set-up (Fig.1). Directly 
after the rectal temperature measurement with a thermometer ‘SC 1080’ (SCALA Elec-
tronic), a thermal image was recorded with a ‘FLIROnePro’ (Teledyne FLIR LLC) connect-
ed to an Android tablet for data-transfer and to a power outlet for power supply (battery 
life is only one hour). A total of 150 images of 64 piglets were used for further analysis. 
As additionally data, the piglets bodies were measure with a measuring tape (Fig.1) and 
weighted. During data acquisition, ambient temperature and humidity were measured 
inside each pen using a ‘TGP-4500’ climate data logger (Gemini Data Loggers). 

Figure 1: a) Set-up of thermal imaging, b) Measurement of body length (A to B) and girth (C), 
c) Example of a thermal image, where black indicates low temperature and white high temperature

b)

c)
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Object recognition and data processing
For object recognition of the four classes (piglet, head, back, and back end), all 150 
images were annotated using the Roboflow tool (https://roboflow.com/annotate). After 
splitting the data into training, validation and test set (70/20/10-ratio), the convolu-
tional deep neural network YOLOv3 with spatial pyramid pooling block (SPP) (https://
github.com/roboflowai/yolov3/blob/master/cfg/yolov3-spp.cfg) was trained at a learn-
ing rate of 0.001 for 300 epochs with default hyperparameters (only number of classes 
was adapted) and evaluated afterwards, both via Google Colabs (Bisong, 2019). To gener-
ate accurate mean and maximum values for the body parts, the body part shapes were 
segmented from the background using Otsu-algorithm (Otsu, 1979) (Fig.2). Whereby, 
the intersections of the detected bounding box area and the segmented foreground 
area contain the pixels that were used for further calculations.

Figure 2: Example Otsu-algorithm for the head of a piglet: a) shows the four bounding box detections 
of YOLOv3 SPP. b) is an image of the area ‘piglet’ after gray value conversion (0-255). c) shows a binary 
image of the piglet, after thresholding with Otsu-algorithm on image b). Image d) shows the overlap 
of the white foreground area (c.)) and the detected ‘head bounding box area’ from a). The pixels 
inside the gray area are used for further calculations of the head

Data preparation
After outlier detection (Fig.3), 16 images were sorted out. The remaining 134 images 
were processed by using the R package ‘Thermimage’ (Tattersall, 2017). The metadata 
of the radiometric JPEG-images was imported and the object radiation for each pixel 
was calculated by using three formulas (1-3) (Minkina & Dudzik, 2009). The emission 
value of the piglet skin was set to 0.98 (Soerensen et al., 2014). The temperature of an 

b)

c) d)



108 Precision Livestock Farming ’22

object is calculated from the object radiation (Wobj) and constants from camera calibra-
tion, which are saved to the metadata of the image.

Figure 3: Outlier detection: cross indicates a rect. temp. < 34°C and triangles indicating 10% of the 
biggest differences between rect. temp and max surface temp. of the piglets

 (1)

Where Wobj, Watm and Wrefl are the object, atmosphere and reflected radiation, ε is the 
emission value of the object and τ is the transmission value of the atmosphere. Wtotal 
is the total radiation measured by the camera. With the addition of (2) and (3), τ can be 
calculated.

 (2)

 (3)

Where Hrel ϵ (0,1) is the relative humidity, Tatm is the environmental temperature, H is 
the water vapor content of the air, and d is the distance between the camera and the 
target. The unknowns X, α1, α2, β1, and β2 are constants determined by an unpublished 
FLIR algorithm when calibrating the camera and can be obtained from the thermal im-
age metadata. τ is the transmittance of the atmosphere.

Data analysis
The programming language R (Version 4.1.2) (R Core Team, 2021) was used for data 
analysis. Several variants of regression were applied (univariate, quadratic, and 
multivariate (partial least square regression (PLSR) (due to multicollinearity ≥ 10))). 
A total of 62 characteristics were considered, consisting of maximum, median 
and mean temperature values of the body parts (n = 12), the quadrat of maximum 
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and mean for each body part (n = 8), 99th,95th and 90th quantiles for each body part  
(n = 12) as well as relative temperature values between the body parts (n = 28) and 
the additionally measured environmental variables relative humidity and ambient 
temperature (n = 2). For testing potential improvement, the manually measured 
characteristics body length and girth were additionally applied to the multivariate 
model. To automate these measurements, a univariate regression of body length 
and girth with the Euclidean distance in pixel from the thermal images as charac-
teristics was attempted too.  

Results
YOLOv3-SPP was able to detect the trained body parts with a ‘mean Average Precision’ 
(mAP), which is the arithmetic mean of the ‘Average Precision’ (AP) from all classes at 
an ‘Intersection over Union’ (IoU=0.5) was 0.98 (mAP@0.5 = 0.98). Univariate and quad-
ratic regression of the max-values of the area head (univariate) and piglet (quadratic), 
respectively, showing already promising results (Tab.1 and 2). The highest accuracy for 
rectal temperature estimation was produced by PLSR. Here, four principal components 
emerged after 10-fold cross-validation, yielding a root-mean-squared errortraining (RM-
SET)  = 0.44 and a root-mean-squared errorprediction (RMSEP)  = 0.46 with R² = 0.65 (Tab. 3, 
Fig. 4 and Tab. 4). Further approaches to improve the model by supplying additional re-
gressor variables (lenght and girth), which discribe the body constitution of the piglets, 
improved the PLSR model (this time 3 components) to RMSET = 0.44 and RMSEP = 0.43 
with R² = 0.65. But these manually measured variables are not given in practical con-
ditions, thus these results are not taken as highest accuracy. The approach to estimate 
these values with univariate regression, by using the length and respectively width of 
the piglets in pixels from the thermal images, did not work well (R² = 0.11 (girth) and 
R² = 0.05 (length)).

Table 1: Results of univariate regression of max values of body characteristics on rectal temperature. 
RMSET, RMSEP are the root-mean-square error for training and prediction (test) data set. Y represents 
the rect. temperature and x the max value of the characteristic. The row highlighted in gray indicates 
the highest accuracy

Characteristic Equation R2 RMSET RMSEP

MAX

head y=0.77345x+9.56586 0.65 0.50 0.50

piglet y=0.77265x+9.48580 0.65 0.50 0.51

back y=0.62400x+14.75703 0.51 0.59 0.60

back end y=0.79477x+8.66534 0.52 0.59 0.56
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Table 2: Results of quadratic regression of max values of body characteristics on rectal temperature. 
RMSET, RMSEP are the root-mean-square error for training and prediction (test) data set. Y represents 
the rect. temperature and x the max value of the characteristic. The row highlighted in gray indicates 
the highest accuracy

Characteristic Equation R2
adj RMSET RMSEP

MAX

head y=0.12433x2 – 7.77358x+156.36261 0.67 0.48 0.50

piglet y=0.12516x2 – 7.85046x+157.91004 0.67 0.48 0.49

back y=0.19383x2 – 8.31736x+167.57587 0.54 0.57 0.57

back end y=0.13068x2 –12.45068x+235.26252 0.57 0.55 0.53

Table 3: Percentage of variance in x (regressor variables) explained by the combination of 1, 2, 3 
and 4 components during training. The percentage in brackets indicates the explained variance by 
a single component

1st comp 2 comps 3 comps 4 comps

X 49.77 (49.77) 64.82 (15.05) 70.83 (6.01)  81.00 (10.17)

Figure 4: Regression coefficients, for each of the four components of the PLSR. Variable’s index can 
be found in Table 4 
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Table 4: Indexing of estimator variables. Where mb = max back, mbe = max back end, mh = max 
head, mp = max piglet and ab =average/mean back, abe = average/mean back end, ah = average/
mean head, ap = average/mean piglet 

Nr

Environment, 
Max, Median 

and Mean 
( n=14)

Nr
99th, 95th, 90th 

Quantile 
(n=12)

Nr Rel. Temps. 
(n=14) Nr Rel. Temps. 

(n=14) Nr
Quadratic 

Temps. 
(n=8)

1 Temperature 15 Q_back99 27 mb_mbe 41 mh_ab 55 Max_head2

2 Air Humidity 16 Q_be99 28 mb_mh 42 mh_abe 56 Max_back2

3 Max_back 17 Q_head99 29 mb_mp 43 mh_ah 57 Max_be2

4 Max_be 18 Q_pig99 30 mb_ab 44 mh_ap 58 Max_pig2

5 Max_head 19 Q_back95 31 mb_abe 45 mp_ab 59 Mean_head2

6 Max_pig 20 Q_be95 32 mb_ah 46 mp_abe 60 Mean_back2

7 Median_back 21 Q_head95 33 mb_ap 47 mp_ah 61 Mean_be2

8 Median_be 22 Q_pig95 34 mbe_mh 48 mp_ap 62 Mean_pig2

9 Median_head 23 Q_back90 35 mbe_mp 49 ab_abe

10 Median_pig 24 Q_be90 36 mbe_ab 50 ab_ah

11 Mean_back 25 Q_head90 37 mbe_abe 51 ab_ap

12 Mean be 26 Q_pig90 38 mbe_ah 52 abe_ah

13 Mean_head 39 mbe_ap 53 abe_ap

14 Mean_pig 40 mh_mp 54 ah_ap

Discussion and Conclusion
The presented approach shows a suitable method with sufficient accuracy to produce 
a semi-automatic indication of piglet rectal temperature and, thus, represents an im-
portant possibility of animal monitoring under practical husbandry conditions. Except, 
of a thermal camera, no special hardware requirements are needed for this purpose. 
If another manufacturer of the thermal imaging camera is used, the formula (1-3) for 
converting the radiation values to a pixel temperature will probably need to be adapted. 
The distance of the camera to the piglet was 0.5 m for the current data. Other distances 
can be used by simple adjustments of the formula (3) inside the R-Code. Unfortunately, 
the estimation of the body length and girth variables using the pixel distances from the 
thermal images was not successful for this approach, because no attention was paid to 
a uniform body position of the piglets when the images were recorded.  As mentioned, 
the presented approach is semi-automatic, because the thermal images were taken 
manually. But in the case of monitoring reared pigs, a completely automatic individu-
al measurement by e.g. RFID (radio-frequency identification) -controlled recordings of 
a thermal imaging camera at an individual drinker or feeding spot is imaginable. For 
this scenario an estimation of body length and girth by a more consistent body posture 
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might also be more promising. The prices of high quality thermal cameras are very 
high (e.g. 5.000€ -15.000€ (for cameras that were used in mentioned approaches above)). 
The FLIROnePro is a low price thermal camera (about 400€) and makes it from an eco-
nomic perspective more suitable for practical farming. However, there are some critical 
technical specifications like the low resolution (only 19.200px per image (160x120)), 5% 
measurement uncertainty and only 60-min battery runtime, if there is no power sup-
ply. Nevertheless, for this approach, the specifications were sufficient from our view. 
Another great benefit of our approach is that there is no manual processing of the ther-
mal images needed. All steps, including body part detection, background subtraction 
(Otsu), extraction of the regressor variables and prediction of the rectal temperature are 
done automatically inside the R-Code, which makes it even more useful for practical 
farming.
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Abstract
Elevated CO2 during the early or late period of chicken egg incubation has been proven 
to improve chick quality and shorten the hatch window. In this study, a CO2 supple-
mentation system was developed and used to increase the CO2 level to 1% concentra-
tion in the early period (0th- 10th day of incubation, E0-E10) and again for the late period 
(from internal pipping to E21, IP-E21) in an incubator as the treatment group. A control 
group with an ambient CO2 level was used as the basis for a comparative assessment 
of embryonic development, hatching characteristics, and hormones and nutrients be-
tween the two groups. Three hundred eggs were hatched in each incubator in each of 
three experimental trials. The results showed that elevated CO2 shortened hatching 
time by 4 hours and hatch window by 3 hours (P < 0.05) without affecting hatching 
quality. The treatment group had a higher relative weight of the heart and intestine 
at external pipping (EP) and H0 (P < 0.05). Elevated CO2 significantly increased the con-
centration of plasma corticosterone from IP to EP (P < 0.05), promoted the secretion of 
triiodothyronine and tetraiodothyronine (P < 0.05), and increased liver glycogen on E21 
(P < 0.05). These results indicate that elevated CO2 (1%) during the early and late periods 
of incubation accelerate the development of embryonic organs and shortened hatching 
time and hatch window without affecting hatching quality, and may be explained by 
the synergistic function of hormones and nutrients.

Keywords: CO2 supplementation, embryonic organ, hatch window, hormones, 
nutrients

Introduction
Carbon dioxide (CO2) is an important factor in embryo development during incubation 
(Willemsen et al., 2008). During natural incubation, the CO2 concentration surrounding 
the eggs increases from 0.05% to 0.9% (Boutilier et al., 1977; Walsberg, 1980). Howev-
er, commercial incubators have maintained a high ventilation rate and CO2 levels at 
surrounding room ambient levels. Therefore, investigating CO2 regulation strategies to 
promote embryonic development and improve hatch quality is necessary.

Several studies have shown that exposure to elevated CO2 concentrations plays a cru-
cial role in embryo morphology and physiological development (Fernandes et al., 2017; 
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Okur, 2019). High-level CO2 in the early period of incubation (E0-E10) can promote em-
bryo development and shorten hatching time (De Smit et al., 2008; Bruggeman et al., 
2007; Tona et al., 2007). Moreover, this method has been proven to increase the hetero-
phil/lymphocyte ratio, improve the feed conversion of 1-week-old chicks, and attenu-
ate the ventilatory response to hypercapnia in 10-day-old male chicks (Fernandes et al., 
2014; Rocha et al., 2020). However, high-level CO2 (E18–E20) did not affect organ weight 
or hatchability but did briefly alter plasma corticosterone profiles, and hatch window 
was 2.7 h shorter and 5.3 h later than that of the control group (Tong et al., 2015b). These 
studies showed that CO2 regulation during incubation is beneficial for hatching qual-
ity. In addition, this effect is likely mediated by changes in hormones and nutrients. 
However, the effect of a combination of elevated CO2 regulation during both the early 
and late periods of incubation on embryonic development, hatching characteristics, 
and chick quality is unknown, as is the synergistic mechanism related to any changes.

Therefore, the objectives of this study were to evaluate the effects of elevating CO2 level 
to 1% during the early and late periods of incubation on embryonic development and 
hatching characteristics and the changes in hormone levels and nutrient metabolism.

Material and methods

Egg incubator and CO2 supplement system
Two identical automatic incubators (OvaEasy 380 Advance EX Series II, Brinsea, West-
on-Super-Mare, UK) were used in this study. A CO2 supplement system was developed 
in the treatment incubator, which comprised a programmable logic controller (PLC), 
solenoid valve, CO2 sensor (VAISALA GMP251, VAISALA, Helsinki, Finland) with an ac-
curacy of 0.1% CO2, and CO2 cylinder as the supplemental CO2 source. The CO2 sensor 
collected signals of CO2 concentrations in the incubator, and the PLC controlled the cyl-
inder solenoid valve to maintain the set point CO2 concentration. The control incubator 
had a same CO2 sensor installed to monitor the concentration. Both incubators were 
equipped with identical oxygen sensors (EDKORS O2, ADVICS CO., LTD., Nagoya, Japan) 
with an accuracy of 0.1% O2 and temperature and humidity sensors (VAISALA HMP 
110, VAISALA, Helsinki, Finland) with a temperature accuracy of ± 0.2 °C and a relative 
humidity accuracy of ± 1.5%.

Experimental design
The experiment was executed in three consecutive batches (trials), and the two incuba-
tors were alternately used for the treatment group and the control group. The CO2 con-
centration of the treatment group was maintained at 1% in the early period (0th (E0) to 
10th d (E10)) and the late period (from internal pipping (IP) to the 21st d (E21)), and below 
0.25% in the other periods while not running the CO2 supplement system. The CO2 con-
centration in the control group was less than 0.25% during the entire incubation period.

Three batches of breeding eggs were collected from the same group of Jing Hong No.1 
breeders. For each experimental trial, 600 eggs were randomly selected and divided 
into two groups, weighed, surface-sterilised, and placed into the two incubators.
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Hatching characteristics
The top two hatching baskets in the incubator were selected for video observation. The 
hatching time of the eggs was recorded. The hatch window was defined as the precise 
time between the hatching of the first and last chicks. All chicks were weighed and 
scored for quality by a standard method (Tong et al., 2015a).

The hatchability of fertilized eggs was calculated using Equation (1):

 (1)

where hatchability is the hatching rate of the eggs (%); Nchicks is the chick number after 
21 d of incubation; NEbreeding is the number of eggs placed at E0; NEsampled is the number 
of eggs sampled; and NEunfertilized is the number of unfertilised breeding eggs.

Embryonic and organ weight
For each experimental trial, ten samples were randomly selected from each incubator 
at IP (the point when the shadow of the beak under candle is clearly visible), external 
pipping (EP, the point when the chick pecked through the shell), hatching time (H0, the 
point at which the chick newly hatched), and E21. Embryos and chicks were selected 
when the aforementioned status was observed, euthanised by cervical dislocation.

The heart, liver, intestine, and yolk were weighed using an electronic scale (JCS, Wuxi 
Yingheng Electronics Co., Ltd., Wuxi, China) with an accuracy of 0.001 g. Yolk free body 
mass, relative heart, liver, and intestine weights was measured.

Hormones and nutrients
At IP, EP, H0, and E21, three samples were randomly selected from each incubator, euth-
anised via cervical dislocation to obtain blood, yolk, and liver samples. Plasma corticos-
terone, triiodothyronine, and thyroxine were measured using a double antibody RIA kit 
(Beijing SINO-UK Institute of Biological Technology, Beijing, China). To avoid the limited 
plasma of an embryo cannot determine all hormones, combine two embryo in each 
period as one sample. The yolk was used to evaluate crude fat content by sox let ex-
traction; the liver was used to evaluate hepatic glycogen levels by anthrone colorimetry.

Statistical analysis
All data were analysed using IBM SPSS Statistics (version 20, Chicago, IL, USA) and ex-
pressed as mean ± SEM. Equation 2 was used to analyse the effect of CO2 treatment on 
hatching characteristics.

 (2)

where Y1 is hatching characteristics; µ is the mean value; C is the CO2 treatment (j=treat-
ment group, control group); B is the batch factor (k=1, 2, and 3); CB is the interaction 
(treatment × batch); I is the incubator (m=1, 2); and ε is the error influence.

Equation 3 was used to analyse the effect of CO2 treatment on embryonic weight, hor-
mones, and nutrients: 

 (3)
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where Y2 is relative organ weight, hormones, and nutrients content; µ is the mean val-
ue; T is the incubation stage (i=IP, EP, H0, and E21); C is the CO2 treatment (j=treatment 
group, control group); B is a batch factor (k=1, 2, and 3); TC, TB, and CB are the inter-
actions (age × treatment, age × batch, and treatment × batch, respectively); I is the 
incubator (m=1, 2); and ε is the random error. 

Results and Discussion

Figure 1: The environment of chicken eggs incubator of elevated carbon dioxide treatment group 
(1%) and control group (ambient level). A: CO2; B: O2

Both of the CO2 concentrations of the treatment group at E0-E10 and IP-E21 were 0.97 
± 0.05% (Fig 1), while that in the control group was always lower than 0.25%. The 1% 
CO2 concentration was based on the gas environment in natural incubation (Boutilier 
et al., 1977) and the literature (Tong et al., 2015a). The O2 concentration in the treatment 
group was slightly less than the 20.3% O2 concentration in natural incubation while 
that in the control group was higher. However, this difference in O2 concentration is not 
sufficient to cause changes in embryonic development (Dusseau and Hutchins, 1988).

Table 1: Effect of elevated carbon dioxide (1%) during the early and late incubation periods of chicken 
eggs on weight and relative weight of embryonic organs

Time Group Yolk free embryo 
weight (g)

Relative heart 
weight (%)

Relative liver 
weight (%)

Relative intestine 
weight (%)

IP treatment 31.64±2.23 0.61±0.05 2.06±0.29 2.81±0.39

control 31.20±1.91 0.63±0.06 2.14±0.35 2.91±0.58

EP treatment 36.01±1.91 0.68±0.09a 2.02±0.25 2.64±0.40a

control 35.36±2.75 0.63±0.06b 1.94±0.27 2.36±0.27b

H0 treatment 34.9±1.84 0.77±0.07a 2.45±0.42 3.21±0.46a

control 35.98±2.44 0.73±0.08b 2.37±0.28 2.79±0.54b

E21 treatment 34.85±1.93 0.86±0.09 2.62±0.33 3.92±0.55

control 35.24±2.13 0.85±0.07 2.63±0.33 3.79±0.49

Note: Different lowercase letters in the same column for the same time indicate significant level difference 
(P < 0.05). Values are means ± SE of three replicates. Abbreviation: IP, internal pipping; EP, external pipping; 
H0, the point when the chick newly hatched at the 20th day; E21, the end of the 21th day.
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At EP and H0, the relative heart and relative intestinal weights in the treatment group 
was significantly higher than those of the control group (P < 0.05) (Table 1). Those heav-
ier organs indicated that CO2 stimulated organ growth. However, the difference dis-
appeared at E21. Similar studies (Fernandes et al., 2014) have reported that high CO2 
(0.4%-1%, 0-10th d) did not affect heart or liver weights (P > 0.05). However, hatched 
chicks treated with 1% CO2 (0-19th d) had heavier hearts and lungs (Maatjens et al., 
2014b). Zhang and Burggren (2012) reported that the first half of embryonic develop-
ment contains critical windows for detrimental effects of hypoxia, while the second 
half for compensatory response to hypoxia in key organs. This suggests that changes 
in CO2 concentration may affect the formation of some organs but depends on the time 
when changes appear.

Table 2: Effect of elevated carbon dioxide (1%) during the early and late incubation periods of 
chicken eggs on hatching characteristics

Item Treatment group Control group

Hatched egg weight (g) 61.05 ± 3.61 60.79 ± 3.50

Chick weight at 1-day-old (g) 41.41 ± 2.89 41.28 ± 3.28

Hatchability (%) 91.38 ± 0.55 91.25 ± 1.08

Hatching time (h) 475.0 ± 3.0b 479.3 ± 3.8a

Hatch window (h) 15.27 ± 5.37b 18.06 ± 4.00a

Chicks’ quality score at 1-day-old 97.66 ± 4.34 98.27 ± 3.54

Note: Different lowercase letters in the same category of data indicate significant level differences 
(P < 0.05). Values are means ± SEM of three replicates.

There was no significant difference between the egg weights, the weight of 1-day-old 
chicks, the hatchability, and quality scores between the two groups (P > 0.05) (Table 
2). The hatching time of the treatment group was 4 h earlier (P < 0.05), and the hatch 
window of the treatment group was significantly shortened by 3 h compared with that 
of the control group (P < 0.05). Hatch window was defined as the time between the 
hatching of the first and last chicks (Careghi et al., 2005). Extension of the hatch window 
results in poor uniformity within the batch of chicks and impairs post-hatch growth 
(Willemsen et al., 2008). Our results indicate that 1% CO2 in early and late periods of 
incubation can significantly shorten hatch window. The hatch window was shortened 
by 3 h, longer than the 2.5 h from Tong et al. (2015b), who only provided high-level CO2 
in the late period. This finding indicates that CO2 supplementation in the early and 
late stages has a cumulative effect on shortening the hatch window. In addition, the 
hatching time was shorter than that of control group, rather than being postponed as 
reported in the literature (Tong et al., 2015b). One possible reason is that supplemen-
tation in two periods accelerates the formation of nutrients, leading to a shortened 
hatching time.
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Table 3: Effect of elevated carbon dioxide (1%) during the early and late incubation periods of 
chicken eggs on hormones and nutrients

Time Group
Plasma 

corticosterone 
(ng/ml)

Triiodothyroxine(T3)
(ng/ml)

Tetraiodothyronine(T4)
(ng/ml)

Hepatic 
glycogen
(ug/ml)

Crude fat 
content 
in yolk 

(mmol/L)
IP treatment 4.64 ± 0.53a 0.86 ± 0.08 52.57 ± 10.59a 5.85 ± 0.73b 12.76 ± 2.79 

control 3.93 ± 0.7b 0.79 ± 0.09 38.26 ± 9.76b 
13.54 ± 
2.54a 

12.50 ± 2.99

EP treatment 4.67 ± 1.56a 0.74 ± 0.21a 62.73 ± 23.30a 
12.75 ± 
2.14b 

11.58 ± 2.27b 

control 2.77 ±1.22b 0.44 ± 0.20b 40.41 ± 18.68b 14.84 ± 
1.73a 

15.24 ± 1.67a

H0 treatment 6.03 ± 1.99 1.05 ± 0.14 79.59 ± 14.33 
12.92 ± 
2.18b 

9.72 ± 4.77 

control 5.52 ±1.18 1.00 ± 0.13 77.24 ± 4.63 
19.45 ± 
3.98a 

13.31 ± 4.60

E21 treatment 5.37 ± 1.00 0.93 ± 0.27 77.49 ± 11.22 
14.67 ± 
2.19a 

7.47 ± 1.37b 

control 4.84 ±0.78 0.92 ± 0.08 74.28 ± 27.00 9.31 ± 5.44b 12.08 ± 3.06a

Note: Different lowercase letters in the same column for the same time indicate significant level 
difference (P < 0.05). Values are means ± SE of three replicates. Abbreviation: IP, internal pipping; EP, 
external pipping; H0, the point when the chick newly hatched at the 20th day; E21, the end of the 
21th day.

The plasma corticosterone concentration in the treatment group was significantly 
higher than that in the control group (P < 0.05) at the IP and EP. At EP, T3 levels in the 
treatment group was significantly higher than that in the control group (P < 0.05). At 
IP and EP, T4 levels were significantly higher in the treatment group than in the con-
trol group (P < 0.05) (Table 3). A high-level CO2 can activate the hypothalamus-pitui-
tary-adrenal axis, which usually starts during the preparation for incubation (Tong et 
al., 2015b; Tona et al., 2013). The plasma corticosterone concentration in the treatment 
group was significantly higher than that in the control group at IP, which may be due 
to the high-level CO2 during the first 10 d of incubation. This result can explain the 
shortening of the incubation time and the hatch window. In addition, the interaction 
between the thyroid and adrenal axes also affects the hypothalamic-pituitary axis. 
This interaction initiates and strengthens several important physiological processes 
during embryonic hatching. De Smit et al. (2008) proved that there were higher T3, T4, 
and corticosterone concentrations and a shorter hatch window in chicken embryos in 
a high-level CO2 than in a low-level CO2. This result indicates that the advancement of 
the hatching process is related to the increase in the concentrations of corticosterone, 
T3, and T4 caused by high-level CO2.

At IP, EP, and H0, the hepatic glycogen levels in control group were significantly high-
er than those in treatment group (P < 0.05). But at E21, the hepatic glycogen levels in 
treatment group were significantly higher than those in control group (P < 0.05). At 
EP and E21, the crude fat content in the yolk of the treatment group was significantly 
lower than that in the control group (P < 0.05). Long-term stimulation with high-level 
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CO2 increases the basal metabolic rate of the embryo and promotes the accumulation 
of liver glycogen (Maatjens et al., 2014a). The accumulation of liver glycogen is benefi-
cial to embryo development, which explains the higher relative weight of organs in the 
treatment group than the control group. The crude fat content of the egg yolk in the 
treatment group was lower than that of the control group. This result may be due to the 
high-level CO2 promoting the hatching process, which is accompanied by absorption of 
the egg yolk. 

Conclusions
The findings of this study indicate that elevating CO2 to 1% during the early and late 
periods of incubation (E0-E10 and IP-E21) shorten hatching time and hatch window, 
and accelerate embryonic organ development without changing chick hatchability or 
hatchling quality which may be due to the increases of corticosterone, T3, T4, and he-
patic glycogen concentrations under synergistic effect during IP-EP.
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Abstract
The Chinese poultry industry continues to use cages for growing both broiler and layer 
chickens in most commercial facilities with no plans to ban their use in the immedi-
ate future. In contrast, cages have been banned and are being phased out in Europe. 
In particular, broilers are and have been kept in large flocks on a littered floor. Both 
systems however, do have issues related to indoor environment, health and welfare. 
Various precision livestock farming (PLF) inspired systems have been developed to bet-
ter monitor and thus improve the climatic conditions for floor based poultry systems 
(RoboChick, Octopus, ChickenBoy)

For the caged housing system, a large consortium of Chinese and UK industry and aca-
demia developed a dedicated autonomous data collection platform. The data platform 
combines robot technology with advanced sensors and indoor environmental manage-
ment using real-time monitoring to maintain the best environmental and animal wel-
fare conditions, improving production yield, and providing early detection of poultry 
disease and minimal anti-biotics use. 

The prototype autonomous navigating robot was developed in the UK and fitted with 
the sensors and datalogging systems. A bespoke user interface was developed to map 
the environment the robot would be operating in and allow assignment of monitoring 
positions. The navigation systems were tested in a caged poultry facility in the UK and 
proven to be highly accurate and reliable in positioning the robot and avoiding obsta-
cles essential for autonomous operation. The jointly developed monitoring systems 
were integrated with the platforms software and bespoke cloud based databases.

Keywords: poultry, robotics, environment

Introduction
China is the world’s largest producer of eggs and a big chicken grower (FAOSTAT, 2015). 
Over the years there has been a steady shift in both the egg and poultry meat sector from 
small to medium sized local production facilities too large to very large integrated farms. 
The latter are typically owned by large often vertically integrated companies. Contrary 
to Europe, most houses in China/Asia are cage based for both poultry meat (broiler) and 
egg production. In common with most poultry houses worldwide, only a few monitoring 
devices are used for environmental control. The installation of numerous devices in the 
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multi-tier caged housing common in China, is unlikely to reflect the whole environment 
from floor level to the top tier of cages and will be unaffordable. Secondly, sub-clinical 
and clinical disease (Zhuang et al., 2014) affect animal and gut health, reducing food 
conversion and welfare and increasingly cause huge financial losses .

To improve the health and welfare of the birds and environmental conditions in caged 
facilities, an autonomous robot moving between the cages and sampling the environ-
ment at multiple levels and observing the birds could provide the necessary data (Dem-
mers, Dennis, Norman, Butler, & Clare, 2019; Dennis, Abeyesinghe, & Demmers, 2020). 
The robot collected data will give a 3D view of all parameters including temperature, 
humidity, air velocity, CO2. On-board cameras will allow visual assessment of the con-
ditions in the cages. Importantly the development of an automated version of a VOC 
sampling & sensing system will allow early detection of diseases to be possible for the 
first time. Compilation of the data gathered will not only detect diseases before symp-
toms are seen, but by cross-reference allow predictive modelling. Thus, for the first 
time the poultry farmer could potentially reduce sickness in birds, reduce the use of 
anti-biotics/treatments; improve bird welfare, production yield and rebuild consumer 
confidence in the quality of his product. 

Material and methods

Autonomous navigation platform
For the purpose of the project a prototype robot, capable of autonomous navigation 
through a caged poultry house was designed and developed by Ross Robotics Ltd, based 
on the requirements provided by the farm managers and the research team. The nav-
igation systems tested in a small scale layer facility at Harper Adams University and 
a commercial poultry farm. The robot’s navigation system consist of a LIDAR system. 
The navigation software development was based on the existing autonomous roving 
platform (Ross Robotics Ltd). The robot has a fully automated docking and recharging 
station. The sensors and cameras are mounted on a 3m high mast with flexible spacing 
and their data acquisition and control systems are integrated into the base of the robot.

Sensor systems
The environmental sensors were selected based on suitability, size and price. 3D Sonic 
anemometers (Wind Master, Gill Instruments Ltd) were used to measure air speed and 
direction; PT100 and conductivity probes for temperature and humidity (HC2 probe, 
Rotronic Ltd); electrochemical diffusion sensor for ammonia concentration (DOL53, 
Drager GmbH); Non-dispersive infrared absorption for Carbon Dioxide (CoZir-A; GSS 
Ltd); Optical sensor for the dust concentration and size fractions (OPC-N3; Alphasense 
Ltd) and a spectroradiometer for the light intensity (SM2000; Optimum Corp.). All 
sensors were powered and data logged from a purpose built data acquisition system 
based on a Raspberry Pi model 4B combined with a data acquisition processor (STM32; 
STMicroelectronics).

In addition, a camera module, based on a small form PC (X86 UP Board; UP Ltd) record-
ed images of the birds in the cages using 4 video camera (xcg-CG240C; Sony Ltd) and 
lens (FL-DD0614A-2M; Ricoh GmbH). Data collected were transferred during charging of 
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the robot to a dedicated data base prior to analysis using AI technology (outside scope 
of paper).

Figure 1: Autonomous navigating robot inside access corridor poultry facility with camera and wind 
speed sensors fitted (Ross Robotics) and or the right the CAU built platform inside a layer house in 
Beijing District, China

The collected real time data, time and location stamped by the robot during roaming 
the building are transferred wirelessly to a server (host pc) and/or transferred during 
recharging to a bespoke database (MS access) build by the Chinese Agricultural Univer-
sity (CAU) and hosted in the cloud.

Delays in the project due to the Covid19 pandemic and budget reductions imposed 
by the funding body, forced Ross Robotics to withdraw from the project. A simplified 
version of the robot was built by CAU and used for data collection, incorporating the 
original sensors, cameras and data acquisition modules.

Building sensor systems
The building at the commercial layer farm in China used for the robot trials (Beijing De-
QingYuan Agriculture Technology Co) housed 110,000 birds two floors each with 6 rows 
of cages (see figure 2). The house is tunnel ventilated with air inlets at the gable end and 
along the sides of the building (minimum ventilation) and the fans all at the opposite 
gable end. There are only a few sensors available for monitoring and controlling the 
environment located at 3 points in the building (see figure 2). All sensor are fitted in one 
plane across the building.
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Figure 2: Sensors and sensor location in the layer farm at Beijing DeqingYuan

Results and Discussion
The navigation and stability of the robot was tested in the access corridor of a commer-
cial farm (100m length) and a small caged bird research facility (25m length). The robot 
was able to navigate both environments with great accuracy (return to set waypoints, 
error within 0.025m). However, due to reflections from the walls and objects, the main 
lidar system detected “ghost” objects and the robot was unable to proceed at certain 
locations. The addition of a short range forward facing camera and changes to the soft-
ware solved this issue. The bespoke user interface worked well during training of the 
navigation system in the research facility.

The alternative robot uses a very similar navigation system, but has fixed waypoints 
based not on coordinates but on markers in the corridors between the cages. Using this 
system, data were collected from early December 2021 till the 29th of December 2021 
(interrupted for Winter Olympic Games).

The data shown in figure 3 are the temperature, humidity, carbon dioxide, ammonia 
and particulate profile for the building at the ground floor. The data for the farm sen-
sors at the time are given it table 1. 

The farm temperature sensors and robot profile match well for sensor 5 (23.8 C v 23.8 
C) but are under reading on the robot for location 1 and 2 in this instance. However, 
it is also very clear that over the length of the building the gradients for all measured 
parameters are even larger. For temperature the range is from 20.1 to 24.9 C for loca-
tions nearest the front and fans respectively. Similar gradients are observed for carbon 
dioxide (2900 – 3800 ppm) and ammonia (7.3 – 14.3 ppm). As expected the gradient is 
less for air speed (0.25 – 0.3 m.s-1).
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Figure 3: The temperature, humidity, carbon dioxide and airspeed profile as measured with robot 
at the layer farm on 20 12 2021 from 8 till 10am between rows 1-2, 2-3 and 4-5. The air speed is only 
give for the locations where the robot was stationary 

The data are currently being analysed and real time advice on the environmental con-
ditions in the houses is being provided to the farm manager on a daily basis. Ultimately, 
the aim is to understand better how to can manipulate the environmental management 
system (fans, cooling, heating) to optimise the environment in the complete building 
to maximise the welfare for all birds rather than a small section in the centre of the 
building. The robot data are essential in this process. Additionally, the camera system 
on the robot will provide detail on the behaviour of the birds as well as the number and 
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location of death birds, whereas a volatile organic component sensor capable of detect-
ing the unique “finger” print for specific poultry diseases (Coccidiosis for instance) will 
add the health status of birds in regions of the house. Taking all data together we will be 
able to create a scoring system that will be used in the end user Dashboard.

All the data will be reported to the farm manager in the form of “tickets” reporting daily 
issues and through and interactive dashboard created for the data received.

Table 1: The temperature, humidity, carbon dioxide and light measured with stationary house 
sensors at the layer farm on 20 12 2021 at 9am 

Location Temperature [C] Humidity [%] CO2 [ppm] Light [lux]

1 25.9 55.3 3580 xx

2 27.0 54.8 3125 xx

3 26.9 60.2

4 25.6 59.8

5 23.8 59.3

6 27.4 56.8

Conclusions
The developed autonomous roving data platform(s) can navigate the caged poultry 
house environment effectively and accurately collecting data from a range of environ-
mental, welfare and health sensors at known locations throughout the house.

The data will enable optimisation of the environmental conditions in the house using 
an interactive system of notifications and an end user dashboard.
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Abstract
Commercial poultry production, e.g. optimum bird growth, requires an optimally con-
trolled environment, which is currently based upon temperature, humidity, CO2 and 
air pressure, whilst water and feed consumption are also measured.

PLF systems exist to monitor (reduced) movement or change of positioning of the broil-
ers in the house, However, other parameters related to animal welfare and health such 
as feeding, drinking and movement behaviour are  still largely dependent on visual 
observations by the stockman 2-3 times a day when the flock is checked. This not only 
relies on the quality of the observations by the stockman, but also doesn’t guarantee 
fast, effective management of the flock.

Automated 24/7 visual monitoring of  broiler flocks using  Artificial Intelligence (AI) 
imaging technology to classify specific behaviours in real time might provide unbiased 
information relating to health and welfare of the flock. Small changes in behavioural 
observations might lead to early detection of disease and optimized climate control.

A current feasability project has started to test which behaviours can be identified 
using AI technology and how these quantified behaviours could be used to optimize 
health and welfare of the flock being monitored.

Keywords: poultry, broilers, artificial intelligence, behaviour, labelling

Introduction
Poultry meat consumption worldwide has increased worldwide and compared to beef 
and pork is requires less environmentally damaging inputs (FAOSTAT, 2015). In general, 
commercial poultry meat production uses large houses with tightly controlled indoor 
environments to grow broiler chickens at high stocking densities. The management 
of the birds focusses mainly on keeping environmental parameters, temperature, hu-
midity, carbon dioxide, air pressure and ammonia and production targets, e.g. water 
and feed consumption within tight margins. Automated climate control systems and 
remote monitoring services (OptiFarm) assist the farm managers with this process 
(Wathes et al., 2008).

Relatively small deviations from the optimum environmental climate cause significant 
changes to the chicken’s behaviour and wellbeing, with stress a major contributor to 
mortality and morbidity. Observations of behaviour(s) are a proven indicator of animal 
health and welfare (Abeyesinghe et al., 2021), both positive and negative. Small changes 
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in the behaviour of individual chickens and/or the flock, often reduced movement or 
a change in position within the house, can be indicative of the onset of disease or an-
other ailment (Colles et al., 2016; Dawkins et al., 2012).

Farmers have limited resources to monitor behaviour other than through the twice 
daily visual inspection of the birds. Camera based systems such as EyeNamic provide 
information on general bird activity and distribution and have been linked to welfare 
status (Peña Fernández et al., 2018) whereas the OptiFarm monitoring service uses the 
real-time camera images to check for major issues only.

Whilst it is not possible to track and identify the behaviour of all individual birds in the 
house, it might be possible to identify the behaviour of birds at a specific time point. 
A new project aims to record which set of behaviours are being displayed by which 
proportion of birds at specific times during the day and will also include current envi-
ronmental conditions.

Automated welfare monitoring using camera systems offers more to the industry than 
simple visual benefits, providing quantified data assessment of health and welfare of 
chickens. This assessment would benefit individual partners through improved perfor-
mance and thus profits. 

Material and methods
Data annotation is the process of applying labels, whether automatically or though 
manual operations, in order to generate samples of accurate results expected of 
a well-functioning AI model. These samples are known as ground truth data. Ground 
truth, or training data, encompasses the total knowledge of a machine learning model 
in a specific domain. 

The creation of training data requires the right tooling, and the right talent to use such 
tools. In most cases it involves experienced labelers applying tags, bounding boxes, or 
encircling items with polygons on a graphical user interface. Furthermore, this system 
must follow an immutable yet comprehensive taxonomical schema that allows ma-
chine learning developers to train the various types of models expected in the project. 
The system must also be accessible via a web browser, synchronize globally across 
teams, and enabling an efficient review experience for stakeholders.

To build a data set of behavioural patterns throughout a broiler growing cycle short vid-
eo clips (max 5min duration) will be taken at key moments in the growing cycle. For this 
purpose 2 GoPro7 cameras have been installed in one of the houses at a commercial 
broiler farm (64.000 birds per house) managed by Hudson & Sander (trading as Applied 
Poultry Group) and monitored by the OptiFarm service. Environmental data and issues 
and/or recommendation by OptiFarm data review experts will be recorded and stored.

The video will be cropped to a 4 m * 4 m square, which at the current stocking density 
will show approx. 250 birds at any time. For each video frame, the labellers will use the 
V7 annotation platform to perform a polygonal segmentation around each chicken, 
indicating their current behaviour with a tag. The use of polygon annotations, although 
more time consuming than bounding boxes, allows for the identification of individual 



130 Precision Livestock Farming ’22

chickens while clustered. A minimum of 400 instances of each behaviour over the du-
ration of the crop will need to be identified and labelled. A larger number of labelled 
data will improve the AI model. This will generate a dataset where each chicken is 
in a behavioural state, enabling the AI to understand the visual differences between 
behaviours. 

The specific behaviours selected for this feasibility study and deemed to provide a rea-
sonable behavioural assessment are:

 — eating
 — drinking
 — resting
 — walking
 — feather pruning
 — wing flapping
 — wing flapping and running

The wing flapping behaviour will not be seen till the birds are approximately 15 days 
old as around that time the wings are sufficiently developed and the birds start using 
them. Secondly, some of the behaviours will occur more often than others and will 
therefor require more footage to be reviewed to achieve an acceptable number of la-
belled incidents.

Although this technology to be used in this project as such is not new, the application of 
the technology is and uses the expertise of V7 in labelling and training the AI model(s).

The labellers will be provided with example behaviours generated by behavioural ex-
perts. Random samples of the labelled data will be expert reviewed. 

Results and Discussion
The initial phase of the project has started and collection of video clips is currently 
underway and labelling is due to start shortly. We intend to present the results of the 
labelling and AI model training at the conference.

Figure 1: model identified behaviour based on limited preliminary data set with drinking chickens 
(blue), feeding chickens (orange) and moving chickens (green)
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Preliminary work done before the start of the project is shown in figure 1. Here all birds 
identified by the AI model as drinking are shown in blue, those eating in orange and 
those moving in green. 

The use of the polygon annotations clearly works well in identifying each individual 
chicken. The model identified most feeding and drinking birds well, but clearly has 
issues with distinguishing moving and stationary (resting) birds. This is largely due to 
the very limited data set available for labelling and training of the model.

Conclusions
Using existing artificial intelligence technology to identify specified broiler behaviours 
is eminently feasible provided the labelling and model training is appropriate for the 
dataset.
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Abstract 
Individuals or groups exhibit a particular range of activity, which is a critical char-
acteristic of domain behavior. Rapid and accurate multi-target localization of poultry 
in small and complex cage environments is required for the study of poultry domain 
behavior and contributes to the study of social rank and welfare in poultry. Manual ob-
servation of poultry in cages has a large margin of error and is difficult to quantify. This 
study proposes a Machine Learning (ML) based method for locating poultry in small and 
complex cage environments. We collect RSSI values from target individuals using UHD-
RFID devices and then divide the cage floor area into a predetermined number of grids 
based on the required localization accuracy. We convert the tag coordinates regression 
problem to a multi-area classification problem and then use KNN, random forest (RF), 
and artificial neural networks (NN) to estimate target position. The results show that 
the NN model can make the best prediction, locating the target within a 40 cm × 40 cm 
area with 88.74% accuracy or within a 30 cm × 30 cm area with 76.81% accuracy, with 
average errors of 7.61 cm and 7.97 cm, respectively. This study presents a feasible meth-
od for localizing targets in small and complex cage culture environments.

Keywords: Poultry localization, UHF-RFID, Cage environment, Machine learning, 
Range-based 

Introduction
Individuals or groups of animals have a distinct range of activities; the activities of 
different groups frequently overlap, and they generally avoid rather than expel one 
another. Numerous studies have demonstrated a connection between domain behav-
ior and animal social hierarchies. Collias (Collias, et al., 1966) discovered that when 
multiple roosters congregated in a group, a dominance hierarchy developed among the 
roosters, and that the rooster with the highest ranking was dominant and had territo-
rial priority. McBride (McBride, et al., 1969) observed that dominant roosters retained 
a fixed territory, whereas lower ranking roosters retained only a small area adjacent 
to themselves. Odén (Odén, et al., 2004) discovered that roosters with a higher rank 
occupied significantly more cage space and dominant areas than roosters with a lower 
rank. Favati (Favati, et al., 2014) discovered that individuals in social species frequent-
ly form dominance relationships in which dominant individuals have greater access 
to resources than subordinate individuals. Additionally, male domestic fowl explored 
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new areas more quickly and maintained vigilance for a longer period of time than fe-
male domestic fowl. In broiler chickens, on the other hand, abnormal walking patterns 
are a strong indicator of decreased welfare. It is critical to understand how captive birds 
utilize their space in order to promote welfare by optimizing space quality and meeting 
the animals’ biological needs (Aydin, 2016). 

A variety of technologies are available for indoor positioning, such as Satellite-based 
systems (Obeidat, et al., 2021), Inertial Navigation systems(INS), Magnetic-based sys-
tems, Sound-based systems (Harsur and Chitra, 2017), and Radio Frequency-based 
systems(RF) (Denis, et al., 2019)g. Many of them, however, are ineffective at locating 
small animals. For example, because of building exterior walls, global positioning sys-
tem (GPS), one of the most widely used satellite-based navigation systems, becomes 
inefficient at locating indoor objects (Nirjon, et al., 2014). INS can become error-prone, 
necessitating the use of sophisticated filtering techniques such as the Kalman filter 
(Hu, et al., 2020). At low frequencies, magnetic technology is precise, but it is suscepti-
ble to conductive and ferromagnetic materials (Diaz, et al., 2019). And magnetic-based 
navigation systems typically rely on disturbances in the Earth’s magnetic field within 
enclosed environments, which occur as a result of the ferromagnetic nature of metal 
structures within buildings (Shu, et al., 2015). As IoT technology has advanced in recent 
years, radio frequency-based systems have rapidly developed and are now more suita-
ble for indoor positioning. Such as Frequency modulation technology (Popleteev, 2017), 
Wi-Fi (Bagosi and Baruch, 2011), ZigBee (Bianchi, et al., 2018), Bluetooth (Wang, et al., 
2015), Radio Frequency Identification (RFID) (Tesoriero, et al., 2010), and LoRa (Islam, et 
al., 2019).

Among these technologies, UHF-RFID technology is becoming more prevalent in agri-
cultural positioning research due to its advantages of long identification distance, high 
accuracy, rapid response time, and strong anti-interference capability. The positioning 
methods based on UHF-RFID are classified as range-based and range-free; the former 
includes distance measurement and angle measurement methods, whereas the latter 
includes fingerprinting and non-fingerprinting methods (Li, et al., 2019). On the ba-
sis of electromagnetic propagation regulation, conventional range-based methods can 
convert RSSI, time of fight, and phase information to the distance between the reader 
antenna and the target tag. And the geometry characteristic infers the position of the 
target tag. Hightower (Hightower, et al., 2000) uses an RSSI-based method, which re-
quires the establishment of at least three base stations to achieve a 3m positioning ac-
curacy. Yongtao Ma (Ma, et al., 2016) increased the accuracy to 0.769m through the use 
of POA and TOA modeling. Povalac (Povalac and Sebesta, 2011)2011 achieved an average 
absolute error of 0.14m by improving its phase-based ranging technology. 

Subsequently, methods for localization based on reference tags and fingerprinting 
have been extensively investigated, and these methods have been shown to be more 
adaptable to complex environments. Lionel Ni (Ni, et al., 2003) proposed a LANDMARC 
system based on reference tags, which involved deploying a large number of fixed-po-
sition reference tags, reading RSSI values relative to target tags, and then calculating 
target tag positions using KNN. Kyuwon Han, et al. (Han and Cho, 2010; Hu, et al., 2018; 
Khan and Antiwal, 2009; Xu, et al., 2017) improved the LANDMARC system to achieve 
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a positioning error of less than 15 cm on average. Lingfei Mo, et al. (Mo and Li, 2018; 
Zhao, et al., 2016; Zhao, et al., 2007) proposed some improved methods based on virtual 
reference tags and phase varies that improved localization accuracy to within 10 cm.

The environment, however, is extremely complex in large farms, with issues such as 
temperature and humidity fluctuations, signal masking, and target tag rotation. The 
majority of the methods discussed previously are based on sophisticated computa-
tional models and necessitate stringent experimental conditions. Not only are these 
methods computationally intensive, but they also lack real-time and robustness. As 
a result, this article proposes a machine learning-based localization method capable 
of achieving accurate localization in a complex cage environment using a relatively 
simple experimental design.

Material and methods

Data Acquisition
In this experiment, we used natural mating colony cages with dimensions of 1.2 m × 
1.2 m × 0.65 m as illustrated in Figure 1. On the cage’s ceiling, we installed four UHF-
RFID antennas with equal spacing, antenna gain of 9 DBi, horizontal and vertical beam-
widths of 90°, and all antennas facing vertically towards the floor of the cage, approxi-
mately 60 cm from the floor.

Figure 1: The experimental cage

If the antenna is mounted outside the cage, the metal material of the cage will interfere 
with the antenna signal, necessitating that the antenna be mounted inside the cage. If the 
antenna is fixed horizontally at the side or four corners, it will create a blind area of the 
signal on both sides of the antenna, resulting in data loss. Additionally, when the antenna 
is fixed horizontally, the signal will be blocked more severely by the poultry in the cage, 
creating the possibility of pecking and biting the antenna, resulting in damage to the an-
tenna. Therefore, the antenna must be fixed at the ceiling of the cage. Due to the irregular 
shape of the antenna signal radiation area, close proximity to the signal’s edge may cause 
distortion, we positioned the antennas in such a way that the effective radiation area of 
each antenna signal covers the entire cage floor to the greatest extent possible. The anten-
nas were mounted vertically downward on the ceiling of the cage as illustrated in Figure 
2, with four antennas facing the same direction and spaced 0.4 m apart.
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Figure 2: The installation of antennas

Although the RSSI values of tags collected by UHF-RFID antennas are related to the dis-
tance between the antenna and the tag, this relationship is not statistically significant 
(Parameswaran, et al., 2009). Additionally, several other factors affect the RSSI signal, 
including tag angle, object occlusion, signal distortion, and multipath effects (Wu, et al., 
2008). As a result, modeling the RSSI signal and tag distance to centimeter accuracy is 
a difficult task. However, in a cage environment, where each adult poultry occupies an 
area of approximately 900 cm2 (30 cm × 30 cm), we only need to locate each observed 
target within a similar-sized area to conduct behavioral analysis on that target. There-
fore, we converted the label coordinates regression problem to a multi-region classifi-
cation problem in order to avoid the time-consuming exact modeling process and to 
increase the robustness of the localization model. As illustrated in Figure 3, the cage 
area is divided in two ways, 30 cm × 30 cm and 40 cm × 40 cm, respectively, correspond-
ing to nine and sixteen classification problems.

Figure 3: Two ways to divide the floor of the cage

We selected fifty coordinate points distributed throughout the region and sampled 
RSSI data for three minutes at each coordinate point. RFID tags are typically attached 
horizontally to the poultry’s feet in a cage environment, and their orientation changes 
as the observed target moves, while the observed target’s body can obscure the signal. 
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To simulate the actual environment, the tag was fixed horizontally on a small rotating 
platform with a height of 3 cm and a rotation speed of 30 s/r during sampling, and an 
experimenter’s arm shield was randomly added between the antenna and the tag.

Data Preprocess and Analyse
The RSSI value obtained through sampling is between -80dB and -60dB, and the sam-
pling rate of the four antennas was between 60 and 80 samples per second, increasing 
proportionally to the RSSI strength. Then the collected data is pre-processed, the data 
sampled from each point is sliced at 1 second intervals, with the average value of RSSI 
signals received by each antenna calculated as a feature. It should be noted that too 
large tag distance or inappropriate tag angle will result in low signal strength, low sam-
pling rate, or even data loss. Therefore, for missing data, all should be set to a minimum 
of -80dB. Finally, all 1 second samples are labeled with nine and sixteen classification 
labels based on the coordinates of the sampling points, and all samples containing the 
four features are normalized as follows：

 (1)

Where the subscript i denotes samples and j denotes features, xmin refers to the mini-
mum value of the feature, xmax refers to the maximum value of the feature, and x�ij is the 
standardized variable.

A total of 7774 samples were obtained by processing all of the data in the manner 
described above. And a randomly selected subset of the data was visualized using the 
t-SNE (Van der Maaten and Hinton, 2008) method for data dimension reduction, yield-
ing 9 classification and 16 classification data distributions. 

Figure 4: Visualization of samples by t-SNE

As illustrated in Figure 4, samples from different categories are separable in both cases, 
but the degree of separability is more obvious in the 9 classification.

min

max min

ij j
ij

j j

x x
x

x x
−

=
−

  

1ˆ ˆ( , ) ( ) log ( )x i iCEloss y y y x y x
n

= − ∑  

21ˆ ˆ( , ) ( ) ( )
2 x i iMCEloss y y y x y x

n
= − −∑  



 Precision Livestock Farming ’22 137

Model Selection
For classification training, we analyzed three popular classification methods: KNN, ran-
dom forest, and artificial neural network. KNN is a supervised classification algorithm 
that is implemented using the distance between sample points in the feature space, 
and we analyze the correlation between the distribution of sample points in the origi-
nal four-dimensional feature space and the category using Euclidean distance. Random 
forest is a supervised classification algorithm based on tree models. It constructs a tree 
model by recursively creating classification planes perpendicular to the feature space’s 
coordinate axes and then trains multiple tree models to vote on classification results. 
We used the Gini coefficient as a measure of impurity. 

Because both KNN and RF divide data into its original feature space, we chose neural 
network algorithm with two distinct loss functions to train the feature extraction net-
work and perform the classification task. As a loss function for a classification problem, 
we first selected cross-entropy (CE). 

 (2)

where y for the true label, ŷ for the predict value, i for the category label, i ∈ 0,1,2,…,7 
or i ∈ 0,1,2,…,15.

While CE is the most frequently used loss function for classification problems, different 
weights should be assigned to different misclassification cases depending on the clas-
sification problem at hand. For instance, as illustrated in Figure 5(A), in a classification 
task involving a 40 cm × 40 cm grid (9 classifications), assuming the true position of the 
target is 0, the loss L2 incurred when misclassifying to 6 should be greater than the loss 
L1 incurred when misclassifying to 1.

Figure 5: Category labels when using mse

Therefore, we attempted to transform the original classification labels into the coordi-
nate pairs shown in Figure 5(B) and change the loss function to mean squared error 
(MSE) to reflect the weights associated with different misclassification cases.
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 (3)

where y for the true label,  for the predict value, i for the category label, i ∈ 0,1,2,…,7 or 
i ∈ 0,1,2,…,15.

Results

KNN and RF Models
The interval of K values in KNN was set from 1 to 50, and the interval of maximum 
depth D of random forest was from 1 to 20. We used 10-fold cross-validation to test the 
dataset and evaluate the accuracy of the classification models, and the results were 
obtained as shown in Figure 6. 

Figure 6: Training results of KNN and RF models

The results indicate that the classification accuracy of the KNN model increases rapidly 
as k increases, reaches a peak around k equal to 5, and then gradually decreases with 
a small variation interval. The KNN model’s maximum classification accuracy is 84.68% 
for the 9 classification problems. The KNN model’s maximum classification accuracy is 
73.94% for the 16 classification problem. The classification accuracy of the RF model is 
low when the maximum depth D is small, but rapidly increases as D increases. When D 
reaches approximately 7, classification accuracy reaches a saturation point, and when 
D continues to increase, classification accuracy ceases to increase. The RF model’s max-
imum classification accuracy is 85.78% for the 9 classification problems and 75.97% for 
the 16 classification problems.

Additionally, the 9 classification corresponds to a localization accuracy of 40 cm, where-
as the 16 classification corresponds to a greater accuracy of 30 cm. It’s obviously that 
models trained on both algorithms perform better on the problem of lower accuracy 
requirements.

NN Models
In comparison to KNN and RF algorithms, the NN algorithm is more capable of extract-
ing features and can map the original features to a high-dimensional space to improve 
classification performance. And the performance of a neural network model is highly de-
pendent on the model size. We choose three different neural network model structures 
of small, medium, and large size for the 9 and 16 classification problems, respectively, 
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and perform the same 10-fold cross-validation on the dataset. The activation function is 
ReLu, the initial learning rate is 1e-2, the batch size is 50, 3500 epochs are trained, Adam 
is used as the optimizer, the learning rate decay strategy is used with a decay rate of 0.1 
and a decay step of 1000, the models’ parameters and training results are listed in Table 1.

Table 1: Model parameters and training results

Classes Loss function Model structure Total params Mean Accuracy

9

CE

S 4×20×9 ReLu 289 85.73%

M 4×20×40×9 ReLu 1309 87.14%

L 4×20×40×40×9 ReLu 2949 87.31%

MSE

S 4×40×2 ReLu 282 83.62%

M 4×20×40×2 ReLu 1022 86.76%

L 4×20×40×40×2 ReLu 2662 88.74%

16

CE

S 4×20×16 ReLu 436 74.35%

M 4×20×40×16 ReLu 1596 76.63%

L 4×20×40×40×16 ReLu 3236 76.81%

MSE

S 4×40×2 ReLu 282 70.34%

M 4×20×40×2 ReLu 1022 74.29%

L 4×20×40×40×2 ReLu 2622 76.13%

As shown in Table 1, the accuracy of the 9 classification is generally greater than the 
accuracy of the 16 classification. The average accuracy of the models for the 9 classifica-
tion problem is 87.31% when the CE loss function is used and 88.74% when the MSE loss 
function is used; for the 16 classification problem, the average accuracy of the models is 
76.81% when the CE loss function is used and 76.13% when the MSE loss function is used.

Results Comparation

Figure 7: Mean prediction accuracy

First, we compared the prediction accuracy of models trained using three distinct al-
gorithms. As illustrated in Figure 7, the NN model has the highest prediction accuracy, 
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while the KNN model has the lowest. The NN model with MSE achieves the highest 
prediction accuracy of 88.74% for the 9 classification problem, and the NN model with 
CE achieves the highest prediction accuracy of 76.81% for the 16 classification problem. 
By mapping the features to a high-dimensional space learned from the data, the NN 
model can extract more useful features for completing the classification task and thus 
has a higher prediction accuracy.

Additionally, as illustrated in Figure 5, judging the model’s classification performance 
solely on the basis of prediction accuracy does not adequately reflect the weights of 
the error categories, so we weighted the best model’s prediction results to calculate the 
average error, as shown in Table 2.

Table 2: Mean distance error (cm)

Model
Class KNN RF NN+CE NN+MSE

9 9.70 9.01 7.97 7.98

16 8.70 8.43 7.61 7.72

The RF model’s predicted mean distance error is less than the KNN model’s, while the 
NN model’s predicted mean distance error is significantly less than both the KNN and 
RF models’, and the CE and MSE loss functions have no significant effect on the predic-
tion error when using the NN model.

In conclusion, the NN model outperforms all other models in terms of prediction accu-
racy and average prediction distance error.

Discussion
We propose a method for caged poultry localization based on UHF-RFID devices and ma-
chine learning algorithms in this study that avoids the complex mathematical mode-
ling required for RSSI signal strength-based localization models and instead finds the 
relationship between high-dimensional data and the position. By training the RSSI data 
with machine learning models, we can obtain accurate position prediction results with 
a robust prediction model which can locate targets to a range of 40 cm × 40 cm with an 
accuracy of 88.74% or 30 cm × 30 cm with a precision of 76.81%, with an average error of 
7.61 cm and 7.97 cm, respectively, which is useful for studying poultry domain behavior.

Additionally, we conducted exploratory research on this method. We trained Gaussi-
an Mixed Model(GMM) on the original dataset, then generated several times as much 
training data as the original dataset and used it in the classification model’s training 
process. The results indicate that for the nine classification problems using CE’s NN 
model, further training on the generated dataset improves the average prediction ac-
curacy by at least 3 percentage points and the model converges more consistently. This 
enables us to obtain more accurate prediction results with less experimental data. 

However, there are still many issues to be explored in the later work. For instance, we can 
apply this method to other caged animals or different size cages and RFID devices, and in 
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similar experimental environments, we can install the devices in the same way to collect 
a small amount of data and then use the existing model for transfer learning. For various 
experimental environments, we can experiment with varying the number of antennas 
and their configurations in order to find a configuration that achieves the highest posi-
tioning accuracy at the lowest cost of experimental equipment. We can also collect addi-
tional data from the actual production environment to create a larger data set, which will 
improve the model’s fit ability. Additionally, some effective post-processing techniques 
can be used to filter the prediction data in order to reduce prediction error.

In conclusion, there is still much work to be done, and future efforts will be directed 
toward developing more improvement methods for reducing prediction error.
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Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is an important ectoparasite that se-
verely affects hen health, welfare and productivity. This mite represents a major threat 
to the egg production industry as more than ninety percent of the European farms are 
infested, causing economic losses of over 130 million euros annually. Monitoring and 
management of PRM is very difficult in practice, as the PRM tends to hide in cracks and 
crevices in poultry houses, remaining largely unspotted. A key characteristic of PRM be-
haviour is that they become active during dark periods to feed on the hens’ blood. This 
causes hens to become irritated and display restless behaviours during dark hours. The 
aim of this study is to identify these behaviours and then capture the related change in 
behaviour through computer vision algorithms. To this end, a Gaussian Mixture Mod-
elling approach for monitoring hen activity has been developed. A two-dimensional 
heatmap was created and, in turn, used to extract a feature reflecting the restlessness. 
The current paper will present the key features of this model and progress currently 
being made towards the development of a validated monitoring tool.

Keywords: poultry red mite, animal welfare, animal restlessness, Gaussian Mixture 
Modelling, early-warning system

Introduction
The poultry red mite (PRM), Dermanyssus gallinae (De Geer, 1778), is one of the most 
prevalent and harmful haematophagous ectoparasites (Axtell & Arends, 1990) in the 
laying hen industry worldwide (Sparagano, 2020). Next to an estimated annual 130 mil-
lion euros of economic costs in the EU associated to control and production losses, PRM 
also poses a serious threat to animal health and welfare (Sparagano et al., 2014; Spara-
gano, 2020). D. gallinae hides in cracks and crevices near the hen’s nightly resting place 
and leave their shelter every 2 – 4 days during dark hours to take a 30 – 90 minute blood 
meal (Maurer et al., 1988; Decru et al., 2020; Pritchard et al., 2015). PRM can survive up to 
8 months in the absence of poultry, and thus can infest newly arriving flocks in laying 
units. In favorable environmental conditions, the reproduction cycle can be completed 
within 7 days (Pritchard et al., 2015; Chauve, 1998). As such, D. gallinae populations can 
grow to very high numbers in a very short time period when no suitable control meas-
ures are taken (Sleeckx et al., 2019; Sparagano et al., 2014). Significant advances in PRM 
control are most likely to come through integrated pest management (IPM) strategies. 
Effective IPM programs (Barzman et al., 2015) ideally go hand in hand with accurate 
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monitoring of the growth and decline of the pest population. Being able to monitor and 
treat the PRM infestations at an early stage can prevent an increase of mite population 
and significantly reduce the negative effects imposed by the PRM (Mul et al., 2009). De-
cru et al. (2020) reports that more than twenty different types of traps for monitoring 
mites are available, such as the quantitative corrugated cardboard trap (Nordenfors et 
al., 1999), the qualitative tube trap with a wooden stick (Rick Stick) or cardboard (AviVet) 
(Van Emous & Ten Napel, 2007; Lammers et al., 2017) and the qualitative Mite Monitor-
ing Score (MMS) method (Cox et al., 2009). The MMS and Rick Stick methods consist of 
a subjective, visual assessment of PRM presence at a specific location and are scored 
between 0 – 5 and 0 – 4, respectively. Most of the existing traditional mite monitoring 
methods however are very labor intensive, time consuming and are only indicative for 
the population growth of the PRM. Depending on the number of traps and their loca-
tion, these monitoring methods are prone to underestimate the infestation levels (Mul 
et al., 2015).

To overcome the monitoring limitations mentioned above, this study focused on the 
use of 2D infrared cameras to monitor the night time activity of birds affected by the 
PRM populations. Therefore, the main objective of this study was to develop a cam-
era-based early-warning system for PRM outbreaks by quantifying nightly restlessness 
of group-housed hens. To our knowledge, no automated monitoring tool exists that can 
alert farmers or animal caretakers about increasing PRM populations at an early stage. 
Therefore, we developed a Gaussian Mixture Modelling (GMM) (Zivkovic & Van der Hei-
jden, 2006) approach to monitor night time hen activity as this allows for a high level 
of interpretability of the model and produced outputs. We deemed the latter to be of 
importance in order to incentivize farmers to use sensor technologies on-farm.

Materials and methods

Camera monitoring during IPM trial
A semi-commercial aviary compartment consisting of two separate pens and housing 
960 Dekalb White hens per pen, was selected for the implementation of an IPM trial 
during the whole laying cycle. Hens were 17 weeks of age at arrival on 23rd of June 
2020. The hens were naturally infested with PRM in 2020 and 2021. Regarding the IPM 
strategy, it was decided to use plant-based means, silica-based acaricides or both in 
order to prevent and control mite population growth during the laying cycle. Whenever 
the growth exceeded a predefined threshold reflecting a high infestation level, a sili-
ca-spray treatment over the full compartment was carried out. The room temperature 
and relative humidity was kept between 20.0 – 21.2 degrees Celsius and 55 – 68 %, re-
spectively. The dark period was set between 18h00 and 03h00.

A general overview of the monitoring strategy, consisting of six steps, is provided 
in Figure 1. In a first step, the mite population growth in the two pens is monitored 
throughout the laying cycle using ten predefined monitoring locations. As such, a cor-
rugated cardboard trap (Nordenfors et al., 1999), a MMS assessment (Cox et al., 2009) and 
a Rick Stick (Van Emous & Ten Napel, 2007) were used as a reference method to monitor 
the mite population growth at each of the ten monitoring locations. Cardboard traps 
were collected, analyzed, emptied and reinstalled every 2 weeks. The analysis of the 
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traps consisted of freezing the cardboard in order to kill the mites, followed by counting 
the number of PRM under a microscope. MMS and Rick Stick scorings were performed 
weekly by trained observers. In a second step, and simultaneously with step one, night 
time recordings of the birds using 2D infrared cameras are continuously collected. In 
a third and fourth step, video data is stored for future analysis. The last two steps are 
explained in more detail in sections below.

Figure 1: General overview of monitoring strategy

Data collection and video data
Hens were monitored during the dark hours between 20h00, 2 hours after dusk, and 
01h00, 2 hours before dawn, using two top view 2D infrared cameras (Dahua DH-
SD1A203T-GN) installed 2.1 m above the aviary system in one of the pens (Figure 2). 
Video data was recorded at five frames per second with a width and height of 960 and 
480 pixels respectively. 

The third week of December 2020, approximately 6 months after the hens’ arrival, is 
hereinafter referred to as monitoring week 0. The total number of monitoring weeks 
was 25 for this particular data set. The first analyses were performed on video data re-
corded between week 10 and week 23. The camera system was set up to record continu-
ously, although for specific dates it was decided not to record due to data management 
decisions. In addition, recording failures or blockage of the camera view have also led 
to occasional loss of video data. In week 5 and 6 of monitoring, a silica-based acaricide 
was used to extensively treat the aviary (both pens) for PRM. In week 11 of monitoring, 
a localized silica treatment was carried out in the aviary in order to kill remaining ag-
gregates of mites.

Quantifying restlessness with developed Heatmap algorithm
Commonly, laying hens use a decreasing light intensity as a cue for night roost-
ing. A short dusk period before the continuous dark period allows them to settle at 
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a sleeping spot for the night without injuries. Since hens have poor night vision in 
environments with a low light intensity (Kristensen, 2008), they generally will not dis-
place themselves during dark hours and therefore they will spend the night at a fixed 
location. As such, any performed behaviours of a particular hen will be expressed in 
the vicinity of this fixed sleeping spot. We define increased nightly restlessness as an 
increase in frequency of hens making a transition from an inactive state (sleeping, doz-
ing) towards an active state (any behavior). In turn, from a camera point of view, when 
a particular hen shows an increase in frequency of transitions from inactive to active 
during the night, the same pixels will be activated repeatedly. The Heatmap algorithm 
is therefore developed to quantify the frequency of pixel activations during dark hours. 

Figure 2: Video data for two top view cameras

In a first step, a GMM-based algorithm for background subtraction was applied to 
the video data to detect Movement Pixels (MP) in every subsequent frame (Zivkovic 
& Van der Heijden, 2006), thereby outputting a corresponding binary GMM-frame. 
A MP is defined as a pixel that showed a statistically significant change in intensity 
value over a predefined time period. In a second step, all binary GMM-frames within 
a specified time interval are summed to create a final heatmap (Figure 3). From the 
heatmap, a color histogram is calculated and features resembling activity are extracted 
from the distribution. Using these features, the Heatmap algorithm outputs an Activ-
ity Score between 0 and 100 and an associated 5-point Activity Level every night of 
monitoring (Activity Score between 0 and 20 = ‘very low’ Activity Level; 21 – 40 = ‘low’; 
41 – 60 = ‘medium’; 61 – 80 = ‘high’; 81 – 100 = ‘very high’). Figure 4 shows an example of 
a color histogram and the calculated Activity Score and Activity Level.

Figure 3: Heatmap for one night of monitoring (20h00 – 01h00)
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Figure 4: Color histogram of heatmap in Figure 3. Every night of monitoring a corresponding Activity 
Score and Activity Level (top right corner) is calculated using features extracted from the distribution

Results and discussion
Figure 5a reports mean Activity Scores across the two cameras, while Figure 5b displays 
the associated 5-point Activity Levels that were derived from the Activity Scores.

Figure 5a shows the nightly – and 7-nightly mean Activity Score on the primary y-axis 
and the mean cardboard mite count over the two pens on the secondary y-axis. The 
7-nightly values represent a mean across the last 7 days where videos were available or 
analyzed (gaps in video data not taken into account to calculate a 7-nightly mean). The 
vertical lines pinpoint the events of silica treatment. In order to calculate the correla-
tion between the 7-nightly mean Activity Score and the mite counts, we used all data 
points of the 7-nightly mean Activity Score (eight in total) and the data points of the 
mite counts for week 10 until week 24 (eight in total). A Spearman’s Rank correlation 
coefficient of 0.76 was found.

Figure 5b shows the 7-nightly Activity Level on the primary y-axis and the mean card-
board mite count over the two pens on the secondary y-axis. The vertical lines pinpoint 
the events of silica treatment. The correlation between the 7-nightly Activity Level and 
mite counts was calculated giving a Spearman’s Rank correlation coefficient of 0.92.

Figure 5a and 5b show the post-treatment onset of increasing mite population growth 
at week 16. Between week 18 and 20, the mean cardboard count increased fivefold. 
A critical period in mite proliferation is therefore found to be between week 16 and 18. 
From Figure 5b one can see a steady Activity Level of 2 (‘low’) when the mean cardboard 
mite count is at its lowest levels. A transition to 3 (‘medium’) between week 16 and 17 
shows the potential of the developed algorithm to detect the increase in mite prolifer-
ation at a critical point and at an early stage (compared to cardboard monitoring). At 
the peak of the mean cardboard mite count, the Activity Level has shifted to 4 (‘high’).
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Figure 5a: Mean Activity Score and mean PRM count

Figure 5b: 7-nightly Activity Level and mean PRM count

Conclusions
Restlessness of group-housed hens can be quantified and monitored over time using 
the developed algorithm. A strong correlation between the 7-nightly mean Activity 
Score or – Activity Level and the mean cardboard mite count suggest that quantifying 
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restlessness can be used for the detection of PRM outbreaks. Moreover, the developed 
algorithm shows potential to monitor the increase in mite proliferation continuously 
and detect the outbreak at an early stage in an automated manner without the need 
for manual monitoring efforts. Future work includes enhancing the robustness of the 
algorithm by normalizing to the total number of hens in the FOV, by improving preproc-
essing steps and by optimizing hardware (e.g. camera positioning, camera count per 
area). In addition, future analyses performed at different farms will aid in the process 
of generalizing the algorithm. 
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Abstract
Chicken is one of the most consumed proteins in the world. In order to efficiently supply 
this demand, the rearing system has been intensified and a modern broiler facility holds 
approximately 20,000 birds with a single caretaker walks the building to assess birds dai-
ly.  Remote monitoring tools, such as depth cameras, can provide continuous monitoring 
to improve animal caretaking and provide accurate information for body development 
of the broilers. This research aims to automatically obtain the bodyweight of broilers 
through approximating the body dimensions using depth image. The Azure® Kinect 
depth sensor was used for image collection at top view position above the weighing scale 
and 10 images were collected from individual broiler. Data analysis and subsequent pre-
diction of body dimensions were performed using an algorithm developed by MATLAB® 
(R2018a) to estimate the broiler’s body weight. The dimensions (minimum and maximum 
height of standing and sitting birds, head to tail length and width between wings), body 
volume, and area and animal position were correlated with the measured weight using 
a multilinear regression algorithm. Data was collected using 80 broilers (Cobb) from 8 
days old to 34 days old.  Preliminary results indicate that the broiler’s body weight can be 
estimated from their body dimensions, volumes, and area using a multilinear regression 
model (R2 = 0.96). The results indicate that this model can be used as a tool to effectively 
and practically estimate the body weight of the broiler during production phase. 

Keywords: depth sensor, image processing, broiler chickens’ weight

Introduction
In 1968, ASABE (American Society of Agricultural and Biological Engineers) published 
curves of body dimensions of production animals (dairy cattle, beef cattle, swine, and 
chicken), which were used by manufacturers of livestock and poultry equipment to 
ensure the equipment (feeders, scale, drinkers) are at a proper size or height for the 
animals or birds of a given age. However, with genetic and nutritional improvement, 
the standard size of production animals has changed in the last 50 years, making it 
necessary to update these growth curves. 

It is important to emphasize the need to delimit the body dimensions of birds so that the 
drinking, feeder, and aviary facilities follow the correct dimensions of the animals so that 
there is no stress due to overcrowding of birds in the shed and discomfort when feeding 
or increase in fights for food, thus harming the animal welfare of these birds. Another 
factor that directly interferes with the measurement of bird size is the determination of 
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mass gain. Several authors have used body dimensions of production animals to deter-
mine body mass (Condotta et al, 2018; Ajayi, Ejiofor and Ironkwe, 2007; Assan, 2013).

The use of depth image can be applied as a tool for measuring body size. Depth image 
is a two-dimensional map in which each pixel stores distance values from the sen-
sor to the objects present in the scene (Hoshelham and Elberink, 2012). Condotta et al 
(2018), used the Kinect v.1 sensor to obtain the body mass of finishing pigs by obtaining 
the animal’s body dimensions. For chickens, the use of depth technology for weight 
prediction is still scarce, in which few studies have been developed (Lin et al., 2017; 
Mortensen, Lisouski and Ahrendt, 2016), with this tool being more applied in other ani-
mals such as cattle. and pigs (Yu, Lee and Morota, 2021; Alvarez et al., 2018; Condotta et 
al., 2018; Hansen et al., 2018; Pezzuolo et al., 2018; Martins et al., 2020).

Mortensen, Lisouski and Ahrendt (2016) used the Kinect v.2 sensor to predict the body 
mass of broilers, through depth image, whose error was 7.8%. Lin et al (2017) used depth 
image in a neural network model to estimate chicken weight, the authors obtained a root 
mean square error (RMSE) equal to 0.048 kg and a relative mean error equal to 3.3%.

As depth-sensing technology improves, there is a need to reassess the cameras for live-
stock management.  Thus, the present study aimed to estimate the weight of broilers 
through body dimensions obtained from depth images, in a non-invasive and stressful 
way, using the Azure® Kinect sensor.

Material and methods

Experimental data
Images of 80 birds of Cobb broilers were collected weekly from 8 to 34 days of age. The 
animals were allocated to the Climatic Chamber of the Department of Biosystem Engi-
neering – NUPEA of the “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, 
located in Piracicaba/SP. The animals had free access to feed and water as performed 
on a commercial farm. 

Data collection and processing 

Figure 1: Scheme of the corporeal dimensions that were be collected in this study. Length of bird 
from head to tail and width of breast and minimum and maximum height of bird

Depth and digital color (RGB) images were collected of the animals using a Microsoft 
Azure® Kinect sensor, in the top-view position of the birds, at a height of 80 centime-
tres. Each bird obtained the dimensions recorded while standing and sitting since it 
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causes a change in the body dimension when the animal sits. The minimum and maxi-
mum height, chicken width, length, area, and volume were extracted. To estimate body 
mass, dimensions, volume, and body area were combined using a multilinear regres-
sion (correlating manually collected weight with body dimensions). The dimensions 
obtained from each animal are represented in Figure 1.

For the processing and analysis of the collected images, an algorithm in the mathemat-
ical software MATLAB® (R2018a) was developed, thus selecting the region of interest of 
the image (animal), for later acquisition of the dimensions of the birds. The following 
steps were followed:

1) Import of depth image, using the ‘imread’ function;
2) Conversion of the distances from the sensor to the animal into animal heights, 

by subtracting the distance from the sensor to the surface where the animal is 
(scale) and the distance between the sensor and the animal. Making pixels out-
side this limit are equal to zero, using a logical ‘if/else’ test;

3) In order to eliminate possible noise around the animal, the nearby pixels were 
turned to zero. Then, a binary mask was applied over the original image in order 
to select the region of interest (animal).;

4) Dimensions (minimum and maximum height of birds standing and sitting, 
length from head to tail and width between wings), body volume and area were 
extracted in an Excel spreadsheet to correlate these data with manually meas-
ured weight using multilinear regression y = a+ b1x1 + b2x2 + bnxn. 

The minimum and maximum heights of birds standing and sitting, length from head 
to tail, and width between wings (in px) were adjusted using eq. 1; to obtain the dimen-
sions in cm.

 (1)

Where:
Lcm = length, in centimeters;
Lpx = length, in pixels;
Z = distance between sensor and object, in meters.
Furthermore, the dorsal area (in px) and projected body volume (in px.cm) were adjust-
ed, using eq. 2 and eq. 3 to obtain the values in cm² and cm³, respectively.

 (2)

Where:
Scm = area, in square centimeters;
Spx = area, in pixels;
Z = distance between sensor and object, in meters.

 (3)

Where:
Vcm³ = volume, in cubic centimeters;
Vpx cm = volume, in pixels centimeters;
Z = distance between sensor and object, in meters.
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Results and Discussion

Broiler chickens’ dimensions 
The body dimensions obtained from the top-view of the animals are shown in the 
Figures below, separated into sitting and standing animals. Such measurements were 
correlated with the animals’ body weight since these dimensions extracted from depth 
images of the animal’s superior view can be used as a way of obtaining body weight, 
as previously performed with growing pigs (Condotta et al., 2018).  Figure 2 shows the 
minimum and maximum heights of the birds (in cm) when they were setting and width 
between wings (cm) and length head to tail (cm). 

Figure 2: Broiler dimensions as captured using a Azure® Kinect camera from the age of 8 days to 
34 days. a. Maximum height (cm), b. Minimum height (cm), c. width between wings (body width) in 
cm, and d. length from head to tail (cm) 

The area (cm²) and body volume in setting position (cm³) are represented in Figure 3. 

Figure 3: a. Body area (cm²), and b. body volume (cm³) as capture using a Azure® Kinect  camera 
from the age of 8 days to 34 days

a.

d.c.

b.

a. b.
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The minimum and maximum heights of birds in the standing posture and width be-
tween wings (cm) and length head to tail (cm) are shown in Figure 4. 

Figure 4: Broiler dimensions as captured using an Azure® Kinect camera from the age of 8 days to 
34 days. a. Maximum height (cm), b. Minimum height (cm), c. width between wings (body width) in 
cm, and d. length from head to tail (cm) 

The area (cm²) and body volume (cm³), in standing position, are represented in Figure 5.

Figure 5: a. Body area (cm²), and b. body volume (cm³) as capture using a Azure® Kinect camera from 
the age of 8 days to 34 days  

Uses the protocol as described, the dimensions and volumes were automatically deter-
mined without the prior knowledge of the bird size, or without manually selected the 
birds in the image.  Thus, making it possible to automate the acquisition of biometric 
data from chickens at in order to obtain parameters such as growth curve over time 
and body weight.  Condotta et al. (2018), also demonstrated the ability to select ani-
mals automatically and predict weight, in this paper, the target species was grow-finish 
swine.

a.

d.c.

b.

a. b.
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Broiler chickens’ weight 
The multilinear regression presented an R² of 0.9629, which means that 96.29% of the 
variability in the weight of the animals is explained by the body dimensions obtained 
through the depth image collected with the Azure® Kinect sensor (Figure 6). This is 
an adequate R² value, although lower than that observed by Amraei, Mehdizadeh and 
Salari (2017) (R² of 0.98) and Mollah et al. (2010) with R² of 0.99. 

Figure 6: The relationship between actual broiler weight and the predicted broiler weight as obtained 
using images captured with the Kinect Azure depth camera and an algorithm developed in MATLAB

The model of predicted weight using body dimensions (minimum and maximum 
height of birds, length from head to tail and width between wings, body volume, area, 
and sitting or standing position) had a mean error of 3.78% or 35.81grams, a result sim-
ilar to that found by Amraei et al (2017), whose smallest errors were around 50 grams, 
and smaller than the percentage error obtained by Mortensen, Lisouski and Ahrendt 
(7.8%). When looking at the average errors for weight ranges of 200 grams, animals be-
tween 700g and 900g had the highest average error (6.30% or 48.43 grams), while birds 
between 1700g and 1900g had the lowest average error (1.21% or 22.69 grams) (Figure 7).

Figure 7: Mean Absolute Percentage Error (MAPE %) in predicted broiler body weight in the 200g ranges
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According to the results obtained, it can be concluded that the method developed for 
weighing broilers using depth image processing showed satisfactory results. The R² 
obtained was lower than that found by other authors. However, the average error ob-
tained was close to the average errors found by other authors. 

Conclusions
It was possible to obtain the body dimensions of broilers through depth images. The 
Azure Kinect® sensor has the potential to automatically obtain the body dimensions 
of broilers, making it possible to apply it in the development of an image weighing sys-
tem. In addition, It was possible to obtain the weight of broilers from the body dimen-
sions acquired through depth images. There is a limitation about the maximum camera 
height because the animals are small, at higher heights the sensor resolution will make 
it difficult to accurately detect the birds, restricting the installation of the camera above 
the bedding floor, one way to try to get around this problem would be to install cameras 
near the feeder regions, regions where the animals are more concentrated throughout 
the day. A second alternative would be the development of a mechanism that moves 
the camera along the aviary, at the maximum height that can detect the birds, to obtain 
the weight during the day, being possible to adjust the height of the cameras according 
to the growth of the animals.  The proposed method showed the possibility of being 
automated, especially when there is an increase in R² and a reduction in the average 
error of the proposed model by adopting other techniques such as machine learning. 
With this method, it will be possible for the producer to monitor and access the weight 
data of a large number of animals from a distance in order to promote a more signifi-
cant control of the herd and weight gain. In addition to promoting animal welfare, as it 
is non-invasive and stressful for birds. 
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Abstract
Digital technologies from milking and feeding robots to animal-attached accelerome-
ters and others are increasingly used on dairy farms worldwide. A wide range of data 
and information about the health, behaviour and performance of cows is captured 
and processed by using algorithms and artificial intelligence. By gathering this addi-
tional information, an improved management of individual cows and herds should be 
achieved. 

In this study, we used an online survey to obtain information about the perceptions 
and the acceptance of students of veterinary and agricultural (livestock) sciences about 
the use of sensor technologies on dairy farms. Students from universities of agricultur-
al sciences (n=8) and veterinary medicine (n=6) took part in the survey. 

The survey included i) demographic data, ii) questions about the participants’ percep-
tion of today’s dairy farming, iii) participants’ opinion about sensor technologies in 
everyday life and in dairy farming, iv) associations based on the effects of images v) 
visions and expectations of dairy farming in the future. Finally, the participants were 
asked whether they felt well prepared for the digital transformation in dairy farming 
by their universities. 

Keywords: survey, students, digital technologies, dairy farming

Introduction
Technology and digitalisation determine our professional and private everyday life. 
Digital technologies are also increasingly being used in dairy farming. Sensors and oth-
er technologies can capture a wide range of information on animal health, behaviour 
and performance and can help to improve the management of dairy cows, for example. 
Therefore, these technologies can contribute to an improved animal health and welfare 
and change the way farmers work.

Digital technologies in dairy farming are increasingly coming into the focus of a broad-
er public, often in context of animal welfare, climate change, environmental and con-
sumer concerns about food production, as described in a survey on social acceptance 
of digital livestock farming technologies conducted by Pfeiffer et al. (2019). The here 
presented survey is intended to gain insights into the next generation of farmers and 
veterinarians and their opinion and acceptance towards sensor technologies in dairy 
farming. This manuscript presents some of the results of this survey. 
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Material and methods

Study design
The questionnaire was created using SurveyMonkey (American polling company, San 
Mateo, USA). It consisted of 23 closed or open questions. The survey comprised six 
areas of interest, including i) demographic data, ii) questions about the participants’ 
perception of today’s dairy farming, iii) participants’ opinion of sensor technologies in 
everyday life and in dairy farming, iv) associations based on the effects of images, v) 
visions and expectations of dairy farming in the future, vi) preparation for the digital 
transformation in dairy farming by their universities. 

The results presented in this paper refer to areas i), ii), and iii). Area i) consisted of five 
questions and included gender, course of study, place of study, current semester, and 
the region of origin where the participants came from. All questions except the ques-
tion of current semester (open question) were designed as multiple-choice questions.

In area ii) we asked about the students’ relationship to today’s dairy farming. The given 
answer options (multiple answers allowed) were ‘dairy farming in the family and/or 
among friends’, ‘I come from the countryside’, ‘farm holiday or similar activities’ and 
‘no reference’. Furthermore, the students were asked to give a self-assessment on their 
knowledge of today’s dairy farming. Response options in this multiple-choice question 
were ‘very good’, ‘good’, ‘moderate’, ‘bad’ and ‘no answer’.

Area iii) included three questions, a) the participants’ view on some everyday tech-
nologies (smartwatch, fitness wristband, voice assistants and smart-home systems), 
b) the participants opinion about cows equipped with sensors (described as similar to 
fitness trackers) with five answer options (question type multiple choice), and c) four 
statements about sensor technology that were rated on a Likert scale. 

The administration or the student body of all veterinary universities in Germany, Aus-
tria and Switzerland were contacted, as well as several agricultural science faculties in 
these three countries. They were asked to forward the link to the survey and a covering 
letter by email to their students. The survey was open for response for six weeks from 
November to December 2021. During this time, two reminders were sent in order to 
increase the number of participants in the survey. 

Data pre-processing
The answered questionnaires were exported from the survey software in csv format 
into the software Excel (MS Excel 2016, Microsoft Cooperation, Redmond, USA). The 
answers were available in coded form for the closed questions. All questionnaires were 
checked for errors and plausibility, further answers were coded. Questionnaires that 
did not contain any answered questions were excluded. In order to be included in the 
evaluation, at least the questions from area i) had to be answered. For questionnaires 
returned from the same IP address, the first questionnaire from this IP address was 
included in the evaluation and other questionnaires were excluded. Although it is pos-
sible that more than one questionnaire was sent from a fixed station computer at the 
university by different students, it could not be ruled out that the same participant sent 
the questionnaire more than once.
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Statistical analysis
Statistical analysis was carried out with SPSS (version 27, IBM Corporation, Armonk, 
NY). For the descriptive analysis shown in this manuscript, data were available in nom-
inal and ordinal scales. Frequencies were calculated and cross-tables were created.

Results and Discussion
A total of 497 questionnaires were recorded on SurveyMonkey. After excluding 68 ques-
tionnaires according to the predefined criteria, 429 questionnaires were used for the 
analysis. Of these, 296 participants indicated that they were studying veterinary med-
icine (69 % of the participants) and 133 agricultural sciences (31 % of the participants). 
Most students of veterinary medicine came from the University of Giessen, Germany, 
and most students of agricultural sciences from the University of Applied Sciences 
Triesdorf, Germany.

Knowledge and relationship in today’s dairy farming
The self-assessment on the students’ knowledge about today’s dairy farming revealed 
that almost half of the participants (42.9 %) rated their level of knowledge as “good”, 
16.4 % as “very good” and 35.8 % as moderate. This can be explained by the personnel 
experience of the students. Among students of agricultural sciences, 70.7 % had a re-
lation to dairy farming through their families and/or friends, and among students of 
veterinary medicine it was a little more than one third (36.1 %, Figure 1). 

Figure 1: Relation of veterinary or agricultural students to dairy farming. Multiple answers were 
allowed. The absolute number of participants is shown by bar

Cows equipped with sensor technologies
Participants were asked about their opinion on cows equipped with sensors (described 
as similar to fitness trackers). The results are shown in table 1. Fitness trackers were 
only refused by a total of eleven participants. The benefit of fitness trackers in terms of 
animal health was well accepted by 192 participants (45 %). Another 222 participants 
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(51.7 %) liked fitness trackers and saw the benefit of fitness trackers for animals and 
people working on farms.

Table 1: Acceptance of sensors used on cows, described as similar to fitness trackers 

Discipline
Answers on the use of ‘Fitness tracker on cows’ [n (%)]

‘I like it’ ‘Acceptable’ ‘I do not like 
it’

‘Not 
necessary’ Not specified

Veterinary 
medicine 130 (43.9) 157 (53.0) 0 5 (1.7) 4 (1.4)

Agricultural 
sciences 92 (69.2) 35 (26.1) 1 (0.8) 5 (3.8) 0

Total 222 (51.7) 192 (44.8) 1 (0.2) 10 (2.3) 4 (0.9)

Loss of the bond between farmer and cow
We asked students to comment the statement ‘I can imagine that with the use of a lot 
of technology the bond between farmer and cow gets lost’. Almost half of the partici-
pants (47.5 %) agreed that the statement applies and about 10 % strongly agreed. One 
third answered that the statement applies less and only about 10 % answered that it 
does not apply at all. There was no significant difference between students of veteri-
nary medicine and agricultural sciences. 

According to the above-described relation of students to dairy farms, it can be assumed 
that the participants have already had contact with sensor technologies and were fa-
miliar with the potential of these technologies. According to a representative Bitcom 
study (Rohleder et al., 2020), 82 % of farms in Germany were already using digital tech-
nologies or applications in 2020, and a further 10 % are planning or discussing to do so. 
Milking robots are already used by 21 % of dairy farms.

Although the age of the students was not the subject of the survey, it can be assumed 
that the majority of the students belong to the ‘smartphone generation’, who have 
grown up with digital technologies and these are an integral part of their everyday life.

There were only minor differences with regard to the distribution of responses to the 
two positive statements between veterinary medicine students and agricultural sci-
ence students (table 1). In follow-up studies, it would be necessary to examine the 
extent to which those participants, who indicated a loss of relationships due to sensor 
technologies, assume that sensor technologies have an impact on farm design and 
structure. A possible correlation could be that sensor technologies are associated with 
a larger farm size and therefore a poorer farmer-to-animal ratio. 

Conclusions
Improving animal health is important for students and should be the aim of developers 
and manufactures of new technologies.

Digital technologies should have a permanent place in veterinary and agricultural cur-
ricula to prepare students for the current changes in dairy farming and, beyond that, 
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for their future careers. Overall, our survey showed that students of veterinary medi-
cine and agricultural sciences have a positive attitude towards the use of sensor tech-
nologies in dairy farming.
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Abstract
The spread of precision livestock farming (PLF) services in the agricultural professional 
field requires more training. This training involves knowledge and skills on the use and 
the functioning of sensors and data analysis. This is crucial for future consultant or 
researcher in agriculture. However, some students may be reluctant to this learning. To 
improve the attractiveness of PLF teaching, we developed “Serious Escape Games” (SEG) 
that combine the teaching of knowledge and skills with the playful characteristics of an 
escape game. The developed SEG use the examples of 3D-imaging and accelerometers 
applications in dairy cows, and a few in sows. The games run under R software, which 
is free of use and largely taught in universities for data analysis and visualisation. With 
a total duration of 2 hours, the SEG sequences include 15 min of introduction, 60 min of 
playing to solve 10 enigmas about PLF and data analysis, and 45 min of debriefing. The 
students have to mobilize their prior knowledge in R, data analysis and animal science, 
as well as their collaborative soft-skill to “escape” the game on time. The SEG teaches 
new skills and knowledge that are specific to PLF: new R procedures, animal indicators, 
field applications of 3D-imaging and accelerometers, and the process to develop and 
validate sensors. They were developed in French, but the development of a framework 
for SEG in English or other languages is under consideration. This will allow a wide 
free distribution, as well as applications of this concept to other fields and graduation 
levels. 

Keywords: PLF, serious game, R software

Introduction
The spread of precision livestock farming (PLF) services and tools in the agricultural 
professional field creates new tasks which also require new skills. The skills needed 
and the level of expertise will vary upon the position: the provider of PLF tools needs 
the highest level of digital skills, the consultants and salesmen need enough skills to 
understand the PLF tools and applications, and the farmers need enough skills to use 
them. In addition, the use of artificial intelligence in PLF tools is increasing more and 
more, and helps to rapidly transform the raw data signal from the sensors into infor-
mation that is usefull and comprehensive for companies and farmers.

Students, as future actors of the livestock value chain, need to reach a minimal (basic) 
level in PLF. Further knowledge and/or development will have to be taken over when 
students are entering the professional life. As PLF tools and solutions are continuously 
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changing, the “at minima” required digital skills are hard to define precisely. Data sci-
ence is already part of most academic teaching programs in agriculture. Serão et al. 
(2021) indicated that students agreed that “traditional” statistics topics (basic concept 
of experimental design, classical linear model, analysis on traits with normal distribu-
tion) are already well taught but the methods that are increasingly used in big data and 
PLF (Machine learning, Generalized models for example) analyses are rarely discussed. 
Besides data science knowledge, students must be able to manage big and complex da-
tasets. Basic coding and data management are therefore requested to work within the 
field of PLF. Different software and programming languages allow to manipulate com-
plex data and to perform visualization or analysis, as R or SAS software. But Grosjean 
& Engels (2021) noted that R language and Rstudio software are perceived by biology 
students as badly or mildly usable tools. Those students claim that an intensive train-
ing is needed before using them. Negative emotions such as “fear” or “repulsion” are 
reported when first using these softwares (Grosjean & Engels, 2021), which resulted in 
a significant decrease of interest in the learning process.

To overcome this reluctance to data science, education must be progressive and must 
include more experiential training, like collective or individual data science projects. 
Gamification is another possibility that is largely used to engage learners in the learn-
ing of data sciences (Legaki et al., 2020). Gamification is a popular leverage to engage 
learners in experiential learning applying game codes and mechanisms. Gamification 
is also spreading largely in the agricultural education. For example, the GAMAE (games 
for agriculture, alimentation & environment) platform identified 105 games in France, 
which aim to be used in training and education, therefore called serious game, in the 
agricultural sector (Dernat et al., 2021).

The aim of this project was then to use the gamification leverage to teach PLF and R 
programming by codesigning serious games, based on the escape game concept, which 
relies on solving one or several enigmas within a limited time (1h). This paper presents 
the methodology of conception, the two Serious Escape Games (SEGs) created and the 
first feedback from users.

Material and methods

Context behind the SEGs development.
This study was conducted within a course of training for Master 2 students in animal 
science about precision livestock farming (PLF). The course addresses both animal sci-
ence and science relative to new technologies and data science. Until 2020, this course 
gathered lecture course, farm and PLF company visits, hands-on session and debates. 
Two of the hands-on activities were performed for 5 years using Excel software to an-
alyse accelerometer data and 3D imaging data. It was then proposed to update these 
hands-on activities and to involve more students by making them actor of the activity. 
Moreover, the objective was also to improve their skills on R software for data visualis-
ation and analysis. 

In the updated hands-on activities; the objective was to find a ludic way to teach R or 
data science. Serious games appeared as a possible solution, since the student learns 
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while he is playing. As duration of each of the two hands-on activity was limited, we 
also chose the escape game option. Indeed, an escape game is a game which involves 
a team of players that has to escape from a room or a game, by solving a major enigma 
thanks to specific clues, tools, puzzles within a limited time. It was then possible to in-
clude it in an educational sequence of a maximum of 2 hours. The two SEGs developed 
in this study were originally developed as a “crash test” to test ways to update teaching 
precision livestock farming to Master 2 students. The success of this “crash-test” led to 
the current project, aiming at properly develop 2 escape games by including relevant 
partners and exchanging with an escape game designer on rules of design and conduct.

A collective process to develop the methodology.
The SEGs were developed from January 2020 to January 2021, and were first tested 
in real conditions with a group of students involved in animal science during spring 
2021. Other complementary tests, with different groups of students in different grad-
uate schools and universities, were performed from summer 2021 to winter 2021. This 
means that the validation phases started in November 2021 and are still under process.

In September 2020, a steering committee was established and gathered researchers, 
engineers, associate professors, and students. Their background was either in animal 
science or data science, or both. This group was based on persons who already knew 
each other and already collaborated in several projects. The first step consisted of de-
fining precisely the target audience, the objectives and the educational sequences for 
each game. The key point is to gather both the future end-up user, i.e., students and 
teachers, as well as experts in animal science, PLF, data science and programming. 
To better define the two SEGs and be sure that we could call it “escape game”, the 
group did an escape game together (“Le Manoir d’Ernestine”, see https://escapeyour-
selfrennes.fr/escape-game-room/manoir-ernestine/ for information). The group then 
discussed afterwards with the designer to get the rules and specifications of an escape 
game as well as to have his feedback about making a serious escape game.

Both games were developed simultaneously, by two different groups: “Rscape the of-
fice” was developed by researchers and “Panic on the farm” was developed by Master 
2-students as their M2-group project, with the supervision of the first group. Exchanges 
and testing of multiple options, whether or not they were retained in the end, were 
then possible between the two groups.

Development of the games.

 — The application hosting the game

The numeric SEGs were developed with the R software, using its ecosystem of packages, 
to demonstrate to students that “R is more than only a statistical tool”. We specifically 
developed the games’ interfaces as R tutorials using the {learnr} package (Schloerke et 
al., 2020). The syntax of {learnr} is based on {Rmarkdown}, a package largely used by R 
users, and easily learnable by anyone that might reuse the code for developing another 
serious game. As a Rmarkdown report, a learnr tutorial allows to combine texts, im-
ages, videos, and R outputs paired with their computing codes but also frameworks to 
easily add various types of questions, code exercises and independent interactive shiny 
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components (buttons, chronometers etc.). For the player, once the game repository was 
downloaded, and R, Rstudio (an R IDE) and some selected packages installed, the learnr 
package allows to leave R studio in one click to a user-friendly HTML interface loaded 
in a web browser.

 — Technical content

The SEG A “Panic on the farm” is based on the use of accelerometers to monitor cow’s 
health and behavior. The learners investigate the functioning of the accelerometer in 
a simple use case: the use of the Lifecorder +® (Suzuken Co. Ltd., Nagoya, Japan) to mon-
itor grazing time as described by Delagarde & Lamberton (2015). It is a one-dimension 
accelerometer which provides a pre-processed activity signal. Learners have to define 
a threshold to discriminate the grazing activity from the other activities, and check the 
consequences on the predictive performance of the algorithm. To do this, they have ac-
cess to accelerometer data and grazing time kinetics, recorded by visual observation on 
dairy cows in the INRAE experimental farm of Mejusseaume (Delagarde & Lamberton, 
2015). Some kinetics have been modified for educational purposes.

The SEG B “Rscape the office” aims to make the player to be able to validate a 3D im-
aging device, as an accurate technology for estimating the body weight of dairy cows. 
This is based on the device “Morpho 3D” described by Le Cozler et al. (2019) and its in-
terest for the estimation and monitoring of body weight. Two datasets are needed for 
the game to allow learners to experience a complete validation approach. One dataset 
gathers morphological indicators of 28 Holstein cows measured on 3D images from the 
Morpho 3D device. Because no perfect dataset was available to show examples of all 
indicators targeted in the pedagogical objectives, the original dataset was enriched by 
data created by experts for the pedagogical purpose only. During the game, students 
have to study the repeatability and reproducibility of the collection of the morpholog-
ical indicators from 3D images, as well as to estimate body weight based on 3D indica-
tors. A second dataset (created for this purpose) gathered repeated measures of 3 op-
erators on 2 morphological indicators. The Morpho3D device also provided 3D images 
used as illustrations in the game.

 — Media content

Different media were used to build an escape game atmosphere. Teasers videos were 
realized for both SEGs. Royalty free music from www.bensound.com was used. In the 
SEG A, videos and photos were collected on a farm, puzzles were built, soundtracks 
were recorded. In the SEG B, computer screenshots and 3D images were used.

Games validation
A preliminary game validation phase was implemented to: i) evaluate the ease of the 
game installation, ii) assess the time needed for the completion of the game and the 
whole educational sequence, iii) identify technical issues iv) check the matching be-
tween the difficulty of the SEGs and the level of the learners. This preliminary evalu-
ation was performed in 2 steps. In November 2020, a first evaluation of the SEG B was 
performed through videoconferences in an agricultural engineering school, UniLaSalle 
Beauvais, with M2 students. In January 2021, both SEGs were tested in-person with M2 
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students from another agricultural engineering school, L’Institut Agro Rennes-Angers. 
During these tests, the game developers investigated learners’ behaviours and record-
ed all technical issues (installation, application bug…). Learners’ feedbacks and satis-
faction were collected at the end of the educational sequences, both orally and through 
a survey. Subsequent tests were performed in other schools and universities in the 
second semester of 2021 and 2022, with updated versions of the two SEGs.

Results and Discussion

A framework of educational sequence 
The expert college defined a common framework for the SEGs’ educational sequence: 
a presentation phase (15 min), a performance phase (e.g., the SEG itself, 60 min), a break 
(10 min) and a knowledge “anchoring phase” to ensure that the key messages were 
clearly identified by the students. Educational materials support the presentation and 
anchoring phases for both trainers and learners. Guidelines for the installation of the 
games and its requirements are also provided. During the game phases, each learner is 
in front of its computer and a game master is driving the game.

The educational sequence seems appropriate for being implemented in most of the 
animal science courses in France. At this point, the SEGs were always moderated by the 
game’s developers. More guidelines are needed for other teachers to adopt the SEGs 
and moderate them as efficient game masters.

Figure 1: Screenshot of the game interface of the SEG B “Rscape the office” and examples of code 
exercise component, code example, interactive widgets (summary, chronometer) 
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A framework of numeric interface
The game interface is a {learnr} tutorial that can be personalized with .css code (figure 
1). Learners are progressing in the game from one enigma to another. Different media 
and/or data visualizations support the students to solve the enigma. Questions and 
code exercises are included to check the solving of the enigma and the understanding 
of the notions (figure 1). Whenever they want, learners can step back easily with the 
interactive summary (on the left in the figure 1). Learners can also reopen and replay 
the game whenever they want.

Two SEGs with their own objectives and targets

 — The SEG A “Panic on the farm” is intended for Licence 3 (bachelor) level students, 
with no special knowledge in R programming. The games’ mission is to save the 
cows from a nutrition issue following a malicious act on the farm. To achieve this, 
the necessary knowledge in animal sciences is mainly related to identification 
(French context) and animal behaviour. For the “sensors” part, the notions of sen-
sitivity, specificity, ROC curve are mainly put forward, as well as the need to have 
reference values to validate a sensor in general (Table 1).

 — The SEG B “Rscape the Office” is intended for students at Master 2 level who have 
a basic knowledge in R programming. The mission is to get a 3D print of a cow be-
fore the other competitors. Based on 3D imagery, the students will learn references 
in morphological traits usually used (body weight, heart girth, height), but also, in 
more original ones (surface area, volume). This escape game also addresses the key 
notions of repeatability and reproducibility. To be successful in the enigmas, learn-
ers have to code in R to achieve different operations (Table 1). An original feature of 
this second escape game is the need to work in a collaborative manner: given the 
time, the game can only be won if the students work together.

Feedbacks of their uses

In January 2021, both SEGs were evaluated with a general appreciation level (1 very bad, 
5 very good) and a difficulty level (1 very easy, 5 very hard) by 19 learners. Marks of 4.9 
and 4.4 were given to SEG A and SEG B, respectively. They were judged mildly difficult 
with marks of 2.8 for the SEG A and 3.3 for the SEG B. The gamification leverage was 
convenient for most of the learners but some of them felt the atmosphere “too stress-
ful” and the game rhythm “too intense”. The interface was appreciated in the SEG B. 
Some of the learners understood the opportunity to reuse the codes presented in the 
SEG B for their master thesis analysis. The anchoring phases of the SEG A allowed to 
resolve 68% of the misunderstandings. The installation was the hardest part for the 
learners. In every test, most of the students achieved to finish the game phases in less 
than 1 hour. However, doing both SEGs’ sequences in one half day seemed too much 
engagement needed from the learners.
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Table 1: Summary of the educational objectives of both SEGs

Enigma 
number

SEB A “Panic on the farm” SEG B “Rscape the office”

Education 
objectives

Expected 
Acquisition 

level

Education 
objectives

Expected 
Acquisition level

1 Bovine identification 
system

Learning the 
notions

Data visualization 
with tables

Ability to make 
a variety of tables 
with available 
resources

2 Visual appreciation 
of cow’s behaviours 

Learning the 
notions

Data visualization 
with graphs

Ability to make 
a variety of graphs 
with available 
resources

3
Ethograms and time 
budgets of different 
species

Learning the 
notions

Correlation analysis 
between 2 variables

Ability to analyse 
correlations between 
variables

4 Functioning of an 
accelerometer

Understanding 
the notions

Repeatability and 
reproducibility 
analysis

Understanding the 
notions and ability to 
reproduce the script

5

Abnormal grazing 
time kinetics 
regarding sensors’ 
connectivity issues

Awareness 
raising

Extract the mean of 
variables 

Ability to pick 
a variable of interest 
and summarize it

6

Definition of 
a threshold on the 
activity signal to 
discriminate the cow 
grazing behavior

Understanding 
the notion

Understand 
morphological 
indicators

Knowledge on 
the dairy cow 
morphology

7
Sensibility and 
specificity of 
a classificatory

Learning the 
notions

Machine learning 
methodology: choice 
of a gold standard 
and performance 
metrics 

Understanding the 
notions

8 Roc curves Understanding 
the notion

Calibration and 
Validation of body 
weight prediction 
from 3D volume 

Understanding the 
notions

9

Identification of 
health issues with 
inter-cows and intra-
cow grazing time 
kinetics 

Understanding 
the notion

Impact of the 
definition of 
the calibration 
and validation 
population on 
prediction’s 
performances 

Awareness raising

10
Predict the weight of 
an animal with the 
identified model

Ability to reuse an 
existing model 
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A rigorous evaluation of knowledge and skills acquisition is still necessary. It can be 
done with classical methods or by recording the responses and the progress of every 
learner of the questions and exercises, as described by Grosjean & Engels (2021). How-
ever, that last method requires to deploy the game on virtual machines and several 
modifications of the interface are needed. 

Conclusions
The use of the gamification leverage through serious escape games seems promising 
to train students to PLF and the underlying required data science. Learners are fully 
committed in the SEG and enjoy the educational sequences. The SEGs are still facing 
some issues, the major being its installation. Nevertheless, this will be improved or 
avoided by an online publishing. The acquisition of the educational objectives has not 
been investigated at this stage and will be rigorously investigated in the next steps. The 
open-source framework of the SEG based on the open-source R language opens the 
opportunity to adapt the SEGs to other educational context and objectives.
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Abstract
Young farmers are frequently considered a key population of early adopters for Precision 
Livestock Farming (PLF) technology. In the case of dairy sheep farming, they are viewed 
as important clients for developed and under development technologies. In the current 
study, a 25 items questionnaire of yes/no questions and linear scale scoring (1-5) was 
distributed among Italian extensive dairy sheep farmers (143 sent, 78 received), target-
ing young farmers via local networks and professional associations. Items included both 
questions for systemic planning, use of software, and attitude towards technology. De-
scriptive statistics and single trait assessment were analysed using Microsoft Excel. Re-
ported flock sizes were small (35-40 ha/ ≈ 50-100 animals) with the average farmer’s age 
being 32 (74% age 20-30) and high education levels (65% had a B.A/ BSc). Many farmers re-
ported traits linked to systemic planning such as yearly production evaluation (88%) and 
yearly adaptation to market change (91%). However, only 24.5% reported having written 
management protocols, while 0% used computers for activity planning. Computers were 
frequently used for marketing (84%). None of the farmers used dedicated software or PLF 
technologies, although 47% were exposed to both products. Additionally, 50% reported 
mistrust in technological systems. Few (17%) were exposed to direct marketing attempts 
from commercial companies while 32% were aware of subsidized farm modernization 
schemes. In conclusion, it can be considered that young farmers are adept in technology 
and use it predominantly for marketing purposes, however, few are familiar with PLF 
applicability or include farm modernization in their long-term planning. 

Keywords: PLF, extensive sheep farming, technology adoption, farmer’s view

Introduction
Precision livestock farming (PLF) aims to offer a real-time monitoring of animals in or-
der to improve the farmer’s management capacity. The PLF technologies when integrated 
into the farming operation provide constant data regarding animal health, welfare and 
general conditions (Berckmans, 2017). By now PLF systems have become a common sight 
in many intensive farms their presence in the extensive farming sector remains limited. 
Extensive dairy sheep farming in particular presents a series of economic and techno-
logical challenges for PLF development. A wide variety of solutions including wearable 
sensors, sensor equipped stations, milk-meters and management software are being de-
veloped in order to target farmer’s needs (Vaintrub et al., 2021a). The amount of research 
and development invested in the sector has significantly increased to cover most aspects 
of production management (Aquilani et al., 2022). However, farmer’s acceptance of the 
new technologies and their market penetration remains limited encountering significant 
barriers. While the most cited barriers are of economical nature and include the need to 
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justify the costs of PLF systems, other frequently cited barriers have more personality 
related attributes. Such barriers include the lack of technology understanding, preference 
of “hands-on” approach and the increase of complexity related with PLF management 
(Boothby et al., 2021). Consequently, both developers, policy makers and technology pro-
ducers see young and educated farmers as “Early adopters” that can facilitate technolo-
gy integration with the rest of the farers population. However, previous study conducted 
among young and educated Italian dairy sheep farmers showed lack of familiarity with 
existing PLF products and their use. Additionally, the majority of the farmers were in-
terested in increasing the value of the current product than increasing the production 
efficiency of the farm (Vaintrub et al., 2021b). In the current work we aim to expand on this 
attitude and preference among young and educated farmers towards PLF technology and 
farm modernization. We also aim to identify key field interests that farmer may consider 
important and so far received less interest from technology developers. 

Material and methods

Sample population and selection 
The current work specifically targeted young and educated farmers among the dairy 
sheep farmers in Italy. This segment of the population is very small, comprising 10% 
of total farmer’s population. As such, the use of mailing lists and official databases 
would have resulted in high numbers of irrelevant responses. Therefore, a more direct 
approach for identification and contact was adopted. By using local “information bro-
kers” that included veterinarians, agronomists, farm consultancy services and local as-
sociations we were able to identify members of the target population individually. The 
process was repeated across six Italian regions characterized by extensive dairy sheep 
farming along the Apennine mountain crest (Emilia-Romagna, Marche, Abruzzo, Lazio, 
Molise and Basilicata). Many of the identified farmers had a mixed production farms 
in a setting more similar to a self-sufficient homestead than a commercial operation. 
Therefore, a cut-off was set identifying as a “dairy sheep farmers” individuals with 
a production farm setting (>4000€/ year net revenue) predominantly oriented towards 
dairy sheep production.  In total 143 farmers were identified with the required char-
acteristics, and were contacted on an individual level via emails provided voluntarily. 
They were sent a one-page online questionnaire comprised of 25 items, 78 of the farm-
ers provided complete responses suitable for analysis. 

Questionnaire construction 
Each one-pager questionnaire was composed of 25 items (questions), 15 of which with 
a linear scale scoring limited answer option (1-5) and 10 with an accumulated multiple 
choice option (1-5). The topics of the questionnaire were divided as follows:

1. General information e demographic data: 5 items
This section included questions regarding the farmer’s age, education, professional expe-
rience, professional education and participation in any additional entrepreneurial activity. 

2. Farm related information: 5 items
This section included general question regarding farm size in ha of land, flock size, 
main produce market, reliance on additional labour and related costs.
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3. Management practices and technology use in daily life: 5 items
This section included questions regarding overall farm planning schedules, application 
of management protocols, data collection and adoption of mitigation strategies as well 
as the use of technologies in such activates. 

4. Familiarity with PLF technologies and their application: 5 items
This segment explored the familiarity of farmers with availed PLF technologies, pos-
sible application of them, funding schemes and local technology providers. Two ques-
tions briefly touched on the availability of CAP schemes for technology implementation 
on farms.

5. “Wish list” regarding technologies they would like to see in field: 5 items
This section was dedicated to a brief customer analysis, trying to understand the direct 
interest of the interviewed farmers independently from currently available technolo-
gies. It explored their “Pain points” and the needs for technological solution in specific 
aspects of farm management.  

Data analysis
Simple descriptive statistical analysis was conducted for each individual item distri-
bution (single trait). An inductive approach was used for qualitative data in order to 
identify recurring themes that should be focused upon.

Results and Discussion

General information e demographic
The vast majority of the farmers were male (96%), with only two farmers being women.  
Only few farmers were “First generation” farmers (9%), the rest had either taken over 
the entire farm from their parents (35%), split a farm among the family (52%) or took 
over new farms after working on their own family enterprise (4%). The average farmer’s 
age was 32 with 74% being 20-30 years old. Education levels were also high as all the 
participants concluded high school level education.  Additionally, 65% of them had 
a B.A/ BSc degree or its equivalent, with 24% conducting their studies in farming relat-
ed fields such as Agronomy (10%), Forestry and soil science (7%), Wine studies (4%) and 
Livestock nutrition (3%). Additional 28% of the total had their degree in management 
related fields which included Rural economics (11%), General economics or accounting 
(10%) and Truism and hospitality management (7%). The rest (13%) had a variety of 
degrees with unrelated fields (social science, humanities etc.). Only 14% of the farmers 
took on additional training and studies after taking responsibility over the farm.

Farm related information
Reported flock sizes were small (35-40 ha/ ≈ 50-100 animals) as the majority of the 
farmers split from a previous larger farm. Most farmers applied systemic management 
thinking and yearly evaluation of production efficiencies (88%). Most farmers also tried 
to fit changes in the market and produce additional revenue streams (91%). This was 
done either by looking for new clients on a local level (64%) or expanding into new ge-
ographical areas (27%). None of the farmers tried to adjust the production line or add 
value to by-products such as wool. 
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Management practices and technology use in daily life
Contrary to the application of yearly production evaluation, only a minority among 
the farmers had a written management protocols (24.5%). The majority of the farmers 
preferred to rely on experience or immediate conditions considering them more flexi-
ble and suitable method. None of the farmers had a management protocol in a form of 
spreadsheet or dedicated software. While they used computers for information access, 
they did not consider it as a viable tool in their farm management practices. The most 
significant use for computers on the farm was for marketing (especially via social net-
works) and contact with potential or established costumers (84%).

Familiarity with PLF technologies
None of the interviewed farmers used any of the dedicated software for sheep flock 
management. Neither had any PLF system installed in his farm. A small minority had 
Precision Agriculture (PA) products (17%), predominantly GPS aids for new tractors. 
These were installed in order to comply with “farm innovation” scoring methods re-
quired for receiving CAP grants. While 47% of the farmers reported familiarity with PLF 
technologies they haven’t seen them operational in field. Few (17%) were exposed to 
direct marketing attempts from commercial companies while other gained familiarity   
from a marketing booth at an agricultural faire (11%). A significant number was ex-
posed to PLF and PA technologies via sponsored online adds (19%), but had only limited 
interest in further exploration. Additionally, 50% reported mistrust in technological 
systems, predominantly due to communication related problems they encountered 
with the local GSM coverings. Finally, 32% were aware of subsidized farm moderniza-
tion schemes but among these, none had applied for a one. This result coincides with 
official information regarding CAP use in central Italy, with only 15% of the dedicated 
funds being used on a yearly basis as reported for 2019 (Official CAP report). 

Fields of particular interest for PLF application
Specific aspects of production were predominantly important for the farmers in com-
parison to others. Predation was considered a big problem which led to an overwhelm-
ing interest in anti-predation, security and alarm systems. Overall 74% of the farmers 
considered it as a major problem. This is in line with the population recovery of the Ap-
ennine wolf in central Italy and the increased frequency of farm predation (Fabbri et al., 
2007).   Security remained an important aspect for the farmers also regarding to theft, 
as animal identification, alarms and individual tractability were considered of high 
importance to 57% of the farmers. Finally, technologies related to marketing, product 
quality showcasing and automated scores for the farm ecological services were con-
sidered important by 51% of the farmers. Other production aspects such as pasture 
evaluation, fertility and health conditions had limited interest (<10%) each. 

General observations
While important information from the end-user point of view is becoming increasingly 
available (De Boon et al, 2022), additional key data could be obtained using ground level 
sampling. The current work supports the hypothesis that young and educated farm-
ers are more open for technology, and use it more frequently in their professional and 
private life. However, this does not directly translate into interest in PLF technology 
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acquisition. Small and medium scale extensive sheep farming appear to be interested 
in technologies that can provide protection from what they perceive as external calami-
ties. They are also interested in improved value for their product and better contact with 
high-paying niche markets. Their interest in production efficiency related technologies 
seems to be limited and they rarely explore such possibilities by themselves. While CAP 
schemes play a significant role in providing information regarding PA technologies, the 
same is not true for PLF on a local level. This could be attributed to different causes such 
as; a) Lack of familiarity with PLF technologies on the side of the CAP office clerks and 
technicians (Odintsov Vaintrub et al, 2020), b) Lack of suitable technological solutions fit 
for the farming sector (Aquilani et al, 2022) c) Tendency of farmers to prefer more gener-
al PA technologies over specialized management tools (Boothby et al, 2021). 

Conclusions
In conclusion, it can be considered that young farmers are adept in technology and use 
it predominantly for marketing purposes, however, few are familiar with PLF applica-
bility or include farm modernization in their long-term planning. This may be attribut-
ed to knowledge and information gaps regarding available PLF solution. On the other 
hand, many farmers tend to be interested in technology applications that are more 
related to protection and marketing rather that improved flock management. 
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Abstract
The objective of this paper is to present the initial steps for developing a web platform 
for sustainability assessment and improvement in dairy cattle production systems. 8 
agricultural platforms, 4 agricultural applications and 8 dairy content platforms were 
selected and evaluated based on three criteria: a) existence of educational functions; 
b) type of information provided (e.g. for sustainability assessment); c) characteristics 
determining the extent of use. The findings suggest that graphical representations, 
audiovisuals, case studies, updated and well-informed databases, scientific-based in-
formation, and environmental, economic, and social information are major character-
istics of an educational, agricultural platform. The results of this evaluation and an in-
novative approach for sustainability assessment in several dairy cattle farm typologies 
in Europe (i.e. LCA and multicriteria assessment, sustainability indicators’ weighting, 
greenhouse gas and ammonia mitigation strategies) are combined for the development 
of the platform. Although farmer-centric, the platform is meant to be an educational 
tool for all the stakeholders of the dairy cattle production systems, providing relevant, 
well-organized information to the user.

Keywords: dairy cattle production, educational platform, sustainability assessment

Introduction
The interactive distance learning for the acquisition of new skills and knowledge is 
a phenomenon that emerged from the major application of personal computers and 
devices (e.g. mobile phones, tablets) that use the worldwide expansion of the internet. 
Web-based methodologies started to be developed and to be considered as an innova-
tive educational practice at the beginning of the 2000s (Born et al., 1999). Information 
and Communication Technologies (ICT) are routinely used to promote educational pro-
cesses via e-learning (Tirziu and Vrabie, 2015). However, these practices started to be 
used more intensively during the COVID-19 pandemic (Maatuk et al., 2021). 
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The agri-food sector is of major global importance since it is obliged to supply food 
products in a sustainable way to a constantly rising population (9.7 to 9.8 billion people 
in 2050) (FAO, 2009). Furthermore, the agricultural sector is crucial for economic growth 
contributing 25% of global gross domestic product (GDP) (WorldBank, 2022). Due to the 
global importance of the agricultural sector, the need for well-structured web-based 
educational systems that are constantly updated to meet the daily challenges of all 
sub-sectors should be highlighted. 

E-learning educational platforms make value chain challenges more manageable and 
provide to the agricultural communities (e.g. dairy farmers) potential development 
(Leary and Berge, 2006). Thus, the use of educational platforms has the potential to 
provide direction towards the improvement of the sustainability status of dairy pro-
duction systems for farmers and all relevant stakeholders. 

The objective of this paper was to use an evaluation methodology for agricultural sys-
tems’ educational platforms based on several important parameters regarding their 
educational functions, the type of information provided and the determination of the 
extent of their use. In this way, an introduction to the general and specific characteris-
tics of an educational, web-based platform for sustainability assessment and improve-
ment of dairy cattle systems is attempted. 

Material and methods
This research essentially involved a detailed investigation of several web literature 
sources (Scopus, ScienceDirect, Google Scholar, ResearchGate) regarding agricultural 
education platforms, online applications, and tools. It focused on literature published 
from 2000 on. The Google search engine was further used to identify widely searched, 
relevant educational platforms and mobile applications. 

The first result of this investigation was to define the evaluation criteria. Three criteria 
were defined: 1) Functions for education methodology. The work of Eichler Inwood and 
Dale (2019) was used for suggesting the various options for this criterion (e.g. gaming, 
quiz test, etc.); 2) Type of provided information. This criterion was based on the iden-
tification of the main causes for applications’ development in the agri-food sector (e.g. 
improved access to multi-source information, improved market connections and dis-
tribution networks, etc.) (Qiang et al., 2012; Costopoulou et al., 2016; Eichler Inwood and 
Dale, 2019; Karetsos et al., 2014); 3) Characteristics determining the extent for wider 
use. The options for this criterion were defined based on the suggested main character-
istics (e.g. content, capacity development) for wider development of Information and 
Communication Technologies in the agri-food sector (FAO, 2015). 

The second result was to decide on the web material to be evaluated. The material was 
separated to web platforms and web applications with their most important difference 
being that applications refer to a bounded set of operations while platforms to an un-
bounded set of applications. The material to be finally evaluated included 8 agricultural 
platforms, 8 dairy-related platforms and 4 agricultural and dairy applications due to 
the fact that they were increasingly cited on scientific publications, and they can be 
found as top results in Google search engine and Google Play.
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Results and Discussion

Criterion 1. Existence of educational functions
Table 1 collects the existing educational functions for the examined web-based material.

Table 1: Existence of educational functions in the web-based material evaluated

Material

Educational functions
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CGIAR p Νο Yes Yes Yes No Yes Yes

SAFE p No Yes Yes No No Yes Yes

SFVC p Yes Yes Yes Yes Yes Yes Yes

Next FOOD p No Yes Yes No No Yes Yes

SARE p Yes Yes Yes No No Yes Yes

LLOOF p No Yes Yes Yes Yes Yes Yes

WOCAT p No Yes Yes No No Yes Yes

Land PKS p No Yes Yes No No Yes Yes

LEAF p No Yes Yes No No No Yes

(F&BKP) & (NFP) p No Yes Yes No No Yes Yes

InnoDairyEdu p No Yes Yes Yes Yes Yes Yes

Global Dairy Platform p No Yes Yes No No Yes Yes

DairyNZ p Yes Yes Yes Yes No Yes Yes

Dairy Australia p Yes Yes Yes Yes No Yes Yes

PRO-DAIRY p No Yes Yes No No Yes Yes

MILK p Yes Yes Yes Yes No No Yes

AgriApp a No No Yes No No No No

Land PKS  App a Yes Yes Yes Yes No Yes No

My cattle Manager a No Yes No No No No No

Farmi a No Yes Yes No No No No

p: platform; a: application

Gaming is used from only a few of the initiatives as an educational approach. Using 
graphs is a common function for all platforms but not for applications. Moreover, audio-
visuals are commonly used by the platforms but not from most of the applications. 
The quiz function is mostly found in the Dairy platforms. The on-site communication 
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between users is a deficiency for most of the initiatives. Scientific references establish 
the content quality for most of the initiatives. Finally, courses organization and provi-
sion are promoted by all the platforms but by none of the applications.

Criterion 2. Type of information provided 
In Table 2 the type of information provided by the material evaluated is presented. 

Table 2: Type of information provided by the evaluated material

Material

Type of information
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CGIAR p Yes Yes Yes Yes Yes Yes Yes

SAFE p Yes Yes Yes No Yes No Yes

SFVC p Yes Yes Yes Yes Yes Yes Yes

Next FOOD p Yes No Yes No Yes No No 

SARE p Yes Yes Yes Yes Yes No Yes

LLOOF p Yes Yes Yes No No No Yes

WOCAT p Yes Yes Yes Yes No No Yes

Land PKS p Yes No Yes No Yes No Yes

LEAF p Yes Yes Yes No No No Yes

(F&BKP) & (NFP) p Yes Yes Yes Yes Yes Yes Yes

InnoDairyEdu p Yes Yes Yes Yes No No No

Global Dairy Platform p Yes Yes Yes No No No Yes

DairyNZ p Yes Yes Yes Yes Yes Yes Yes

Dairy Australia p Yes Yes Yes Yes Yes Yes Yes

PRO-DAIRY p Yes Yes Yes Yes Yes Yes No

MILK p Yes Yes Yes No No No No

AgriApp a Yes Yes No No No No Yes

Land PKS  App a Yes No No No Yes Yes No

My cattle Manager a No Yes No No Yes No No

Farmi a Yes Yes No Yes Yes Yes Yes

p: platform; a: application 
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Information regarding the three pillars of sustainability is provided in most of the ag-
ricultural and dairy platforms. The environmental pillar is mostly represented and is 
followed by the economic pillar, while the social pillar is less represented. At least one 
pillar is represented in every evaluated initiative. Nevertheless, the applications do not 
include information about the social pillar. Additional features like individual (from 
platform) tools and calculators (e.g. GHG emissions’ estimation, farm management) 
are included in more than half agricultural and dairy platforms and applications. Gov-
ernance information and regulations related to the agriculture and the dairy sector 
are included in half of the platforms and in they are reported by one application. The 
evaluated agricultural platforms do not provide weather forecasts in their main func-
tions. The dairy platforms introduce climate information and management of climate 
conditions that are related to dairy production. Weather forecasting is a function of two 
applications. News is included in every agricultural platform, half of dairy platforms, 
and two evaluated applications. 

Criterion 3. Characteristics determining the extent of use
Table 3 shows the evaluation considering the characteristics of the evaluated material 
which could determine the extent of their use.

Table 3: Characteristics determining the extent of use for the material evaluated 

Material

Characteristics determining the extent of use

Language1 Geographic 
coverage Location2 Gender 

equity
Cost of 

Use
Data 

Sources3

CGIAR p ENG Global Yes (CS) No No L, S, ND, 
OD, PE, SS

SAFE p ENG, SP, 
FR,

Latin 
America Yes (CS) No No L, PE

SFVC p ENG, SP, 
RU, AR,CH Global Yes (CS) Yes No L, OD, ND

Next FOOD p ENG Global Yes (CS) Yes No L, OD, ND 
DD

SARE p ENG USA Yes (CS) Yes No L, OD, ND

LLOOF p ENG Global No Yes No L, PE

WOCAT p ENG Global Yes (CS) Yes No L, OD, 
ND, S

Land PKS p ENG Global Yes (CS & 
GPS) No No L, PE

LEAF p ENG UK Yes (CS & 
GPS) No No L, PE, S



 Precision Livestock Farming ’22 183

(F&BKP) & 
(NFP) p ENG, DU Global Yes (CS) Yes No L, OD, 

ND, S

InnoDairyEdu p ENG Global No Yes No L, OD

Global Dairy 
Platform p ENG Global Yes (CS) No No L, OD, PE

DairyNZ p ENG NZ Yes (CS) Yes Yes L, OD, ND, 
PE, S

Dairy Australia p ENG AUD Yes (CS) Yes Yes L, OD, ND, 
PE

PRO-DAIRY p ENG USA Yes (CS) Yes Yes L, OD,N 
ND, PE, S

MILK p ENG CA Yes (CS) No No L

AgriApp a ENG, IND India No No No DCD

Land PKS  App a ENG, SP, FR Global Yes (GPS) No No DCD, S

My cattle 
Manager a ENG Global No No No DCD

Farmi a ENG, FR France Yes (GPS) No No DCD

1 ENG: English, FR: French, SP: Spanish, DU: Dutch, IND: Indian, RU: Russian, AR: Arabic, CH: Chinese
2 CS: Case Study, GPS: Global Positioning System
3 L: Literature, S: Satellite, ND: National Data, PE: Practical Experience, SS: Sensor System, OD: 
Organizations’ Data, DD: Drone Data, DCD: Development Company’s Data
p: platform; a: application

English is the language of all the evaluated initiatives. Most of the platforms and appli-
cations can be used globally. The dairy platforms are specifically linked to the respec-
tive countries. Furthermore, the platforms mostly involve location-specific case studies 
while the applications have integrated GPS systems. Agricultural and dairy platforms 
promote the social equity (e.g. using specific articles, actions). Moreover, the platforms 
can be used free of charge while most applications include versions both free of charge 
and payable. Finally, data sources for platforms are mostly related to the available lit-
erature and experience connected to the case studies while generally for the applica-
tions, data sources are unclear.

Conclusions
In this paper, 20 web-based initiatives (platforms and applications) were evaluated 
based on the presence of educational functions, on the type of information provided, 
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and on the characteristics determining the extent of their use. Based on this evaluation, 
it can be concluded that important educational functions of a modern, web-based plat-
form for sustainability assessment and improvement of livestock systems are graphs 
and audiovisuals for clear communication of concepts to the user, use of stakeholders’ 
case studies, and justification of the information provided based on scientific referenc-
es. Regarding the types of information provided, it is of importance to include infor-
mation on all sustainability pillars and their (quantitative and qualitative) assessment 
and relevant news feed. Finally, concerning the characteristics determining the extent 
of use, it is of importance to use English as the main language, to promote social equity, 
to be used free of charge, to use data sources scientifically accepted and based on the 
practical experience of the stakeholders and to include a location-specification utility. 

Repeated use of such platforms by stakeholders is highly dependent on the user-friend-
ly and comprehensive way the information is provided and on their constant update. 
These findings are currently being adopted in the development of a platform for Euro-
pean dairy production systems (the “MilKey platform”), which aims to assist farmers 
and extension service in optimising their dairy cattle production systems and to in-
form stakeholders, politicians, and consumers on the key elements of region-specific 
sustainable dairy cattle production systems and to increase their understanding and 
acceptance. The “MilKey platform” will deliver region-specific suggestions for sustaina-
ble, low emission and economically efficient dairy cattle production systems.
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Abstract
The field of Precision Livestock Farming (PLF) is flourishing throughout the world, being 
driven by the fast development of accessible hardware and powerful computational 
technologies in combination with the growing need for solutions that enable sustain-
able animal production. Research in this field is burgeoning, with the number of publi-
cations indexed by Web of ScienceTM exponentially growing since 2016. Moreover, the 
translation of this science into commercial solutions is also booming, as evidenced by 
the recent emergence of many new high-tech PLF start-ups. For the continued success 
of the PLF field, it is important to align education with industry and societal needs. 
Education of PLF should provide individuals with knowledge, skills and abilities (KSA’s) 
not only to facilitate the innovation of high-quality technologies but to appreciate the 
practical and ethical issues in their application for sustainable animal production. 
A sub-group of International Commission of Agricultural Engineering (CIGR) Technical 
Section II has formed around an action to investigate “Educating for Precision Live-
stock Farming”. The objective is to identify the KSA’s needed for success at graduation 
and to provide pointers on learning paths for students of different backgrounds (ani-
mal science, animal production or engineering) and career goals (e.g. PLF researcher, 
technology developer, system technical support, farmer and veterinarian). To this end, 
data concerning PLF KSAs will be gathered from two sources: (1) existing course sylla-
bi offered internationally and (2) a survey conducted with representatives of relevant 
companies. We will present the current results of this action during EC-PLF 2022 and 
use the opportunity to collect additional information from participants.

Introduction
While the consumption of meat and animal-derived products in the EU has plateaued 
in recent years, the demand for such foods is still increasing on a worldwide level. This 
has in turn led to expansion of the meat and dairy sectors globally. As a consequence, 
topics on the well-being of farm animals and the sustainability of farm management 
practices are common targets of public discourse. Meeting the meat and dairy con-
sumption trends of the world population in a sustainable way will likely continue to 
be challenging in the future and demands continuous innovation from those directly 
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involved as well as allied industries. Precision Livestock Farming (PLF) can be consid-
ered part of the solution towards addressing these livestock production challenges. 
PLF systems are information-oriented technologies typically comprising sensors, tech-
nology for data exchange as well management systems in an aim to provide decision 
support to the animal producer/caretaker. However, because animal production is in 
itself challenging, so too must the supporting technologies. As a result, there is a strong 
demand on qualified workforce not only in the development of these technologies but 
also in their accurate implementation.

In this paper, the authors, all of who represent the CIGR sub-group on “Educating for 
Precision Livestock Farming” will present the work done to date in our study of the 
educational landscape related to PLF and the preparation work being done to continue 
the work. We will also present a case study of the development of the 60 ECTS PLF MSc 
course at Universitat Politècnica de València.

Growth of PLF research and development
While the term Precision Livestock Farming was not used in early in the 2000, the first 
works in the area started appearing in the 1980s.  Hyde et al. (1981) discussed a new 
dairy management technique of managing by exception.  They defined management 
by exception as “the use of equipment and analysis techniques to detect those animals 
which are exceptions, i.e., those that are not performing normally.”  At a similar time, the 
first patents were issued for robotic dairy solutions in 1983.  As shown in Figure 1, there 
was an exponential increase in patents issued between 1983-2003, and then a reduction 
in 2004 and a linear increase in patents filed between 2004-2021.  Publication trends also 
show an increase over the same time; however, the trends are different (Figure 1).

Figure 1: Patents filed and publications from 1983 to 2021 for with the keywords of robot and dairy 
as documented by Scopus

From a literature search it appears that the term Precision Livestock Farming was first 
used in a publication by Christopher Wathes (Wathes, 2003).  This area of research has 
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really increased (Figure 2) in recent years, with the increase computing power, decrease 
in cost of technology, along with the decrease is labour availability, and increase in 
research funding in this area.  Since 2009, there have been 15 large European Research 
projects containing PLF as a key topic, with 50% of those projects being initiated on or 
after 2019 (CORDIS, 2022).  The funding the United States Department of Agriculture 
started emphasis technology in the animal area about 5 years later, with the forma-
tion of the Foundation Food and Agriculture Research in 2014 (FFAR, 2022), and the 
creation of the a few different funding area IDEAS (Inter-Disciplinary Engagement in 
Animal Systems) grant in 2019 and the FACT (Food and Agriculture Cyber-informatics 
and Tools) grants in 2018 helping spur research in this area in the USA (NIFA, 2022).

Figure 2: Publications from 2003 to 2021 for with the keyword of Precision Livestock Farming, Precision 
Animal Management or Smart Farming and Livestock as documented by Scopus

Growth in the industrial importance of PLF
The investment of companies on PLF is increasing.  Merck Animal Health acquired 
Antelliq, Allfex, and Agrident, (Bioscience Association Manitoba, 2022).  Smart Bow and 
Zoetis formed a partnership (i5invest, 2017) and Boehringer Ingelheim acquired stakes 
in SoundTalks (Boehringer-Ingelheim, 2019).  All three of these cases involve a large 
pharmaceutical company was investing in technology to improve animal tracking and 
potential animal health tracking.  This establishes the importance of precision live-
stock technologies in their business portfolios.

Miquel Collell, Global Technical Director of Swine, ReProPig and & Sowcare emphasized 
the importance of PLF technologies in this statement “There are crucial moments in 
humankind evolution, agriculture, animal domestication, the wheel, electricity, inter-
net, and PLF will be one of this moments. PLF Is not a fashion, is the only way to keep 
the world as a more sustainable one.  We do PLF or we will not continuate advancing 
as a society.”  Robert Fitzgerald, PIC – Pig Improvement Company, emphasized the need 
for PLF for labor savings.  Dr. Fitzgerald said, “it is common for sow farms today to be 
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operating with a reduced labor force; solutions are needed to help ensure we are car-
ing for our animals, maintaining biosecurity, and improving the efficiency of common, 
routine tasks.”

Moreover, the translation of this science into commercial solutions is also booming, 
as evidenced by the recent emergence of many new high-tech PLF start-ups present 
at the innovations such Animal AgTech Summits (ReThinkEvents, 2022), Poultry Tech 
summits (WattGlobalMedia, 2021) and theAnimal Health, Nutrition and Technology 
Summit (Kiascoresearch, 2022).

Challenges in educating the future PLF workforce 
Overcoming barriers to adoption of PLF, like precision agriculture, is contingent upon 
having trained individuals who can provide insight and access to the technologies 
(Kitchen et al., 2002) and can extend theory and application. “Universities play an im-
portant role in innovation systems” (Leten et al., 2014) in that they educate and train 
individuals in fields important for economic and sustainable futures and conduct re-
search critical to progress. Extending this role to PLF specifically, the innovation sys-
tems include PLF experts, producers, related industries, ...  Formal PLF  education at 
the undergraduate level serves to prepare individuals for emerging “knowledge-in-
tensive” career paths, like for PLF, wherein they can deliver on the university educa-
tion “promise of introducing novelty into the existing industrial texture on the level 
of problem-definition and problem-solving activities” (Leten et al., 2014).  Formal PLF 
post-graduate programs serve to prepare individuals to lead the field, conduct ground-
breaking research, facilitate technology transfer, and establish start-ups that create 
jobs (CGS, 2008). Like precision agriculture more broadly, there is a need to promote 
computational and data skills as well as conceptual understanding in conjunction with 
the “applied, practical experience that incorporates theory of production management” 
(Kitchen, et al., 2002) and the theory and practicality of animal care.  

Ongoing efforts of the CIGR sub-group on Education for “Precision Livestock Farming”
The CIGR sub-group will carry two main actions in their mission to understand the 
landscape of PLF education and how this meets industry needs. The first is to carry out 
survey to understand the worldwide availability of courses considered closely connect-
ed to the field of PLF. The second action is to see how these courses meet the needs of 
industry and provide some recommendations on course development into the future. 
Future actions from CIGR Technical Section II could include providing some core/basic 
skills in PLF via the CIGR website or partnering member institutes. However, the exact 
nature of this needs to be worked out in more detail later in this investigation.

The sub-group has already started to conduct the preparation needed for the survey. 
A very introductory overview of current BSc and MSc study programmes offered in 
EU and US which have a PLF aspect are shown in Table 1. It is evident that these pro-
grammes are offered by Departments with diverse backgrounds. Hence, the major 
question to be answered, through questionnaires addressed to educators and relevant 
companies, is what the main outcomes of a PLF study programme should be so to allow 
graduates to seek and achieve their career goals.
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Table 1: Non-exhaustive overview of current BSc and MSc study programmes offered in EU and US 
that contain a PLF aspect 

Country University Department Level Course Class

Belgium KU Leuven Biosystems MSc ☒ ☒

Germany University of Hohenheim Agricultural Sciences MSc ☒ ☒

Italy University of Naples 
Federico II

Veterinary Medicine and 
Animal Production MSc ☒

Netherlands Wageningen University Biosystems Engineering MSc ☒ ☒

Portugal Évora University Rural Engineering MSc ☒ ☒

Spain Universitat Politecnica de 
Valencia Animal Science MSc ☒ ☒

USA University of Nebraska
Biological Systems 
Engineering and 
Animal Science

MSc ☒ ☒

The survey is currently being designed and will be distributed amongst academic col-
leagues working in fields related to PLF.  Through it we aim to learn more about the 
thinking behind the design of these courses, with a focus on understanding the influ-
ence on the background of the candidates, typical career paths being targeted and the 
engagement with industry. In Table 2, we present a subset of the questions to be asked 
in the PLF education survey. We still expect more questions and alternative ways to 
phrase questions during the survey preparation. 

Table 2: Subset of questions that will be used in the PLF educational survey

• What are the “main” driving factors for the course/programme?
• Who is the target audience?
• Is there a link with industry/professional societies?
• What are the learning objectives
• What are the topics covered in the course
• What are the career paths of your graduates?
• What are the plans to revise the course/programme
• What are your plans for additional courses 
• Do you know others who offer courses or programmes?

The main deliverable of this survey will be:

 — List of main drivers/objectives for the designing PLF courses 
 — List of course designs that educators are using to meet objectives
 — Identified gaps in education that could be filled through community action

Further possibilities for educators to engage in the survey will be possible at the ECPLF 
conference. Answers to the survey will then be compiled and analysed and then used 
as a basis for preparation of the industry consultation, which will be the second part of 
the full study. After this point we will compare with the related initiatives taken by sub-
group members and assess how well these educational initiatives meet the need of in-
dustry and research requirements and provide recommendations and further actions 
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for course developers in the future.  One initiative that will be used in the comparative 
analysis will be the recent development of the PLF Master at the Universitat Politècnica 
de València. This is presented in more detail as a case study below.

Case study: Experience on design of PLF Master in Spain
The experience in designing a new Master Degree on PLF in Spain is presented here. 
The Universitat Politècnica de València (Valencia, Spain) had the opportunity to create 
a new master program of one-year duration (60 ECTS). The committee in charge of this 
task identified three main aspects to be considered: First, the student profile; second, 
the capabilities of the teaching staff; and third, the company needs in the area of in-
fluence of this master (mainly Spain). These aspects were analysed and considered 
together in order to establish the program as follows.

First, the target students were identified as agricultural engineers and veterinarians, 
which are the most relevant degree programs in Spain related to the area of expertise 
of the master committee. These were surveyed for their interests regarding a potential 
program on PLF, including questions related to the program extension (1 or 2 years), 
degree of expertise, or other practical questions (for example physical, online or blend-
ed format). The results showed that students preferred a blended program, with both 
online contents and physical practice. The main motivation of students to enrol this 
master is to find a job (65%), but a relevant share of students had a motivation towards 
research (32%). Finally, students showed high motivation towards subjects related to 
biotechnological tools, welfare certification, mitigation of environmental impacts, and 
technology use in farms. Apart from this, relevant interest was detected for subjects 
related to massive data analysis and business management.

As a second step, companies related to animal production were contacted to obtain 
their interest in a profile on precision livestock farming. The companies belonged both 
to the technology and animal science sectors, and therefore relevant interest on pre-
cision livestock farming was detected to be relevant both regarding the animal (for 
example, biotechnology tools and precision nutrition), and to the facilities (technolog-
ical tools for precision livestock farming). Companies revealed that they mostly need 
a profile with wide expertise, which means a person who is able to respond to diverse 
challenges including animal and technology related ones. This means that this person 
does not need to be a deep expert in those topics, but must dominate the opportunities 
and limitations of all them, and must also have relevant skills in data and business 
management.

As a consequence of these student and company surveys, it was decided that such a mas-
ter could involve both veterinarians and agricultural engineers and would be focused on 
showing the most relevant technical and biotechnological tools used in animal produc-
tion, as well as on data and business management. Consequently, the program identified 
relevant lecturers within and outside the University, which will be in charge of designing 
each of the subjects in this master. Apart from those subjects, the program is planning 
a transversal project on PLF, as well as practices of students in companies and research 
teams. This master will start in September 2022, and a commission will be established to 
ensure a proper implementation and evaluate potential changes for the future.
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Conclusion
This paper reports the current status of a study being carried out by a CIGR TSII sub-
group on Educating for Precision Livestock Farming. So far initial work has included com-
piling initial non-exhaustive information on the research and industry demand for the 
field, as well as identifying an approach to uncover new information on course design 
from educators in this field. Future work will include analysing the survey against cur-
rent initiatives (e.g. PLF course developments at the Universitat Politècnica de València) 
and industry needs to propose recommendations regarding course design and delivery.
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Abstract
Veterinary anatomy is essential for every aspect of veterinary medicine, including 
Precision Livestock Farming (PLF) education as well. Traditionally, veterinary anatomy 
has been taught as a stand-alone course or as part of a problem-solving orientated 
curriculum.

In the new set up of the post-Covid-19 pandemic, virtual anatomy could serve as a val-
uable substitute solution. Although it cannot provide the hands-on training of animal 
dissections, essential for every veterinary student, this new educational tool may effi-
ciently complement the dissections. 

On the contrary, in PLF, new technologies are designed to support farmers in livestock 
management in a continuous, real-time, and automated manner. This is achieved by 
monitoring and controlling animal productivity, environmental impacts, as well as 
health and welfare parameters (Schillings et al., 2001) and by ensuring the implementa-
tion of best practices and responsible use of medicines in farming.

With the emerging integration of PLF education in all veterinary curricula nowadays, 
undoubtedly anatomy must be part of this. 

Currently, many veterinary schools use 3-D atlases for teaching anatomy. Having as-
sessed our students’ experience on a virtual anatomy educational tool during the last 
year, we are considering its permanent integration in our curriculum. Furthermore, 
virtual Veterinary Anatomy, as a replacement to animal use for educational purposes, 
supports and implements 3 Rs principles (Russell and Burch, 1959).

This work aims to review the existing digital solutions for teaching veterinary anatomy 
and to present an anatomy module to be incorporated into PLF education with the use 
of new 3-D technology for the benefit of animals, environment, and humans, pairing in 
the efforts of the ONE HEALTH initiative. 

Keywords: veterinary anatomy education, veterinary schools, digital resources, 
precision learning farming education, basic sciences

The importance of anatomy in veterinary curricula
The existing mural paintings depicting animal superficial anatomy from the Paleolithic 
era is evidence of the human interest on this subject (Clark, 1944). Although many sci-
entists (BC), from the Greek Alcmaeon of Croton to the Roman Marcus Aurelius (Kubale 
et al., 2019) observed anatomical organs, it is the Greek Aristotle who is considered the 
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father of comparative anatomy since he performed dissections to different animals 
from reptiles to insects and mammals (Crivellato and Ribatti, 2007).

Anatomy constitutes the cornerstone of undergraduate veterinary education. As such, 
it is taught in the very first semesters of almost every curriculum, since it is interwo-
ven in every other aspect of basic and even clinical practice (Wheble and Channon, 
2020). Its relevance to radiology, surgery and/or pathological anatomy places anatom-
ical knowledge into the basic veterinarian skills to allow safe and efficient practice of 
veterinary medicine. Education of anatomy provides the knowledge of the normal lo-
cation and dimensions of the different organs and gives the opportunity to the student 
to recognize abnormalities (either by studying the radiographs and/or by palpating the 
animal) and to come closer to an accurate diagnosis. 

A challenging feature of veterinary anatomy and its education is based on the com-
parison between the different species examined. Almost every animal organ is spe-
cies-specific not only in size but in location as well. Different veterinary curricula base 
their teaching in one species (e.g., dog or sheep) and compare the rest of domestic 
animal species with this one.

Teaching of anatomy in veterinary medicine schools
Courses in syllabi of different veterinary schools worldwide include anatomy education 
in the same semester with physiology providing detailed information on the structure 
and function of the animal body in the species most commonly seen in veterinary 
practice, including companion animals, livestock and avian. Many undergraduate pro-
grams include laboratory animals’ and exotics’ anatomy as well. Teaching includes the 
laboratory component allowing students to gain experience with the tools and tech-
niques used to study the body on a macroscopic and microscopic level. In other pro-
grams students will investigate the connections between the study of anatomy and 
physiology and clinical veterinary medical and surgical practice on a problem solved 
base educational context. 

Irrespective of anatomy’s importance, the latest years there is a tendency to shrink 
basic veterinary education including anatomy, due to the following reasons:

 — Reduction of animal used for educational purposes
 — Growth in the numbers of students that would like to study veterinary medicine 
with diminishing number of faculty members

 — Fixation and maintenance methods of the dissected animals
 — Last but not least reason for changes into the veterinary anatomy education is the 
Covid-19 pandemic

The use of animals for educational purposes due to the implementation of 3Rs princi-
ple (Russell and Burch, 1959) tends to lessen on an international level. According to the 
European Directive 63/2010/EU, education and training involving living rats and mice 
are classified as an animal experiment and demands the implementation of the 3Rs.

For this reason, alternative methods are in place both on domestic and laborato-
ry animals. Corte et al., have developed training devices, simulators, where different 
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techniques such as blood sampling can be learned prior to working on live animals. In 
the following website: https://www.turbosquid.com/3d-model/animal-anatomy?page_
num=2 animal anatomy 3D models can be purchased for educational purposes. 

A specific example for alternative methods is the anatomy of the equine foot, which 
possesses great complexity and huge clinical importance at the same time. The major-
ity of lameness is attributed to foot pathology (Dyson and Marks, 2003; Turner, 2003). 
For this reason, it has attracted the interest of various researchers. Preece et al., have 
demonstrated the significant advantages associated with using a physical model in 
enhancing students’ visuospatial appreciation and understanding of the complex ana-
tomical architecture of the equine foot. On the other hand, eHoof: http://www.eurofar-
rier.org/e_hoof.php or e-hoof.com is based on the thesis of Geyer H, Musterle (https://
www.zora.uzh.ch/id/eprint/18910/9/Musterle_diss.pdf) and is the result of many years 
planning and development. It is a state-of-the-art, interactive web platform that is 
based around material contributed and peer reviewed by specialists in their fields. It is 
divided into specific topics, and has a wide range of multi-media tools with thousands 
of illustrations, photos, films, interactive animations and models.

As it is mentioned in the publication of Inpanbutr et al., (2020) there is a trend of in-
creasing class size in veterinary medical education without the concomitant and pro-
portionate advance in teaching faculty. This is true in our School, where regardless of 
the EAEVE (European Association of Establishments for Veterinary Education) advice 
following their recent visitation and evaluation, the number of students entering the 
school has increased from previous years. Inpanbutr et al., have also developed a Digi-
tal Platform ExamSoft in Veterinary Anatomy Assessments in Written and Laboratory 
Components. This effort comes from the Ohio State University College of Veterinary 
Medicine, with a class of 162 students. 

The ban of formalin use in the fixation and maintenance of animal cadavers, due to 
its deleterious and toxic effects to humans, has urged professional to investigate other 
ways of preserving the teaching specimens (Lombardero et al., 2017; Homma et al., 2019) 
with additional decrease of the cadaveric teaching material. 

The Covid-19 pandemic has influenced veterinary anatomy education. At the 2021 
XXXIIIrd Congress of the European Association of Veterinary Anatomists, in Ghent 
among other issues in the Teaching topic, Nongnuch Inpanbutr presented the work 
entitled: “Making the move to 100% online: an update on teaching veterinary anatomy 
at the Ohio State University during the COVID-19 pandemic, while Zeeshan Durrani 
presented the article: “Assessing learning and teaching practices in anatomy education 
during the COVID-19 pandemic”: https://eava2020.ugent.be/

All the previous reasons combined lead to the investigation of other methods for vet-
erinary anatomy education, and mainly into digitized resources.

Digitizing programs for supporting veterinary anatomy
In 1991, Snell et al., described the Veterinary Digital Anatomical Database Project, whose 
purpose was to investigate the construction and use of digitally stored anatomical 



196 Precision Livestock Farming ’22

models. Since then, a number of approaches have been integrated in veterinary anat-
omy education.

Following are some examples from the online resources on the issue: 

https://www.ivalalearn.com/ providing innovative, interactive learning content with 
anatomy in 3D reconstruction, high-quality flashcards and multiple choice questions. 
According to experienced anatomists the program provides accurate anatomical de-
tails and enriches the animal dissection procedure and knowledge.

Easy Anatomy is supported by four different Universities: Univ. of Adelaide, in Aus-
tralia, Univ. of Saskatchewan, in Canada, the University College Dublin in Ireland and 
the University of Pennsylvania, in the US.: https://easy-anatomy.com/ with you tube 
presence: 

https://www.youtube.com/watch?v=S7FzCebbG58&ab_channel=EasyAnatomy: it is 
trusted by veterinary students, educators and professionals in over 120 countries and 
provides virtual dissection and adaptive quizzes regarding dissection labs, clinical 
studies, and procedures. 

https://www.cvmbs.colostate.edu/vetneuro/VCADissection.html, from the college of 
veterinary medicine and biomedical sciences of Colorado State University, providing 
Virtual Canine and other domestic animal Anatomy and directing students in the pro-
cess of dissection, with photographs, descriptions, and animations. The detailed dis-
section descriptions not only assist students during lab, but also allow them to study 
outside of lab when instructors and cadavers are not available. Along with canine, there 
is feline, bovine and equine anatomy and a guide to neurological exam. 

Figure: the official websites of the Colorado State University and RVC presenting their digital 
veterinary anatomy courses provided by their institutions

Gemma Gaitskell-Phillips et al., 2012 created the OVAM (Online Veterinary Anatomy 
Museum), a website with veterinary anatomical resources, closely linked to the WikiVet 
project. It is a combined effort from 20 partners from around the world and provides an 
intuitive, engaging and dynamic environment created by student-user focus groups in 
collaboration with academic staff.
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Finally, at the website of the Royal Veterinary College (RVC) in London, there is the 
Anatomy online webpage: https://www.rvc.ac.uk/e-anatomy, where the RVC has cap-
tured an astonishing collection of digital images from specimens kept in the Anatomy 
Museum of the same College. Another collaboration between staff from University of 
Murcia in Spain and students of RVC was presented as a: http://www.live.ac.uk/Media/
LIVE/PDFs/LIVEprojectreport2011_AmyRubio.pdf. This project was created with the use 
of Dragster software to reinforce learning in veterinary anatomy by means of drag and 
drop labels on images and videos. The authors developed a 150-computer based veteri-
nary anatomy interactive learning resources covering topographic anatomy, osteology, 
soft tissue dissection, radiology and histology. 

The example of Vet School in Aristotle University of Thessaloniki (AUTh)
The Laboratory of Anatomy, Histology and Embryology at the School of Veterinary Med-
icine, Faculty of Health Sciences, AUTh, has a long-standing history on the veterinary 
education in Greece since its commencement in the mid 50s. Its teaching curriculum 
was presented at the 2010 XXVIIIth Εuropean Association of Veterinary Anatomists 
Congress in Paris. In 2021, during the first lockdown due to Covid-19 pandemic, Colo-
rado State University was offering the digitized version of canine and equine anatomy 
for a short period of time to support veterinary students in learning anatomy online, 
since they were not allowed to attend the classes face to face. Following my inquiry, 
the set-up of the program was achieved through a collaboration between the Colorado 
State University (https://virtualanimalanatomy.colostate.edu/vaanopcomm) and the 
technical support of the eLearning platform of our university. Hence the program was 
installed for our third semester students (Anatomy and Histology III: digestive and 
reproductive system of domestic animals, avian anatomy) who got the opportunity to 
use this resource for a few months, as an additional self-directed study program. Fol-
lowing the completion of the semester over 200 students were asked for the evaluation 
of the resource, and few students (less than 10%) replied to the call. Mainly, although 
the 3D reconstruction of the anatomical areas, in a layer-oriented manner (muscu-
lature, blood supply, nerves etc.) was helpful to understand parts of the organs that 
were not allowed to see in reality, the terminology of the different anatomical parts 
in English limited their understanding. For the same reason, the students could not 
be examined, although they did better at the final exams of the course. Their better 
results cannot be attributed to the program, since there were other many factors, such 
as the online exam procedure through eLearning, that had been applied for lockdown 
purposes. Conclusively, there is a need to create the equivalent information in Greek in 
order to facilitate the learning procedure.

Veterinary anatomy in PLF
Precision Livestock Farming education was increased in recent years. There are e cours-
es such as the following: https://tice.agrocampus-ouest.fr/course/view.php?id=917 giv-
en to students in Animal Science, animal caretakers and/or to the suppliers, or ad-
vanced courses: https://edu.iamz.ciheam.org/Precision_Livestock_Farming/en/, where 
among other course outcomes are animal monitoring through PLF technologies, or un-
derstanding the principles to generate PLF solutions and many more other initiatives. 
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PLF relates master programs also exist, like the one given in Italy: https://www.
mvpa-unina.org/corsi/Livestock.xhtml, with a two year duration, or in France: https://
www.isa-lille.com/academics/master-programs/agricultural-science/course-preci-
sion-livestock-farming/. All these teaching activities include basic anatomy teaching 
and it is necessary to create a veterinary anatomy module for the needs of PLF. Since 
the changes in veterinary anatomy that Salazar suggested in 2002, where a more ap-
plied approach was asked for, twenty years later, we can conclude that the prediction 
was visualized. More user-friendly anatomical approaches are needed to integrate into 
the PLF learning process. The main aspects of PLF consist on environmental, economic 
and social sustainability of livestock productions that could impact on both farmers 
and the community and consumers (Lovarelli et al., 2020). These are the pillars where 
the veterinary anatomy module should be built on, where cutting edge technology will 
be used for the benefit of animals, environment, and humans. This way, the new anat-
omy education tool, will support ONE HEALTH initiative.

Conclusions
This paper depicts the importance and the current concepts of teaching veterinary 
anatomy. It provides the trends towards the use of alternative methods and digitized 
software programs in the veterinary curricula. Finally, it describes the temporary use of 
the canine and equine virtual anatomy provided by the Colorado State University from 
the students of our School. Since PLF education is on the rise, the same module in a less 
detailed manner should be also introduced.
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Abstract
In this study, we develop and validate a supervised machine-learning algorithm to 
monitor grazing and ruminating behaviours of cattle using accelerometer sensors. 
The method is specifically designed for performing real-time classification on re-
source-constrained sensor nodes. Twenty multiparous Holstein cows were used for this 
study. Each cow was wearing an AX3 accelerometer sensor attached to a neck-collar. 
The cows had daily access to a pasture between 7:30 AM and 2 PM for three weeks. Di-
rect observations of the cows’ behaviours were made to validate the sensor data. A new 
decision-tree algorithm (DT) was developed to classify the raw data. The decision-tree 
algorithm was selected for its low computational costs, which makes it implementable 
on the on-cow nodes. The DT presented an overall accuracy of 91% with a sensitivity 
and precision between 89-94% for ruminating and grazing behaviours. The hourly dif-
ference between the predicted and the observed (total) ruminating and grazing times 
(in min/h, mean±standard error) were 1.9±0.09 min/h (3.1% of the observed time) and 
2.2±0.07 min/h (3.7%) respectively. This validation illustrates the potential of the col-
lar-mounted accelerometer to classify grazing and ruminating behaviours. 

Keywords: Accelerometer, dairy cows, machine learning, behaviours classification, 
precision dairy farming, grazing behaviour.

Introduction
Changes in behaviours could provide relevant information about nutrition, (re)repro-
duction, health, and welfare of dairy cows. Progress has been made in monitoring cows 
with electronic and biosensor devices (Lee and Seo 2021). In particular, wearable accel-
erometers have been widely used to automatically assess cow behaviours (Chapa et al. 
2020). For example, grazing and ruminating times were recorded using HOBO acceler-
ometers attached to the cows’ jaws (Rayas-Amor et al. 2017). Martiskainen et al., (2009) 
developed a method for automatically measuring and recognising several behaviours 
of dairy cows, including feeding and ruminating behaviours, based on a multi-class 
support vector machine (SVM). Although it yields high classification accuracy, it is well 
known that SVM require high computational costs (Abdiansah and Wardoyo 2015). In 
another study (Vázquez Diosdado et al. 2015), a decision-tree (DT) algorithm was used 
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among other machine learning techniques to differentiate between lying, standing, 
and feeding behaviours with a neck-mounted accelerometer. The proposed algorithms 
did not consider ruminating behaviour and they also required a high sampling rate (50 
Hz). Other studies (Greenwood et al. 2017; Kasfi, Hellicar, and Rahman 2016; Martiska-
inen et al. 2009; Smith et al. 2016) used algorithms with high computational load (e.g., 
deep learning), which could not be directly implemented on the on-cow sensor.

In practice, the on-cow sensors used for animal behaviour monitoring have very small 
batteries with low processing and storage capabilities. Furthermore, such batteries 
would need to operate properly and autonomously for long periods of time (e.g., five 
years) without being recharged or replaced; specifically for application on commercial 
farms. Therefore, data storage capability and energy consumption are important issues 
in using sensors for monitoring behaviour of dairy cows. A simple DT algorithm could 
be a crucial to reduce the energy consumption and maintenance requirements associ-
ated with recharging of batteries while maintaining acceptable performances. 

In this paper, we validate a DT algorithm to monitor grazing and ruminating behav-
iours in dairy cattle using accelerometer sensors. This method, based on the DT, is 
specifically designed for performing classification in real time on resource-constrained 
sensor nodes. Consequently, it reduces the energy consumption and maintenance re-
quirements associated with recharging of batteries while maintaining acceptable per-
formances. The proposed algorithm and system further support the transition towards 
a continuous and large-scale monitoring of ingestive-related behaviour of dairy cattle. 

Material and methods

Animals and housing
In total, 20 multiparous Holstein cows (milk yield 33.7 ± 3.5 kg/d; mean ± SD) were used 
in this study. Experiments were conducted between June and August 2020 at the Flan-
ders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium. The 
cows had daily access to pasture between 7:30 AM and 2 PM for three weeks (grazing 
period). Drinking water was available ad libitum. Inside the barn, the cows were housed 
in an area compartment of 30 m long and 15 m wide with 24 individual cubicles and 
a concrete slatted floor. The cubicles (n = 24, width 115 cm, length from curb to front 
rail 178 cm, front rail height 70 cm, neck rail height 109 cm, neck rail distance from 
curb 168 cm) were bedded with a mixture of chopped straw, lime and water (Mader et 
al. 2017). The cows were fed roughage ad libitum and concentrates were supplied indi-
vidually by concentrate feeders. 

Data collection procedure
Each cow was wearing an accelerometer sensor (Figure 1). The accelerometer was at-
tached to the left side of the collar of each cow as shown in Figure 1. The acceleration 
data (i.e., 3 orthogonal accelerometer vectors) were logged with a sampling rate of 10 Hz 
(10 samples each second) using Axivity AX3 loggers (Axivity Ltd, United Kingdom). The 
clocks of the observer and the accelerometers were synchronized at the start of the 
measurement.
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Figure 1: A cow wearing an AX3 sensor in the grazing field

Observations on the behaviour of the cows were made directly in the grazing field by 
a trained researcher. Table 1 lists the behaviours recorded along with their descriptive 
definitions. Every one-minute time window was assigned a label to refer to grazing, 
ruminating, and other activity (not grazing and rumination), respectively, based on the 
most frequent behaviour in that minute. As 5 hours of visual observation were avail-
able for 20 cows, 6000 samples of observed behaviours were obtained (i.e., 6000 min). 

Table 1: Description of the observed behaviours and the number of samples of each behaviour 
(Number of 1 min time intervals for each observed behaviour)

Observed 
Behaviours Description Number of 

samples

Grazing A cow has her muzzle close to or near the ground and is 
ripping the forage and chewing it (head position up and down). 2220 (37 %)

Ruminating A cow is chewing and swallowing a ruminating bolus while 
moving her head and jaw with a circular motion. 2520 (42 %)

Other activity Anything that was not grazing and rumination 1260 (21 %)

Total (SUM) 6000 (100 %)

Processing of sensors data
The data processing was performed using MATLAB software (Release 2019b, The Math-
Works, Inc., Natick, Massachusetts, United States).

The accelerometer data (i.e., acceleration along X, Y, Z axes) were downloaded to a lap-
top and converted to .csv files using OmGui software version 1.0.0.43 (Newcastle Uni-
versity, UK). Similar to Benaissa et al. 2019, the acceleration sum vector (Asum) was cal-
culated as follows:

 (1)𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  = �𝑎𝑎𝑎𝑎𝑋𝑋𝑋𝑋2 + 𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌2 + 𝑎𝑎𝑎𝑎𝑍𝑍𝑍𝑍2 
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Where aX is the acceleration along the X-axis, aY is the acceleration along the Y-axis, 
and aZ is the acceleration along the Z-axis.

Figure 2 shows a flow graph of the DT algorithm that was designed to distinguish be-
tween the three considered behaviours. As shown in Figure 2, the DT uses the overall 
dynamic body acceleration (ODBA) calculated from the Asum values as presented in Be-
naissa et al. 2017.

The thresholds of the DT (Figure 2) were determined using the nested cross-validation 
technique as explained in Benaissa et al. 2019. The mean value of 19 obtained thresh-
olds were 0.033 g with a standard deviation of 0.001 for the threshold 1, and 0.013 g with 
a standard deviation of 0.002 for threshold 2. The coefficient of variation was 6 % for 
both thresholds. These low values indicate the general applicability of the thresholds 
for other cows.

Figure 2: Classification approach using DT algorithm based on the overall dynamic body acceleration 
(ODBA). The scheme was designed to be implemented on resource-constrained embedded systems

Evaluation
To evaluate the classification algorithm, the precision, the sensitivity, the specificity, 
and the overall accuracy were used. In addition, the performance of the algorithm was 
evaluated in terms of the difference in ruminating and grazing times reported by the 
observations compared to the sensor. As explained in Benaissa et al. 2019, the leave-
one-out cross-validation strategy was used to calculate the average precision, sensitiv-
ity and overall accuracy. 
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Results and Discussion
The precision, sensitivity, and specificity of the DT algorithm for each considered be-
haviour are listed in Table 2. The sensitivity of ruminating (92%) and grazing (90%) was 
higher than that of other activity (83%). Similarly, the precision of ruminating (89%) and 
grazing (94%) was higher than that of other activity (82%). The specificity was similar 
for grazing (97%) and other activity (96%) and lower for ruminating (91%). The overall 
accuracy was 91%. Table 3 lists the absolute difference in ruminating and grazing times 
(in min/hour and in % of the observed time) between observation and sensor (predict-
ed). The hourly absolute difference between the predicted and the observed ruminating 
time (in min/h, mean±standard error) was 1.9±0.09 min/h (3.1% of the observed time). 
For the difference in grazing time, 2.2±0.07 min/h (3.7%) was obtained. This means an 
error between 6.6 and 11 min, which is less than 4 % of the observed grazing time (the 
observed grazing time ranges from 3 to 5 hours). Similarly, based on Grant (2007), a lac-
tating cow spends 7 to 10 hours ruminating. This means that the daily error of the DT 
algorithm ranges from 13 to 19 min. This is less than 3 % of the daily ruminating time. 
Thus, the proposed DT algorithm can accurately detect grazing and ruminating times.

Table 2: Precision, sensitivity, and specificity  [%] of the DT algorithm for each behavioural class 

Ruminating Grazing Other

Precision [%] 89 94 82

Sensitivity [%] 92 90 83

Specificity [%] 91 97 96

Table 3: Absolute difference in ruminating and grazing times (in min/hour and in % of the observed 
time) between observation and sensor (predicted)  

Ruminating time Grazing time

Difference in 
[min/h] 

Difference 
in [%]

Difference in 
[min/h] (mean±SD)

Difference in 
[%]

Mean 1.9 3.1 2.2 3.7

Standard error 0.09 0.15 0.07 0.12

Conclusions
This paper validated a DT algorithm applied to data from a neck-mounted acceler-
ometer to monitor grazing and ruminating behaviours of dairy cows. The calculation 
procedure and the thresholds of the DT provided in this work could be useful for rapid 
and real-time implementations on resource-constrained embedded systems. The pro-
posed method allows a possible reduction of the power consumption of the sensors 
and enable a large-scale deployment of the monitoring system. Future work will ad-
dress the estimation of the power consumption reduction and a possible deployment 
in commercial farms. 
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Abstract
Knowledge of animal location and grazing behaviour can improve efficiency of man-
agement, especially if data are in real time. Two experiments were carried out in 2018 
and 2020 on commercial dairy farms in England. In Experiment 1, collars were fitted to 
a total of ten cows selected at random across three commercial farms.  Accelerometer 
data were collected at 10 Hz in three dimensions and stored to an Secure Digital card. 
Cows were observed in-person between morning and afternoon milking at 120 second 
intervals for six-hour periods daily over four days during the grazing season. Behaviour 
was classified and recorded as grazing, ruminating or other. These data were used to 
derive a regression between accelerometer data and manually-observed cow activity 
(p < 0.001, predictive accuracy 95%, specificity 91%, sensitivity 98%). In Experiment 2, 
bespoke Long Range Wide-area Network (LoRaWAN)-enabled collars were fitted a total 
of thirty-two cows selected at random across four herds to collect the same acceler-
ometer data. Data were summarised at 120 second intervals for a total of twenty-one 
days and the regression derived in Experiment 1 was used to predict grazing activity. 
Summarised results along with GPS position were uploaded to a LoRaWAN gateway at 
120 second intervals. The data showed clear patterns of grazing and ruminating with 
the longest period of grazing in the evening and little or no grazing at night.These re-
sults can be used to test the hypothesis that grazing patterns can be modified and to 
determine grazing patterns  within a field and over time. 

Keywords: dairy cow, grazing behaviour, LoRaWAN, GPS, real-time data collection

Introduction 
Previous work has shown that accelerometer data can be used to predict feeding ac-
tivity (Pereira et al, 2020) and that cow position can be tracked by GPS (Williams et al, 
2016). Modern LoRaWAN technology allows this data to be collected in real time. Devel-
opments in electronics and battery capacity allows commercial application with a ‘fit 
and forget’ approach possible from a farmer’s point of view. Collecting such data from 
commercial dairy farms would allow grazing practices to be assessed and improved. 
Cow management could be altered to better match the cow’s activities. Grazing times 
and the duration of milking routines could be monitored and bench marked to improve 
commercial herd performance. This paper presents initial results from work carried 
out to deploy such technologies on commercial dairy farms in southern England. 
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EXPERIMENT 1 

Material and methods
Data were collected using dataloggers (Adafruit Feather M0 Adalogger) linked to a tri-
ple-axis digital accelerometer (ADX1345) and a real time clock (DS3231). They were  
powered by a single D-Cell battery (SAFT LS33600) mounted in an industry standard 
enclosure. The enclosures were attached to collars (Kerbl) to give a total weight of 350g. 
Collars were fitted to the neck of each cow such that the enclosure hung ventrally. Data 
(timestamp and three acceleration values in mG) were collected at 10 Hz and written 
to a 16 Mb Secure Digital card. Cows were fitted with collars after an afternoon milking 
and identified with high-visibility neck collars and several debrided Estrotect patches 
(Estrotect, USA). Data collection ran between morning and afternoon milkings the next 
day. Collars were removed on the third day and the data downloaded from the SD cards. 

Cows were selected randomly from three commercial herds (Table 1) and were in an es-
tablished management pattern of grazing day and night with milkings through a her-
ringbone parlour morning and evening. 

Table 1: Details of commercial herds used in experiment 1

Herd size Milk yield Number of cows 
observed Date of trial

C1a 270 9,300 2 2 May 2018

C2a 270 9,300 4 25 May 2018

M 250 9,500 2 15 May 2018

W 160 8,000 2 7 June 2018

a Farm C was used on two occasions

All cows were observed by one person (ATC) whilst they were at grass with observations 
recorded every 120 seconds. Three activities were identified – ‘eating’, ‘ruminating’, 
‘other’. Data and timestamps were encoded into Excel (2016). Where the eating activity 
was the same on successive observations it was assumed the activity was constant 
throughout the 120 second period. Where the activities at start and end of the 120 sec-
ond period differed the data were rejected. 

Data analysis
The three acceleration values were combined into a single vector and the magnitude 
recorded. For each 120 second interval the standard deviation (SD) of the 1200 magni-
tude readings was calculated. The SD of the acceleration vector was compared to the 
observed animal behaviour using logistic regression (Minitab, v16) to model the proba-
bility that the cow was grazing (p(graze)) at the time.  
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Results 
A total of 1456 useable observations were collected from the ten cows with 959 being 
for grazing behaviour and 497 for ruminating. The logistic regression equation was 

p(graze) = exp(Y’)/(1 + exp(Y’)) where Y’ = -3.87 + 0.043 SD (1)

R2 = 0.824, p < 0.001, predictive accuracy 95%, specificity 91%, sensitivity 98%

Figure 1 shows distribution of the observations by eating activity and calculated p(graze) 
value. There is a very clear separation of the two eating activities with very few obser-
vations with intermediate p(graze) values.  

Figure 1: Separation of the 1456 feeding behaviour observations by the derived logistic regression 
equation (1) 

EXPERIMENT 2

Methods and materials 
Bespoke Long-Range Wide-Area (LoRa) collars were developed by SK (www.hoofprints.
xyz) . The collars collected triple axis accelerometer data at 10 Hz and reported the 
standard deviation of the 1200 vector magnitudes (as in Experiment 1). GPS fixes were 
obtained every 120 seconds and reported to six decimal places. The sensors and elec-
tronics circuit board were housed in a standard enclosure and powered by a single 
SAFT D cell battery (as above). Battery life was more than eight months. The enclosure 
was mounted on a weighted cow collar (Kerbl) to give an overall weight of 850 g. The 
collar was hung on the cow such that the enclosure lay high on the left side of the neck 
just behind the ear. 

A LoRaWAN Gateway was installed on a suitable farm building to be as high as possible 
(8 – 12 m high) to give good line-of-sight to all grazing paddocks. Data were transferred 
over the mobile phone network through The Things Network to the Google Data Studio 
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website where a series of bespoke reports were developed to handle and process the 
data and derive the p(graze) parameter as defined in Experiment 1.

This paper will present results from one cow (number 1701) on one day (9 Aug 2020). 
Cow 1701 was in a group of approximately. 150 grazing cows grazed night and day and 
milked twice a day through a 54-point rotary parlour. 

Results 
Collars were fitted to thirty-two cows across four commercial farms (eight cows per 
farm) and data were collected for twenty one consecutive days during the summer 
grazing season. Figure 2 shows the GPS fixes obtained for cow 1701 on 9 August 2020. 
During the first night grazing (00:00 to 06:00) the cow grazed the paddock labelled A. 
She then walked to the buildings and milking parlour (B) before returning to a new pad-
dock (C) for the daytime grazing. She returned to the milking parlour at about 14:00 and 
then went to a new paddock (D) from 15:00 to 24:00. Sunrise was at 05:48 and sunset 
at 20:44 with a minimum temperature of 15oC at 05:00 and maximum of 27oC at 17:00 
(www.darksky.net)

Figure 2: Google Maps image overlain with GPS position fixes for cow 1701 collected over the 
LoRaWAN network every 120 seconds. A, C, D symbols mark successive grazing paddocks, B is the 
milking parlour and associated buildings

Figure 3 shows the pattern of grazing over the 24-hour period. There was very little 
grazing during the hours of darkness with a single short bout around 02:00. There was 
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an intense grazing period immediately after morning milking until 08:22 and then a pe-
riod of ruminating until 10:30. From 10:30 until milking at 14:20 there was a mix of 
short grazing periods and rumination bouts. After the afternoon milking there was 
a long grazing bout from 15:10 to 17:02 and, after a short period of rumination (17:08 to 
17:50), there was another long grazing bout until 20:28 after which the cow ruminated 
until midnight. There seem to be two distinct states during the rumination periods, 
a state with very low p(graze) value (under 0.05) and a second state with slightly higher 
p(graze) values between 0.05 and 0.2.  

Figure 3: Pattern of grazing and ruminating [p(graze)] over a 24-hour period on 9 August 2020 for cow 
1701. Daylight hours overlain in yellow and milking times as blue bars 

Figure 4 shows the GPS fixes for the grazing pattern when the cow was grazing paddock 
C during the day (06:40 to 14:00) . On entering the paddock, she moved to the NW quad-
rant walking large distances between GPS fixes (colour coded yellow) before moving to 
the SW quadrant where she remained from about 07:00 to 10:00 (colours yellow, green, 
light blue); from 09:00 to 10:00 her movements between GPS fixes were much smaller. 
From 10:00 through to 14:00 she moved to the NE quadrant with more movement be-
tween the GPS fix points (coded blue, purple, brown).

Figure 5 shows the cow’s eating activity plotted across the grazing paddock. The cow 
mainly grazed (blue diamonds) over the paddock in the NE and SW areas of the pad-
dock leaving a diagonal band ungrazed. She ruminated in the SE quadrant with little 
movement between the GPS fixes and even spend some time in the very low p(graze) state 
(yellow, stars). Her activity when in the NE quadrant shows bigger distances between 
fixes suggesting she was walking more and only occasionally ruminating. 
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Figure 4: GPS fixes for cow 1701 on 9 Aug 2020 from 06:00 to 14:00. Fixes only plotted every 360 
seconds for graphical clarity. Fixes numbered and colour coded according to the hour of the day 

Discussion and Conclusions
This paper presents initial results from tracking the location and grazing activities of 
milking cows on commercial dairy farms. The use of the SD of the acceleration vector 
magnitudes yielded a very accurate logistic regression with clear separation of the two 
eating activities and very few intermediate values (Figure 1). It is likely that these data 
can differentiate other activities. There appears to be two separate states in the ‘rumi-
nation’ category (Figure 3). On farm observations suggest that the very low p(graze) values 
are associated with a ‘sleep’ state and the higher values with actual rumination and 
bolus chewing. Further attempts to formalise this observation have been hampered by 
the observer affecting the cow behaviour. 

Figure 5. GPS fixes for cow 1701 on 9 Aug 2020 from 06:00 to 14:00. Fixes only plotted 
every 360 seconds for graphical clarity. Fixes numbered and symbol coded according 
to p(graze) band. Band 1 (yellow, star) is very low p(graze) [ < 0.05], 2 (red, cross) is rumination 
[p(graze) 0.05 - 0.25], 3(grey, square) is uncertain feeding activity (p(graze) 0.25 - 0.75) and 4 
(blue, diamond) is grazing (p(graze) > 0.75).   

The GPS data clearly identify where cows graze. These data could be used to monitor 
pasture productivity at the individual paddock level which might aid re-seeding and 
other management decisions. As the dairy industry starts to quantify the carbon-sink 
potential of long-term grassland such data might give some formal objectiveness to 
such decisions. Whilst these data can already be recorded on farm (eg www.agrinet.
ie) our approach would minimise the daily data recording that is often a challenge 
on a busy farm. The  data can also help measure timing and duration of milking (i.e. 
time away from grazing grounds). Intensive housed systems in North America gen-
erally set a target of 3 hrs/day for cows to be away from their housing/feeding area 
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(Gomez & Cook, 2010) to maximise milk production but such monitoring is rarely car-
ried out on grazing units.  

Figure 3 shows the pattern of eating during the day and this graph is typical of data for 
other cows and on other days (data not shown). 

 — Cows do not graze very much at night – once the sun sets there is minimal grazing 
until sunrise 

 — There is a major grazing bout after afternoon milking – here split by a short period 
of ruminating. This may be particularly important in hotter weather (27o C at 17:00) 
where cows suffer heat stress during the day and efforts should be made to allocate 
extra evening grazing in such situations. 

 — There is a major grazing period just after morning milking. On this farm the cows 
do not get the opportunity to graze before morning milking as there is little time 
between sunrise and milking starting.  After the morning grazing there was a long 
period of rumination. 

 — From 10:30 the cow’s activity was more disjointed with short grazing and short ru-
mination periods, and it is likely that intakes (kg DM/hour) were lower at this time. 
The major grass intake periods, on this farm, were early morning (until 10:30) and 
after afternoon milking. 

 — There was a short, intense period of grazing staring at 13:50 until the cows were 
brought in for afternoon milking at 14:29 (Figure 3). On-farm observations con-
firmed that this was common to all cows and all days and helped to increase total 
daily feed intake. In practice the maximum benefit from this grazing period will 
only be achieved if cows are brought in for milking at a consistent time. 

Figure 4 shows a clear diagonal band in the field that cow 1701 did not use. The ground 
slopped down to the NW exposing several gravel ridges across the field and on inspec-
tion the area she ignored only supported low grass growth. Such observations suggest 
that our results could be used to assess variations in grass supply within fields. 

Careful inspection of Figures 3, 4 and 5 allow an eating time-line to be constructed. Cow 
1701 entered the field at about 06:30 after milking and grazed intensively up into the NW 
quadrant before moving to the SW quadrant where she moved around and grazed less 
and even showed some ‘sleep’ behaviour. At around 11:00 she moved to the NE quadrant 
where she grazed and ruminated until she moved to the buildings for milking.

The initial results presented in this paper suggest that the approach used could be 
exploited on commercial farms to improve the precision management of grazing sys-
tems. The authors have since used these results to investigate if timing new grazing 
allocations to fit cow behaviour will increase grass intakes and milk production. 
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Abstract
Increasingly, consumers shift to more sustainable food. Accordingly, cattle farmers pay 
increased attention to each animal using individualised automated monitoring. This 
is easy for cows in production, i.e. during milking, but complicated for grazing cattle. 
Therefore, we aim to develop and evaluate an individualised monitoring system for 
grazing animals based on electronic identification. 

One indicator of welfare is the ability of animals to move, so we developed an ener-
gy-autonomous monitoring system located at the single entry to the trough. Using 
the RFID electronic identification tag, it automatically acquires the times of passage 
to the trough for each animal with a detection rate of 100%. Our hypothesis is that an 
animal that is unable to water needs human intervention. Although the animal is still 
able to water, its health condition may still deteriorate, so we take advantage of the 
animal’s watering passage to collect information on its morphology using 3D cameras. 
The monitoring of well-being via point clouds is generally based on data from the an-
imal’s pelvis, so our gantry aims to collect 3D data from the pelvis from two different 
points of view.  

When an animal is detected, each camera acquires a sequence of three-point clouds. 
87% of these point clouds contain an animal and 29% can be used and selected auto-
matically for further processing, all directly on site. In the future, the monitoring sys-
tem could also collect data from wearable animal sensors. 

Keywords: Welfare monitoring, Pasture, 3D point cloud

Introduction
The diminution of genetic diversity in herds as a result of intensification of milk pro-
duction reduces herd resilience (Makanjuola and Taylor-Robinson 2020). Moreover, or-
ganic milk represents a growing portion of the production (from 3.5% in 2019 to an 
expected  8% in 2031 in Europe) (EC, 2021) to meet consumer demand for increased 
attention to health and animal welfare.  Individualised monitoring of each animal is 
therefore increasingly essential on cattle farms.   

Monitoring animals at the barn is facilitated because it is a protected environment that 
can easily be monitored by sensors or human observers. Pastures are an uncontrolled envi-
ronment, sometimes located far away from the farm, which limits the possibility to install 
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sensors and the time available for direct observation of the animals. Monitoring grazing 
herds is therefore a critical point in the management of a farm (Spigarelli et al. 2020). 

There are two main approaches to monitoring grazing animals using sensors to help 
the farmer to monitor a herd: systems relying on stationary sensors or ones relying on 
sensors attached to animals (Frost et al. 1997). Ruuska et al. (2016) already compared 
these two approaches to monitor eating, rumination and drinking behaviour. It appears 
that sensors attached to animals can be expensive in the case of a large herd while 
the current trend in livestock farming is to increase the size of farms and herds. Fixed 
sensors could be capable to observe all animals, but size of the pastures makes it diffi-
cult to cover all the area. For this purpose, the waterhole access is an ideal location to 
observe free range animals as it constitutes a regular visiting point.  

Each animal should then be identified so that measurements can be individualised. Dif-
ferent solutions can be considered. The first is to use visual recognition of the animal 
via computer vision. Given the decreasing price of cameras and processing hardware, 
this solution is financially interesting but most of the time they are based on the cow’s 
coat which is a problem for breeds with very similar individuals (Okura et al. 2019), such 
as Aubrac or Limousin cattles. This technology is therefore restricted for herds where 
the individuals have a different coat from each other, such as Holsteins or Belgian Blue 
Whites.  Another solution is to take advantage of electronic identification and use RFID 
chips placed directly in the animal’s earring (Williams et al. 2020). This method avoids 
the problems associated with the breed of animal and is much more robust. 

The identification of the animals at the entrance to the watering trough therefore 
makes it possible to monitor the frequency of watering of the animals (Williams et al. 
2020). This indication can be used to detect an abnormality in the animal’s behaviour. 
For example, an animal that does not come to the watering during the day, when in 
these climatic conditions it normally comes two times a day, may be unable to move to 
the watering trough and therefore need the intervention of the farmer.  

Coupled with watering detection, monitoring the animal’s physical development can 
provide useful information to the farmer. Therefore, regular evaluation of indicators 
such as Body Condition Score (BCS) or animal mass is a common tool for herd man-
agement (Anglart 2010). Most successful algorithms of this type are based on 3D data 
of the animal’s pelvis (Spoliansky et al. 2016; Rodríguez Alvarez et al. 2018)BCS is per-
formed manually by experts. This paper presents a 3-dimensional algorithm that pro-
vides a top- ographical understanding of the cow’s body to estimate BCS. An automatic 
BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA, so, adding 
3D cameras on the watering access could produce valuable data for the farmer.  

This data must be acquired and processed automatically to be completely free of hu-
man intervention. Another sensitive point linked to positioning in pastures is the en-
ergy aspect, as the monitoring tool must be able to operate autonomously since most 
pastures are far from the grid access.  

The objective is therefore to propose an energy autonomous and automatic monitor-
ing tool that can be placed on pasture, to produce qualitative data on cattle health and 
well-being. 
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Material and methods
This section presents the autonomous measuring gantry that was created to be in-
stalled on the water through passage to record animal accesses and 3-D views to fulfil 
the monitoring objective 

Structure 
Our gantry is made of galvanised steel. A 3D representation and the plans of the gantry 
are shown in Figure 1. It is 2.9m long and 3.4m high. The bars are hollow tubes of 6cm 
diameter for the lower part of the gantry. The roof is made of square tubes of 6cm side 
as well. All tubes are 3mm thick. The passageway is trapezoidal, 80cm wide at the base 
and 140cm at 2.3m high. Stability is ensured by two 140cm U-shaped beams placed to-
wards the ground perpendicular to the passage of the animals. The details of the plans 
and the used materials are available online1.

Figure 1: 3D representation (left) and plans (right) of the measuring gantry 

One-way passage is ensured by an anti-return door located at the end of the passage. 
On top of the gantry, two solar panels are installed on a 33° slope roof for Belgium lati-
tude. Under this roof there is a box where elements that need to be protected from the 
rain are stored. A shade plate is placed on one side of the gantry. This plate should be 
south facing in the north hemisphere when the gantry is installed so that maximum 
shading is provided over the measurement area during the day. 

To test the structure of the gantry, it was installed in pasture for two pasture seasons. 
The first season was from 13 August to 23 October 2020 and the second was from 12 
May to 15 November 2021. During these two periods, the maximum air temperature 
was 34°C, the minimum air temperature was 0°C and the maximum daily rainfall was 
139mm. These measurements have been recorded by the meteorological station of the 
farm where the gantry was installed. This station was 700m away from the gantry for 
the first season and 160m away for the second season of measurements. The appear-
ance of the gantry and observed damages to it after the two seasons of use was studied 
to conclude on the robustness of the device. 

1  Permanent link: https://gitlab.uliege.be/Justine.Plum/ecplf-justine-plum 
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Taking measurements
As they pass by, the animals are identified via an Agrident ASR650 RFID reader for their 
ear tags placed on the animals’ left ear. This detection triggers the acquisition of point 
clouds using two Intel Realsense D435 cameras via an on-site computer (AAEON UP 
Squared UPS-APLC2F-A20-0432). The acquisition code (python3.7) is available online1. 
After two months of experimentation, we were finally able to adjust the position of 
the RFID antenna to reach a 100% detection rate. The antenna (Agrident APA160 100 x 
60cm panel antenna) is placed at 40cm from the ground. As animals tend to lower their 
heads to pass through the gates (Figure 2), this arrangement ensures detection during 
each passage. When an animal is identified, the time of its passage is recorded. 

Figure 2: Typical passage of an animal through the non-return door (left) and Protective housings 
containing Intel RealSense D435 cameras (right)

To verify the performance of the RFID sensor, we placed a trap camera in front of the 
gate to record all animal passages through the gate. The camera was placed for one day 
and recorded the passages of each animal on the pasture during that day. The images 
from the camera were then manually compared to the passages recorded by the cam-
era and those recorded by the RFID reader. 

The point clouds are acquired via the two 3D cameras. They are placed at 2.3m from 
the ground, one is placed facing the ground, allowing a NADIR view of the animal. The 
other is placed at an angle of 33° to the horizontal. Both are placed 1.3m from the RFID 
antenna, at the beginning of the gantry. This arrangement ensures that the animal’s 
pelvis is visible by the cameras when the head of the animal is positioned at the RFID 
antenna. The Intel RealSense D435 cameras are protected in customized housings. They 
have been created by machining aluminium casting waterproof enclosures (Figure 2).

For the camera with a NADIR viewpoint, the resulting point clouds must be usable for 
the most common algorithms for BCS estimation base on 3D data. Criteria have been 
established to define whether a point cloud is usable or not. A point cloud is therefore 
valid if it represents the entire area useful to the algorithms. From this point of view, 
a point cloud is considered valid if the pelvis of the animal is clearly visible and not cut 



220 Precision Livestock Farming ’22

off, if the point cloud does not contain any holes and if the noise of the point cloud is 
not too high. Examples of a valid and of an invalid point cloud are shown in Figure 3.

Figure 3: Valid (left) and invalid (right) point cloud example

Regarding the camera with a tilted view, this type of view is not widely used in the 
literature. The criteria are therefore not yet established and need to be studied further. 

Energy
The energy requirement of the gantry was estimated at a maximum of 600Wh per 
day with a peak power requirement of 30W. These values were obtained as follows: 
according to the manufacturer, the typical consumption of the computer is 18W, since 
it works 24 hours a day, we estimated the consumption of the computer at 432Wh, 
considering that it does not go on standby. When the computer was processing point 
clouds, its measured consumption rose to 25W maximum, the estimated calculation 
time per day being a maximum of 3 hours for a herd of 30 animals, the additional con-
sumption linked to calculations is 21Wh. To obtain this calculation time, we counted 
10s for a heavy processing per point cloud. Each animal can pass up to five times and 
each pass generates six point clouds. We therefore obtain a total of 9000s of processing 
for 30 animals and therefore 2h30min, rounded up to 3h for safety. According to our 
measurements, the RFID reader consumes up to 5W when an ear tag was detected. 
Since the reader works 24h a day, we have a consumption of 120Wh per day. The total 
maximum consumption is therefore 573Wh with a maximum peak of 30W. 

We decided to use solar panels to power the gantry on the pasture because of the wide 
availability during the grazing season. The amount of energy produced depends on the 
amount of sunlight. A typical grazing season is from April to September, so we focused 
the sunshine during this period for the location. The average 24h exposure during this 
period is 4087Wh/m² in Belgium, where the experiment took place. The orientation of 
the panels will also have an influence. In Belgium, the recommended panel inclination 
is 30 to 35°, supporting the 33° applied to the roof of the gantry. Given the cloudy weath-
er occurrence probability, it was decided that the gantry should be able to operate for 
three days without producing a significant amount of electricity. To meet these needs 
under these conditions, the gantry was equipped with two 300Wp monocrystalline so-
lar panels, a 48V 60A MPPT controller, a 12V 200Ah GEL Ultracell battery, a 12V-5V con-
verter and a 12V-12V converter. A summary diagram is presented in Figure 4. With this 
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material, we can expect a production of 23kWh for our location and the most limiting 
month (November) while the monthly consumption is estimated at 18kWh.

Figure 4: Diagram of the electrical installation

Results and Discussion

Performance of the gantry structure
Initially, the box containing the equipment related to electricity generation was at-
tached to the side of the gantry (Figure 2). This arrangement was modified as the box 
was a sensitive point of the gantry because of cow scratching themselves leading to 
a fell down during the first measurement campaign. The equipment is now placed un-
der the roof of the gantry. 

Both the galvanized steel and the shading panels held up for 2 seasons of measure-
ments. No damage was found, neither from animals nor from the weather. The gantry 
remained in place during both seasons despite the interaction of the animals and the 
wind on the pasture. The structure also supported the various transports via tractor 
and forks for a total of six displacements. Currently, a three-point hitch is used to at-
tach to the gantry during transport. As other transport methods than by tractor 3-point 
hitch can be more convenient as fork lifter, the structure can be adapted so that it can 
support the farmer’s favorite carrier.  

Measurements performance 
The observation with the trap camera resulted in a 100% detection rate of the 21 pas-
sages of the day. Typical cases of passage were represented during this day. These in-
cluded animals passing quickly and slowly, animals of different sizes and two animals 
following each other directly. The RFID sensor is therefore robust and works perfectly 
for this type of use.  

The second season of measurements recorded 1478 animal passages, with an aver-
age of about 14 hours between two passages for the same animal. The total number 
of passages in one day and the number of animals present on the pasture that day 
are presented in Figure 5. We see that the number of passages is not proportional to 
the number of animals present on the pasture, which means that external elements 
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influence the behaviour of the animals, pushing them to move more or less frequently 
to the watering place. These factors will be investigated further in a later study. 

Figure 5: Number of passages recorded per day and the number of animals present on the pasture 
for the second measurement campaign

The 3D camera with a NADIR viewpoint was able to obtain 87% of point clouds contain-
ing an animal. A rate of 29% was constituted of valid images for conventional process-
ing. This proportion results from the fact that during each passage, a set of 3 successive 
point clouds is acquired to accommodate the variable speed animals move through the 
gantry. As the acquisition frequency of the camera is set 3Hz, the time elapsed between 
the first and the last image is 1sec. This delay allows the animal to move through the 
gantry. In the case of a fast passage, the last image tends to be invalid and the first 
tends to be valid, whereas in the case of a slow passage the opposite phenomenon is 
observed. 

During the first season, interruptions were recorded in the measurement process, due 
to hot summer combined resulting in overheating of the computer equipment placed 
in plastic cases. These cases were replaced by aluminum enclosures to dissipated ex-
cess heat, which solved the problem. This problem will depend on the consumption of 
the computer equipment placed on the gantry and therefore on the application of the 
gantry. In both seasons there were interruptions due to hardware failures in the USB 
ports. The problems were related to the hardware itself, so they shall not be repeated 
in other conditions. 

Energy autonomy
There were no interruptions due to a lack of energy. However, the point clouds have 
not yet been processed locally. In our energy consumption calculations we estimated 
the extra consumption due to computing at 21Wh per day. The current energy design 
allows for this increase in consumption. Moreover, we estimated a calculation time of 
10s per point cloud, whereas our algorithms give us a calculation time of less than 2s, 
the overconsumption linked to calculations does not therefore represent a problem to 
be addressed.
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Data obtained and usage
The data obtained during the passages are a time of passages to the water point and 
point clouds. The processing of the point clouds consists, first of all of, segmenting 
them in order to extract the points representing the animal. It then consists on sorting 
them into valid and invalid point clouds. Our firsts algorithms give us encouraging re-
sults, both for the estimation of the BCS and for the sorting of valid and invalid point 
clouds. The passages study allows us to hope to use the monitoring of passages at the 
watering point as a tool for monitoring the health status of the animals. In all cases, 
algorithm development is still in progress.  

Conclusions and perspectives
We conducted research to develop a monitoring tool for grazing cattle herds. To do so, 
we built a gantry to acquire data to calculate indicators of the health status of the an-
imals. We then tested the gantry during two grazing seasons to prove its resilience to 
climatic conditions, the presence of animals and to several displacements in the farm. 
At the same time, we established the ideal positioning for sensors classically used for 
the calculation of animal health indices. We also tested the aspect of energy autonomy 
provided by solar panels and battery on the gantry level. 

The gantry has met the requirements for two seasons. It can therefore be used for 
further research and for practical implementation. On this basis we built three new 
gantries. These will be placed in three more farms in order to collect a large amount of 
new data with a higher variability. This new measurement campaign will also be used 
to get feedback on the use of the gantry on the farm. These gantries have been adapted 
to each farm, with a customised attachment for movement according to the farmer’s 
needs. 

As the gantry is placed in a pasture, it is planned to integrate a data transmission sys-
tem to facilitate access to the data. For example, a Low Power Wide Area Network, such 
as LoRaWAN, could be used to report indicators such as the BCS.
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Abstract
Feed efficiency and dry matter intake (DMI) have major economic impacts on feedlot 
cattle production. Individual monitoring of DMI can provide data for evaluating animal 
health and informing marketing decisions. Currently, there are no commercial technol-
ogies available to accurately measure individual animal DMI. To evaluate the feasibility 
of using bunk cameras to identify cattle feeding behaviour for use in DMI prediction, 
forty-eight Angus-cross steers were housed in four pens with concrete bunks. Pens 
were equipped with solar-powered camera modules placed 4.6 m above the ground. 
Steers were uniquely identified using colored adhesive patches that were placed at var-
ying locations along the spine. Images were taken at one-minute intervals, and initial 
machine vison algorithms were developed to test identifying patch combinations and 
recording frequency of daily bunk visits (BV) and mealtime (MT). Individual MT were 
summed to daily eating duration (ED). Trained observers reviewed camera images and 
reported daily BV and ED for each steer. Algorithm BV and ED predictions were com-
pared to those reported by the reviewers. The effect of camera image interval on MT 
was evaluated using reviewers that observed steers pen-side. Based on 166 records, 
average ED was reported as 132 ± 31 by image reviewers. Algorithm ED predictions av-
eraged 13 min less than reviewer ED, based on 137 individual records. On average, MT 
measured pen-side was two minutes less compared to MT predicted by the algorithm. 
These results suggest that bunk cameras can identify ED and may be useful for individ-
ual steer DMI prediction in group pens. 

Keywords: feedlot, cameras, dry matter intake, bunk management

Introduction
Accurate prediction of animal dry matter intake (DMI) is fundamental for optimization 
of feedlot cattle production. With increasing pressure for a reduction in greenhouse 
gas emissions from the livestock sector, enteric methane emissions must be accurate-
ly quantified. Models predicting enteric methane intensity require DMI, as methane 
production is proportional to feed consumed (van Lignen et al., 2019). Improvement in 
feed efficiency, measured as unit of live weight gain per unit of feed consumed, is con-
strained by the inability to commercially measure DMI on an individual basis.

Current methods for measuring individual animal DMI are costly and impractical in 
conventional production systems. Previous research has estimated DMI using dietary 
net energy, animal requirements, and body composition (Oltjen et al., 1986; Hicks et 
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al., 1990; NRC, 2016). However, such models typically over or under predict, as DMI is 
controlled by a multitude of complex factors, including feeding behaviour (Allen, 2014). 

Eating duration, meal frequency, and other feeding behaviours have been positively 
associated with DMI in beef (Kelly et al., 2020; Parsons et al., 2020) and dairy cattle (del 
Mol, 2016). These studies focused on identifying correlations in small research pens 
with limited animal competition, which may not accurately reflect feeding behaviour 
in larger, commercially viable pens. The aim of this study is to use bunk cameras and 
a machine-learning vision algorithm to evaluate the feasibility of monitoring individu-
al animal feeding behaviour in conventionally, group-housed cattle. 

Material and methods
This study was conducted with an approved University of California, Davis Institution-
al Animal Care and Use Committee protocol at the UCD Feedlot (Davis, CA). Forty-eight 
Angus-cross steers (initial body weight 343 ± 27 kg) were weighed, stratified by body 
weight (BW), and allocated to four pens (12 steers/pen), so each pen had a similar mean 
initial BW. Cattle were managed to a slick bunk and fed a high-energy diet twice daily. 

Pens were equipped with 12 m concrete bunks and an automated waterer. Solar-pow-
ered, WiFi-enabled Precision Livestock Technologies, Inc. (PLT; Dallas, TX, US) camera 
modules were placed 4.6 m above the ground at the end of bunks. Two pens had a single 
camera module, and two pens had two camera modules, one at each end of the bunk. 
The cameras captured bunk images at one-minute intervals from sun-up to sun-down, 
and at 15-min intervals through the night. Steers were uniquely identified using color-
ed adhesive patches that were placed at varying locations along the spine (Fig. 1). An 
initial version of a machine vision algorithm was developed by PLT to identify steers by 
patch combination and record daily the daily frequency of bunk visits (BV) and meal-
time for each visit (MT). Patch color combinations and orientations were correlated, 
and the algorithm recognized individual animals and recorded their presence within 
a defined zone (e.g., head in bunk). Images were then compared in sequence to record 
the duration of time a steer spent within a particular zone. This initial machine learn-
ing algorithm was developed using a two-stage approach: 1) a YOLOv5 model was used 
to detect steers in an image, and 2) the deep features were extracted from the detected 
regions using a convolutional neural network model that was trained with ArcFace 
loss for animal identification using a dataset that was gathered and annotated by PLT. 
Cosine similarities were calculated between the resulting embeddings to group and 
identify images of steers by visual similarity. Such advanced techniques were used to 
also estimate individual animal BW within the defined zone. 

Individual animal MT within a day were summed, and daily eating duration (ED) was 
calculated for all animals in the pen. Algorithm predictions were evaluated using a 28-d 
observational period. Six interns were trained to identify steers by patch combination 
and record the BV start and end time using images from the cameras. Observer training 
consisted of a 2-hr instruction session and successful completion of a training dataset. 
Observers ED totals were required to be within ±5% of the trainer’s estimate. 
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Figure 1: A camera image capturing steers eating at the bunk

To ensure the images taken at one-minute intervals were an accurate depiction of ac-
tual animal MT and ED, trained observers reviewed animals pen-side. One reviewer 
was assigned to a single pen and recorded BV frequency and MT for all 12 animals in 
the pen. Pen-side reviewers observed cattle for 3-d during the observational period. On 
days of review, observation began at feeding time (0630 h) and continued until 1000 h, 
and again in the afternoon at feeding time (1430 h) until 1800 h. Mealtime observed 
pen-side was compared to MT predicted by the algorithm and camera observations 
only during the time pen-side observers were present. 

Statistical Analysis
All statistical analyses and plot generation were performed in R (version 1.3.1093).  
Plots were generated using the ggplot2 package. Correlations were evaluated in the 
base R package, using the cor.test function.

Results and Discussion 
Across 240 daily individual animal observations, average ED was 142 ± 31 minutes 
based on camera reviewer observations. Observers were able to successfully identify 
cattle by patch combination in pens with single and double cameras. Algorithm predic-
tions from pens with single cameras were inaccurate, an image from both angles was 
required. Thus, algorithm results are only presented for pens with two cameras. Table 
1 presents the mean daily BV frequency and ED by observers using camera data and 
the proposed algorithm across 137 animal records. Average ED in the current study was 
consistent with the average ED (142 ± 25 min) reported by Kelly et al. (2020).

Table 1: Mean daily bunk visit (BV) frequency and daily eating duration (ED) for camera observation 
and algorithm predictions

Parameter Camera Observation Algorithm

Daily BV frequency 9.03 7.68

Mean ED, minutes 92 79

SD ED, minutes 29 28
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Figure 2: Algorithm Prediected vs. Observer Eating Duration

Figure 1 depicts ED predicted by the algorithm compared to ED observed by the review-
er (R2 = 0.64). Algorithm and observed ED were highly correlated (r = 0.80; P < 0.001). 
Compared to observations by reviewers, on average, the algorithm underpredicted ED 
by 13 minutes and the frequency of BV by 1.3. Analysing differences in reviewer and 
algorithm data indicates opportunity for further algorithm development. The algo-
rithm would occasionally miss the last one or two BV of the day when daylight was 
decreasing, at approximately 1930 h. Considering this, the data was re-analysed, omit-
ting BV during periods of low light. By omitting these data points the R2 improved 
to 0.74. These results indicate supplemental visible or infrared illumination could im-
prove algorithm ED estimates. Further, at times of maximum bunk capacity the algo-
rithm struggled differentiating patch combinations. However, this shortcoming could 
be eliminated through additional algorithm training and more precise placement of 
adhesive patches. 

Table 2: Mean mealtime (MT) for pen-side camera observations and algorithm predictions

Parameter Pen-side Camera Algorithm

Mean MT, minutes 43 42 41

SD MT, minutes 15 17 17

Images taken at one-minute intervals were sufficient for accurate measurements of 
cattle MT and ED. Table 2 shows the average MT for pen-side observations, camera 
observations, and algorithm prediction. Compared to the mean ED values in Table 1, 
MT data in Table 2 differs because cattle were only watched at and immediately af-
ter feeding time. Pen-side and camera observations were highly correlated (r = 0.93; 
P < 0.001). When pen-side MT observations were compared to algorithm predictions, 
a slight reduction was observed (r = 0.83; P < 0.001). Figure 3 compares pen-side and 
camera MT observations. Eating duration predicted by algorithm and pen-side observa-
tions are shown in Figure 4. Mealtime observed by camera reviewers followed pen-side 
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MT observations more closely (R2 = 0.86) than algorithm MT predictions (R2= 0.75). The 
authors believe if pen-side reviewers had watched cattle continuously, from sunrise 
until sunset, that total daily ED predicted by the algorithm would more closely match 
pen-side ED. However, considering the difference in R2 values in Figures 3 and 4, these 
results suggest the algorithm could be further refined to improve MT predictions.

Figure 3: Meal Time Observed Pen–side vs. Camera Observed

Figure 4: Meal Time Observed Pen–side vs. Algorithm Predicted

The current results suggest the algorithm can predict individual animal ED with rea-
sonable accuracy. Eating behaviour data collected from cameras using algorithm could 
be used in equations to estimate daily individual animal DMI. However, the initial ver-
sion algorithm did not accurately predict the daily BV frequency. The frequency of BV 
may be more important than MT and ED when predicting DMI. Parsons et al. (2020) re-
ported a positive correlation for BV frequency and DMI but detected no relationship be-
tween DMI and ED. Head down ED, which was not discernible from the initial algorithm 
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developed, was the most influential on DMI (Parsons et al., 2020). Adding additional 
illumination and further algorithm training could improve prediction results.

Conclusions
In the current study, labour was a major constraint. The dataset could be improved 
with continuous pen-side observation for comparison of daily ED totals and BV fre-
quency. The identification patches frequently fell off and required re-application. In 
a commercial setting, patching cattle would not be possible. However, many commer-
cial feedlot and dairy production systems use radio frequency identification tags that 
may be able to be correlated with camera images and identify when individual animals 
are at the bunk. Further evaluation is required to determine camera ability to identify 
eating behaviour overnight and during inclement weather when visibility is limited. 
Additional research to develop DMI prediction equations using animal feeding behav-
iour is being conducted.
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Abstract
Research and commercial precision livestock management tools have been developed 
to provide individual management for swine and dairy industries. However, few tools 
have focused on beef production due to the extensive nature of the production sys-
tem. Current feed management relies on visual assessment of residual feed by skilled 
workers, making it time-consuming and prone to error. This study tested the ability 
of a low-cost depth camera (Microsoft Azure Kinect DK) mounted directly above an 
individual feeding bunk to estimate the weight of residual feed within the bunk. Two 
typical feedlot finishing diets with variation in composition and bulk density were test-
ed: 1) high bulk density with more high moisture corn and 2) medium bulk density 
with more sweet bran. Each diet was weighed in increments and added into the bunk 
to approximately 23 kg. Twelve top-down depth images were captured for each feed 
addition, and the feed was randomly stirred after each picture. The volume of the feed 
was approximated by using background subtraction and voxel summing. The estimat-
ed volume and measured bulk density of each diet as-fed were used to calculate the es-
timated weight. Results show that a linear model can be used to determine the weight 
of high-density feed (Diet 1, SE of the estimate (S) = 0.52 kg), whereas a 2-order polynomial 
model was a better fit to estimate the weight for less dense feed (Diet 2, S = 0.45 kg). This 
work demonstrates that the proposed PLF tool can provide accurate bunk management 
information for beef cattle.

Keywords: bunk management, depth sensors, feed residue, image technology, PLF

Introduction
The agricultural sector has adopted different mechanization systems to achieve sus-
tainable production. For the livestock industry, Precision Livestock Farming (PLF) was 
identified as an alternative tool to provide solutions to current and emerging issues the 
industry is facing (Berckmans, 2014). Advanced technology capable of providing indi-
vidualized and accurate information for improved animal health, well-being, and pro-
duction management has been developed for the swine and dairy industries. However, 
to date, development of these technologies has been limited within the US feedlot/
feedyard production systems.

Feedlot management is one of the most crucial stages in cattle production. According 
to the Iowa State University (ISU) Extension publication – Beef Feedlot Systems Manual, 
with typical inventory turns of 1.7 times per year, calves can gain an average of 272 kg 
in a period of 203 days when properly cared for and managed (Euken et al., 2012). Labor 
plays a vital role in feedlot management. For a US feedlot to be profitable, at least 8-10 
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employees are needed to manage and care for 10,000 cattle, indicating a minimum of 
10 hour/day and 6 day/week workload from the employees (Wagner et al., 2014). The in-
tensive labor requirement is a huge challenge for the industry due to recent reductions 
of available labor and the increased difficulty of recruiting agricultural workers in rural 
areas. Farmers and feedlot owners will increasingly depend on technology that will 
allow them to keep their feedlot profitable and maintain systems that are sustainable 
for the future of the industry. One obvious area for adaptation of advanced technology 
is to provide producers with the ability to accurately assess daily pen feed intake (often 
referred to as “bunk calling” by producers). Currently, feed bunk management is solely 
determined by a subjective human visual determination of residual feed refusal esti-
mates (kg of feed present 24 hr. post feed delivery). A potential solution for enhancing 
bunk management is to use innovative computer vision technologies that rapidly and 
accurately determine residual feeds, thus providing a significant improvement in bunk 
management.

Many studies have been conducted on PLF, focusing on improving the production, re-
production, health, and welfare of the animals, and reducing the environmental im-
pact from livestock farming (Berckmans, 2014). Alternative monitoring tools such as 
imaging technologies, proximal sensing, and sound monitoring, have been evaluated 
to better understand animal productivity and well-being for livestock species, includ-
ing beef, swine, and poultry (Condotta et al., 2018). For example, real-time sound anal-
ysis was studied to assist in diagnosing respiratory diseases in pigs by using micro-
phones and algorithms to distinguish between a cough of a healthy pig and for a sick 
pig (Berckmans, 2014); real-time image analysis was used to monitor the behavior of 
housed broilers using eYeNamic system with RGB cameras (Berckmans, 2014). PLF is 
a fast-growing research area with many opportunities for alternative technology and 
innovation for robust management in the livestock industry.

Imaging technologies have been explored in PLF with added advantages, as these prox-
imal sensing tools are more efficient in data collection and can monitor individual 
objects. Among different imaging sensing technologies, consumer-grade depth camer-
as have been studied on pigs and in cornfields to assess their efficacy for agricultural 
applications (Condotta et al., 2020). Condotta et al. (2018) conducted a study using depth 
images to obtain dimensions of the pigs for weight estimation. In their study, different 
biometric characteristics of a standing pig in the crate including length, width, shoul-
der width, and height were measured using depth cameras (Kinect I, Microsoft, Seattle, 
WA, USA). Approximation algorithms were developed using MATLAB, and the animal’s 
volume and weight were accurately estimated with a standard error of 3.01 kg and 
a linear regression coefficient of determination (R2) of 0.99 (Condotta et al., 2018). We 
believe that the use of depth cameras presents a potential for accurate feed residual 
estimation that can be used for automated feed bunk management for feedlot cattle.

The objective of this research was to evaluate the feasibility of using a low-cost time of 
flight depth camera (Microsoft Azure Kinect DK) mounted directly above a fiberglass 
feed bunk to estimate the weight of residual feed from two commonly fed mixed diets 
within the bunk. 
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Material and methods
This research was conducted in the Ruminant Nutrition Animal Lab in the Animal Sci-
ence Department at the University of Nebraska-Lincoln. All data collection was con-
ducted in an empty individual pen with no animal involvement.

This research used the Azure Kinect DK time of flight depth camera (Microsoft, Seattle, 
WA, USA) for depth image collection – the upgraded generation of the previous Kinect 
I and Kinect II. It is equipped with a 1-mega pixel (MP) resolution depth sensor with both 
wide and narrow field of view (FOV) options, a 12 MP resolution color (RGB) camera for 
adding color streams that align with the depth streams, accelerometer, and gyroscope 
(IMU) for sensor orientation and spatial tracking (Microsoft, 2020). This project obtains 
and utilizes both RGB and depth images for measuring the geometric characteristics to 
calculate the objective depth profiles of the mixed diet feed in the feed bunk. 

Data collection
A fiberglass feed bunk used for individual cattle feeding was used in this study for proof 
of concept. Two typical Nebraska (US) feedlot finishing diets with variation in compo-
sition and bulk density were tested: 1) high bulk density with more high moisture corn 
and 2) medium bulk density with more sweet bran. Table 1 lists the ingredient compo-
sition and dry matter inclusions of the selected mixed diets. The as-fed bulk densities 
of both mixed diets were measured prior to data collection and are included in Table 1. 
The visualization of the two selected mixed diets is shown in Figure 1. The depth cam-
era was positioned at the top of the bunks facing down the center of the bunk to obtain 
RGB and depth images of the bunk bottom surface (Figure 2). 

Figure 1: Visualization of the two selected mixed diets commonly used in Nebraska beef feedlots. 
Left: Diet 1. Right: Diet 2 

A C++ program leveraging OpenCV and the Kinect SDK were written in the Microsoft 
Visual Studio (version 2019) and used to acquire images, obtain factory calibration data, 
and correct for lens distortion. Prior to adding feed in the bunk, an empty bunk image 
was taken and stored as the background image. This background is subtracted from 
each subsequent image (with feed present) to measure the volume of the feed. Effec-
tively, the 3D space considered by each pixel in the depth image is a long, skinny pyr-
amid emanating from the camera center. The pyramid, which would otherwise extend 
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to an infinite distance, is truncated with the bottom established by the background 
depth and the top established by the top surface of the feed. The summation of the 
individual volumes of these truncated pyramids forms the total feed volume.

Table 1: Composition and ingredient inclusions (expressed as percent dry matter contents) and 
measured bulk density for the two selected mixed diets used in the study

Overall Parameter Diet 1 Diet 2

Diet bulk density (kg/m3) 518.78 449.01

Diet dry matter (%) 67.09 59.21

Composition Dry matter inclusions (%)

Dry rolled corn 26.67 13.33

High moisture corn 53.33 26.67

Sweet bran – 40.00

DDGS – –

Silage 15.00 15.00

Supplement 5.00 5.00

Figure 2: Depth camera and bunk setup. The monitor shows the RGB picture of the bunk bottom

Each diet was weighed in 2 – 2.5 kg increments using a calibrated scale and was added 
into the bunk to approximately 23 kg. Twelve top-down depth images were captured for 
each feed addition, and the feed was randomly stirred after each picture to simulate 
animal feeding events. 
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Data analysis
The images were processed using MATLAB (version 2021b) to estimate the volume of 
the feed in the bunk. The volume of the feed was approximated by using background 
subtraction and voxel summing. Figure 3 demonstrates an example of the images col-
lected for Diet 1. The estimated volume and measured bulk density of each diet as-fed 
were used to calculate the estimated weight. For each diet, the scale-measured weights 
were used as independent variables (X) and were plotted against the image-estimated 
weights as dependent variables (Y). A linear regression or polynomial model was fitted 
between the measured and predicted weights. Model fitted equations, associated coef-
ficients, and coefficient of determination (R2) are provided. The goodness of the fit was 
represented by R2 and the standard error of the model predicted weights were calculat-
ed from the residual standard errors. 

Results and Discussion
Figure 3 provides an example of the raw colour and depth images collected for Diet 1 
at 18.18 kg, and the corresponding processed depth image after background subtrac-
tion and voxel summing. Figure 4 illustrates the relationship between scale-measured 
weights as the independent variables (X) and estimated weights from image-predicted 
volumes and bulk density as the dependent variables (Y) for the three mixed diets (top 
– Diet 1 and bottom – Diet 2). The model fitted equations and the R2 values were includ-
ed. The 95% confidence bands of the regression of each mixed diet are demonstrated 
on each plot. 

Figure 3: Example figures showing the raw color and depth images and the corresponding processed 
depth image after background subtraction and voxel summing for Diet 1 at 18.18 kg 

Results show a strong linear and polynomial relationship between the scale-measured 
weight and predicted weight for Diet 1 and Diets 2, respectively. While all regressions 
showed an R2 over 0.99, the standard error of the regression (S) was 0.52 kg and 0.45 
kg for Diet 1 and Diet 2. This difference in the standard error of the regression can be 
caused by the characteristics of the mixed diets, including the dry matter inclusions, 
composition, moisture content, bulk density, and particle sizes. As shown in Figure 
2, Diet 1, consisting of a higher amount of high moisture corn, demonstrates slightly 
bigger ingredients than that of Diet 2. With different ingredient particle sizes, different 
moisture contents, and non-uniform interior air spaces, this creates difference in es-
timating the volume of diet with substantially different bulk densities. However, when 
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compared to the almost solely manual observation of bunk calling being done in com-
mercial feedlots where 3 – 5 kg error in decision making for the next-day feed delivery 
is common, the results demonstrated much smaller errors of less than 1 kg. Thus, a lin-
ear model can be used to determine the weight of high-density feed (Diet 1, SE of the 
estimate (S) = 0.52 kg), whereas a 2-order polynomial model was a better fit to estimate 
the weight for less dense feed, Diets 2, S = 0.45, respectively.

Figure 4: Relationship between scale-measured weights and estimated weights from image-
predicted volumes and bulk density for the three mixed diets (top – Diet 1 and bottom – Diet 2). The 
model fitted equations and the R2 values were included 

Conclusions
This paper evaluated the feasibility of using a low-cost time of flight depth camera 
mounted directly above a fiberglass feed bunk to estimate the weight of residual feed 
from two Nebraska feedlots commonly fed mixed diets within the bunk. Results show 
that a linear model can be used to determine the weight of high-density feed with 
a standard error of the estimate of 0.52 kg, whereas a second order polynomial model 
was a better fit to estimate the weight for less dense feed with a standard error of the 
estimate of 0.45 kg. This work demonstrates that the proposed PLF tool can provide 
accurate bunk management information for US feedlots.
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Abstract
Automated monitoring of sow welfare and behaviors is a crucial tool in precision swine 
farming, giving farmers access to continuous streams of sow health information. Moni-
toring the activity of the sows helps farmers detect stress, sickness and signs of farrow-
ing, which enables the farmers to provide timely care. Prior work in swine monitoring 
frequently uses video cameras, which have lighting and large storage and processing 
requirements. Alternatively, other work has used wearable sensors, which have limited 
longevity due to durability and battery requirements and suffer from scalability chal-
lenges due to the need for individual sensors worn by each sow. 

The objective of the study was to determine the effectiveness of geophone sensors 
mounted under the floor that measure the structural vibration of a farrowing pen to 
determine posture changes and animal feeding activity. A total of 6 farrowing/lactat-
ing sows and litters have been used in these studies. The data were collected from 
a minimum of 3 days before farrowing to approximately 25 days post-farrow.  Up to five 
geophones were used for activity classification. Machine learning classification meth-
ods are used to detect the position and feeding activity of the sow and her piglets, in-
cluding tree classifiers and principal component analysis. Accuracies of over 95% were 
achieved in sow posture and feeding activity classification, indicating the potential of 
monitoring ground vibration as a source of health information.

Keywords: swine monitoring, structural vibrations, geophones, feeding, posture

Introduction
Precision swine farming requires means to continuously monitor pig health informa-
tion. While manual intervention and observation by farmers and veterinarians remains 
the ideal, increasing productivity demands increasing scalability. Thus, numerous 
sensing approaches are being developed to observe more fine-grained details which 
can allow swine farmers to optimize the care of their animals.

The period between farrowing and weaning is a particularly sensitive time where pigs 
must be closely monitored. Currently, the average preweaning mortality in US swine 
industry is nearly 18% (Stalder, 2017). Illness, piglet size, and parent-induced injury all 
contribute to this issue (Alonso-Spilsbury et al., 2007; Baxter et al., 2011). These issues 
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can be improved if addressed by caregivers in a timely manner. Thus, this period is es-
pecially crucial for continuous pig health monitoring.

Prior work to continuously monitor swine utilizes video cameras or wearable sensors, 
each with their own drawbacks. Wearables face cost, application on the animals, bat-
tery life, and data transfer challenges which hamper true scalability (Lao et al., 2016; 
Graña Possamai et al., 2020). Video cameras can monitor whole farrowing pens at once, 
but at the cost of large bandwidth, storage, and data processing requirements (Chen et 
al., 2008; Leonard et al., 2019; Condotta et al., 2020). In most cases, this leads to crucial 
health information only being available to farmers after weaning when this data can 
be retrieved and processed.

Ground and floor vibrations have shown promise as a means to monitor health and 
behavior of humans and animals. Instead of directly applying a sensor to the pigs, this 
approach instruments the farrowing pen structure (Alwan et al., 2006; Jia et al., 2016; 
Pan et al., 2019). Activity and motion on that structure then create vibrations, which 
we measure to indirectly observe the activities that caused them. In humans, this has 
enabled indirect measurement of weight, pulse, gait, and overall activity level (Jia et al., 
2016; Fagert et al., 2020; Bonde et al., 2021; Codling et al., 2021).

Applying structural vibration monitoring to swine farming comes with its own set of 
unique challenges. Since these sensors both need contact with the structure on which 
the pigs reside, and need to avoid damage from the pigs, they are mounted underneath 
the farrowing pen. This location prevents the pigs from damaging the sensors directly 
but creates its own challenges. First, the location exposes sensors to refuse and spillage 
that falls through the pen floor necessitating increased device ruggedness. The sensors’ 
location beneath the pen also makes them inaccessible while the pens are occupied and 
thus the system needs to be manageable and configurable remotely. Finally, the location 
creates obstacles between the sensors and data receiver, making Wi-Fi communication 
unreliable (Ariyadech et al., 2019; Bonde et al., 2021; Codling et al., 2021). 

Figure 1: Sensor Network Data Flow Diagram

This paper evaluates the utility of geophone sensors on the floor for automated pig 
health monitoring, using feeding activity and posture recognition as example applica-
tions. We present the design strategy of the novel geophone monitoring approach to 
address the challenges of corrosion, remote management, and unreliable communica-
tions. First, the experimental deployment setup will be presented, evaluating the over-
all system in terms of longevity, data volume, and survivability in the farm environ-
ment. Then, the machine learning and signal processing tools will be outlined which 
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allow observation of feeding behavior and posture using the collected vibration signals. 
Finally, the resulting recognition accuracy will be discussed with its implications for 
future development of piglet and sow monitoring systems.

Figure 2: Geophone instrumentation of a farrowing pen. On the left, green boxes indicate the 
location of each sensor node, while the right shows a photo of an instrumented pen with a pregnant 
sow in it. One sensor is not visible because the sow is directly on top of it

Material and methods
Data collection was performed in accordance with federal and institutional regulations 
regarding proper animal care practices and was approved by the U.S. Center for Animal 
Research Institutional Animal Care and Use Committee as EO#143.0.

Sensing System for Farrowing Pens
To provide a continuous stream of pig health information, a semi-autonomous net-
work of custom-built vibration sensors is deployed in the farrowing pens. These sen-
sors use geophones to collect the vibrations in the pen structure which are caused by 
the movements of pigs, workers, equipment, and other environmental sources. The sig-
nal content of these vibrations is unique depending on pig, location, and structural pa-
rameters, allowing us to differentiate activities and the pigs’ body posture from them.

This sensor network is based on a design originally proposed for deployment in rural 
Thailand (Ariyadech et al., 2019), then refined to improve system reliability (Bonde et 
al., 2021; Codling et al., 2021). Figure 1 shows the flow of data in the current iteration. 
Vibration information travels left to right, starting at the physical sources in the far-
rowing pen, collected by the sensors, transmitted to the aggregator, then uploaded for 
processing away from the farm environment. The only data flowing back into the sys-
tem is management information, such as configuration changes and monitoring con-
nections, enabling the network to run with minimal interaction when combined with 
self-recovering sensors.
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For evaluation, we deployed this network in 3 adjacent farrowing pens with 5 sensors 
in each, laid out as shown in Figure 2. Since the ideal placement of these sensors in the 
farrowing pen is unknown, they are spread so as to cover the entire pen equally. The 
experiments were repeated twice, starting data collection at least 3 days pre-farrow 
and weaning up to 25 days post-farrow according to the normal schedule followed at 
USMARC. The right side of Figure 2 shows a pregnant sow within 3 days of farrowing in 
a pen instrumented for this study.

Sow Posture and Feeding Activity Monitoring
After collecting the ground vibration data, the signals and predict the sow postures and 
feeding activities were analyzed through machine learning. Ground vibrations induced 
by the sow and the piglets are first preprocessed to reduce environmental and sensor 
noises. Combination of a low-pass filter (200Hz) with a Wiener filter that adapts to 
different noise thresholds removes noises and higher frequency content that are less 
related to the pig activities in the signals. This allows activities which cause lower am-
plitude signals, such as nursing, to be observed in the ground vibrations.

After noise filtering, ground vibration signals, such as those shown in Figure 3, are seg-
mented into 5-second sliding windows for feature extraction. In this study, the length 
of 5 seconds is chosen based on the observations of the minimum duration of the sow 
maintaining a single posture (specifically sitting, which typically serves as a transition 
between kneeling and standing). These sliding windows are overlapped by 50%, which 
allows any temporal dependency between adjacent windows to be captured.

To monitor the posture and feeding activities of the sow and piglets over time, vibration 
signal features that are representative of their motions are extracted. These features 
include the mean, variance, the maximum and the minimum value of signal magni-
tudes in the time and frequency domains, which are found to be effective in classifying 
different types of activities in prior works.

Time- and frequency-domain features are extracted to represent the sow postures and 
activities. The time-domain signal features, such as the voltage at each sample from 
the geophone, typically contain information about the intensity of the movements, 
which allows us to separate activities from the heavier sow from those of the light-
er piglets. Frequency-domain signal features, such as the Discrete Fourier Transform 
(DFT) magnitudes of the time domain signal, provide valuable information about the 
types of forces that the sow or piglets exert on the floor. For example, the sow’s stand-
ing posture results in vibration data that have a wide frequency band because of the 
sow’s stepping impulses. As a result, a total of 60 features were extracted.

The features extracted above are compressed through principal component analysis 
(PCA). A preliminary test shows that the first 10 components cover 98% of variances in 
a sample day of vibration data.

The postures of the sow are divided into three categories: standing, sitting/kneeling 
and lying, as shown in Figure 5. To predict these postures, we use a gradient boosted 
tree classifier with the compressed features. The gradient boosted tree is chosen be-
cause it automatically handles missing data due to hardware disconnections. In our 
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model, the maximum depth of each tree estimator is 3 and the total number of esti-
mators is 100. This enables non-linear fitting through the combination of many weak 
learners. The classifier is trained and tested through a 5-fold cross validation with the 
data collected during the deployment.

In order to remove the outlier windows that are filled with environmental disturbanc-
es or sudden excitement from the piglets, the predicted results are then smoothed 
through a moving majority vote algorithm over 5 windows. As shown in Figure 6, the 
noisy windows from the original predictions are corrected by their adjacent windows.

Figure 3: A sample of raw ground vibration signals. Periods of piglet activity and nursing are marked, 
showing a marked change in signal between these states

Figure 4: Pictures of sows in different postures

Figure 5: Photos of sow ingesting and nursing during the sensor deployment

The feeding activities include sow ingestion and piglet nursing. Figure 5 shows photos 
defining each of the activities we predicted based on the geophones’ data. Sow inges-
tion activities are detected through the vibration of the feeding trays and the water 
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nozzles, for eating and drinking respectively. These components have different materi-
als and shapes and therefore generate different vibration signals that propagate to the 
ground. Nursing activities are characterized by a collection of short, high frequency im-
pulses from different piglets superimposed. Ingestion activity is then detected through 
a random forest classifier, which gave the best performance during the preliminary 
testing with one day’s data.

Results and Discussion
These results are drawn from performance data from deployment at the U.S. Meat An-
imal Research Center. The sensor layouts were described in the methods section, and 
cameras were installed above the pens to provide ground truth. These results are based 
on the final of several experiment repetitions but are indicative of the full study. Each 
repetition monitored a different trio of sows in the same conditions over the same time 
period relative to farrowing.

Sensing System Applicability for Farrowing Pens
The applicability of the geophone sensor network is evaluated based on reliability and 
data efficiency. The sensors are powered by wall plugs, obviating the traditional power 
constraints of wireless sensor systems. However, reliability remains a concern because 
of the environment under the floor and the obstructions for Wi-Fi communication.

The number of sensors active during a given hour was tracked over the course of each 
repetition to determine the overall reliability of the sensor network. While up to half 
of the sensors experienced errors simultaneously, all sensors recovered eventually, 
and all pens retained at least one functioning node during the entire farrowing period. 
These temporary faults are most likely due to firmware errors and wireless interfer-
ence which prevented data transmission. Using Wi-Fi unfortunately creates an opening 
for such interference, trading off bandwidth improvement and central management for 
the possibility of intermittent connection loss due to the metallic building.

Data efficiency is a concern for precision farming applications due to the remote and 
rural locations of farms. With low frame rate and high compression, cameras produce 
upwards of 600 MB of data per hour, which then requires large capability processing to 
extract information from the image stream. These geophone sensors, in contrast, gen-
erate approximately 3.6 MB per hour per sensor before compression with our typical 
sample rate of 500 Hz. This suggests that a geophone-based system will be easier to 
adapt to applications within the data constraints of the farm environment.

Posture and Activity Monitoring Results
The gradient boosted tree classifier used to determine sow posture achieved 99.9%, 
95.5%, and 100% test accuracy in detecting lying, sitting/kneeling, and standing respec-
tively. Figure 7a shows the confusion matrix for this result. It is noted that most confu-
sions occur between lying and sitting, which makes sense given the similarity in load 
distribution between the lying sow and a sitting or kneeling sow.

Our smoothing method, described above, reduces the errors caused by data sam-
ples when the sow is not moving. During such periods there is less vibration, so the 
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variations in structure response caused by changing sow posture are difficult to detect. 
The majority vote smoothing uses knowledge of the sow’s movement speed to fill in 
these low-signal periods with information from the surrounding time windows. Figure 
6 shows plots of the posture prediction as a dotted line, compared with a solid line for 
ground truth. We can see a close match between the predicted and observed postures 
over the course of the 4.5-hour period shown.

Figure 6: A sample series of sow posture changes compared between ground truth and predictions 
from geophone data. The solid plot above is the ground truth, observed from video footage

The gradient boosted tree classifier used to determine sow posture achieved 99.9%, 
95.5%, and 100% test accuracy in detecting lying, sitting/kneeling, and standing re-
spectively. Figure 7a shows the confusion matrix for this result. It is noted that most 
confusions occur between lying and sitting, which makes sense given that similarity 
in load distribution between the lying sow and a sitting or kneeling sow.The system 
achieved 96% F1-score in sow ingestion, matching the confusion matrix in Figure 7b. 
From observing the 10 features used by the ingestion classifier, the mean and variance 
of magnitudes in lower frequency bands are significantly more important in detecting 
the ingestion activity. This indicates that the ground vibration induced by the sow feed-
ing equipment concentrates in the 0-50 Hz frequency bands. Since eating and drinking 
have rhythms of movement, the variance of these bands is also important.

For piglet nursing activities, the system has an average 91.3% F1-score, which is much 
lower than the activities induced by the sow. The confusion matrix for this classifica-
tion is shown in Figure 7c. There are two main reasons under consideration for this 
drop in accuracy. First, the piglet’s activities have much smaller intensity than the sow 
due to their age and smaller size, so their movements are harder to detect. Secondly, 
the nursing activity is an irregular pattern of relatively low amplitude vibration pulses 
(see Figure 3). which can easily be mistaken for the case where some piglets are moving 
around while others sleep. Future work will investigate these two challenges to seek 
algorithmic means to improve recognition accuracy.
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Figure 7: Confusion matrixes for each of the vibration data classifiers. (a) shows the accuracy in 
predicting sow posture, (b) for sow ingestion, and (c) for nursing

Conclusions
This paper has evaluated ground vibrations as an alternative modality for precision 
swine farming. Sow posture, feeding, and nursing detection in a farrowing crate were 
explored as example applications to demonstrate the potential of this new approach. 
This evaluation in a research farm shows that a vibration-based system can provide 
a continuous stream of pig health information without the overhead inherent in ex-
isting approaches. This suggests that vibration sensing can provide a scalable, reliable, 
and accurate source of health information to aid farmers in caring for their livestock.
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Abstract
Access to rooting material in confined pigs is widely considered to be beneficial for 
the welfare of animals. For sows housed on a concrete floor, straw serves as bedding 
that improves the thermal and the physical comfort of the floor. Provision of straw for 
pre-parturient sows results in more nest-building behaviours. As a compromise con-
sidering the needs of the sow for access to straw, farrowing pens with slatted floors are 
equipped with straw dispensers (racks) accessible by sows. This allows sows to gather 
straw from dispensers to form a nest during the nest-building phase without a risk of 
blocking the slurry drainage system. The experiment took place in the research farm 
of The University of Veterinary Medicine in Vienna, Austria. The sow herd counted 80 
Large White sows in total with 12 animals included in the experiment. Behaviour of 
each sow was video recorded in a period before farrowing and hay rack use was labelled 
for all the animals. Object detection algorithm RetinaNet was applied to detect several 
key body points of sows such as head, ears, nose and a hay rack. Feature variables were 
extracted based on the centroids of detected key body points (e.g. distance between 
nose and hay rack). Decision tress classifier was used to classify events of hay rack use 
with 78.6% sensitivity, 96.6% specificity and 96% accuracy. The developed algorithm 
could be used to automatically estimate hay rack use as part of nest-building behaviour 
in sows and possibly increase performance of farrowing prediction.  

Keywords: sow, nest-building, computer vision, hay rack use, automated monitoring, 
deep learning

Introduction
Access to roughage in confined pigs is widely considered to be beneficial for the wel-
fare of animals (Müller, 1979). Straw is the most studied rooting material for pigs, and 
the effect of other studied materials is very often compared with the effect of straw 
(Studnitz et al., 2007). For sows housed on a concrete floor, straw serves as bedding that 
improves the thermal and the physical comfort of the floor (Fraser, 1975). Provision of 
straw for pre-parturient sows resulted in more nest-building behaviours (Burne et al., 
2000). 

Compared to straw, good-quality hay might provide additional nutritional benefits for 
lactating sows, including higher metabolizable energy and crude protein levels (Kam-
phues, 2004) as well as a high content of secondary plant substances (Ziolkowska et al., 
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2020), contributing to pigs’ health. Hay might also be preferred as enrichment material 
over straw by young piglets as it is softer and therefore easier to chew. 

One disadvantage farmers might face when applying roughage as enrichment material 
is that on slatted floors long-stem forage can drop into the slurry and block the drain-
age system. As a compromise considering the needs of the sow for access to adequate 
nest building material, farrowing pens with slatted floors are equipped with straw dis-
pensers (racks) accessible by sows (Oczak et al., 2015). This allows sows to gather small 
amounts of roughage from dispensers to perform nest-building behaviour (Arey et al., 
1991) with lower risk of blocking the slurry drainage system compared to pens with 
straw bedding. The limitation of such dispensers in practical farm conditions is that 
they are re-supplied with a standard amount of roughage by farm staff on a daily basis 
according to the appropriate regulations (e.g. defined by the Austrian Tierhaltungsver-
ordnung (BMG, 2012), but without consideration for individual needs of the sow, which 
might vary between animals (Maschat et al., 2020). 

Application of PLF technology for automated monitoring of individual use of roughage 
in a farrowing pen might offer a possibility to improve individual care in pre-parturient 
sows by supporting the decision of farm staff on when to re-supply the dispensers with 
nest-building material. Additionally, our hypothesis is that automated monitoring of 
rack use by sows might improve the performance of models for farrowing prediction 
which are based only on general activity level of animals. This might be especially rel-
evant for improving sow welfare in farrowing systems designed for temporary sow 
confinement in crates (Oczak et al., 2019). 

In this study we aimed to develop a computer vision algorithm based on an object 
detection model for monitoring the use of the dispenser with nest-building material 
in pre-parturient sows. The second objective was to analyze if output of this algorithm 
could potentially improve the performance of farrowing prediction compared to cur-
rent state-of-the-art techniques for farrowing prediction based solely on activity levels 
(Oczak et al., 2019; Traulsen et al., 2018).

Materials and methods

Animals and housing
The experiment was conducted between June 2014 and March 2016 at the pig research 
and teaching farm (VetFarm) of the University of Veterinary Medicine Vienna, Vienna, 
Austria. In total, 12 Austrian Large White sows and Landrace × Large White crossbreds 
sows were included in the experiment from five days before farrowing to the end of 
farrowing. These sows were housed in two types of farrowing pens, which offered the 
option of either keeping the sows free or confined in a farrowing crate. Out of 12 sows, 6 
were kept in SWAP (Sow Welfare and Piglet Protection) pens (Jyden Bur A/S, Vemb, Den-
mark) and 6 in trapezoid pens (Schauer Agrotronic GmbH, Prambachkirchen, Austria). 
None of the animals included in the experiment were confined in a farrowing crate 
from the introduction to the farrowing pen until the end of farrowing (Fig. 1). The SWAP 
pens had an area of 6.0 m2, while the trapezoid pens had an area of 5.5 m2. In both pen 
types a rack with nest-building material hay was mounted in the front area of the pen, 
in close proximity to the trough.
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Figure 1: Farrowing pens with possibility of temporary crating. (a) SWAP pen, (b) trapezoid pen

To fulfill the need for adequate material to explore and for nest-building, sows and 
piglets were offered hay in the aforementioned rack throughout their stay in the pens. 
Farm staff half filled the racks in the morning and whenever the racks were empty.

Video recording
Behaviour of sows was video recorded 24/7 from introduction to the farrowing pens un-
til 24 h postpartum with 2D cameras in order to create a data set that could be labelled. 
Each pen was equipped with one IP camera (GV-BX 1300-KV, Geovision, Taipei, Taiwan) 
locked in protective housing (HEB32K1, Videotec, Schio, Italy) hanging 3 m above the 
pen, giving an overhead view. Additionally, infrared spotlights (IR-LED294S-90, Microl-
ight, Bad Nauheim, Germany) were installed in order to allow night recording.  The 
videos were recorded with 1280x720 pixel resolution, in MPEG-4 format, at 30 fps. The 
cameras were connected to a PC on which Multicam Surveillance System (8.5.6.0, Ge-
ovision, Taipei, Taiwan) was installed. The system allowed simultaneous recording of 
videos from 9 cameras. Recordings were stored on exchangeable, external 2 and 3 TB 
hard drives. 

Dataset
The dataset composed of video material of 12 sows recorded in a period from introduc-
tion to farrowing pen until 24 h after the end of farrowing was divided into two subsets, 
the first for training and the second for validation of computer vision algorithm for 
classification of hay rack use. 

Table 1: Dataset divided into subset for training and validation of algorithm for classification of hay 
rack use 

Pen type Training Validation

SWAP 3 3

Trapozoid 3 3

Total 6 6
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The subset for training consisted of the same number of animals (n = 6) as the subset 
for validation (n = 6) of the algorithm (Table 1). The animals in both subsets were equal-
ly distributed between SWAP and trapezoid pens. (Table 1).  

Data labelling
Video with recorded sow behaviour was manually labelled in order to create a reference 
dataset on the basis of which further data analysis could be performed. In the first step 
of the labelling process, the time of the onset of farrowing of each individual sow (n 
= 12) was labelled. The onset of farrowing was defined as the point in time when the 
body of the first piglet born dropped on the floor. The time of birth of the last piglet 
indicated the end of farrowing. Reference for automated estimation of hay rack use by 
sows was based on manual labelling of 4 behaviours by one trained labeller. These be-
haviours were pulling hay, nose close to the rack, exploratory behaviour and bar biting. 
Occurrence of any of 4 labelled hay rack use behaviours indicated that sow was using 
the rack. 

RetinaNet object detection model
Pytorch implementation of RetinaNet object detection algorithm (source code availa-
ble at https://github.com/yhenon/pytorch-retinanet) was used for the task of detecting 
parts of the body of sows i.e. left ear, right ear, head and the whole body and also the 
hay rack in the farrowing pen (Lin et al., 2017). The process of training and validation of 
this algorithm for detection of sow body parts and the hay racks in the farrowing pens 
was described in Oczak et al. (2022). Activity level of every sow was estimated based 
on Euclidean distance between centroids of sow bodies on consecutive frames as de-
scribed in Oczak et al. (2021). 

Feature variables
The output of the RetinaNet algorithm - rectangles corresponding to the parts of the 
body of a sow and a hay rack - was further processed by extracting their centroids. In 
the following steps centroids of rectangles were used as a basis for calculation of 40 
feature variables, which were further used for training of a Random Forest (RF) model 
for classification of hay rack use. 

Figure 2: Distance from nose to rack and from head to rack
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The first feature variable was calculated as Euclidean distance between the sows head 
and the hay rack. The second feature variable was calculated as Euclidean distance be-
tween the centroid of sows nose and the centroid of the hay rack (Fig. 2). The next cal-
culated feature variable was the orientation of the sow towards the hay rack based on 
a line perpendicular to line joining centroids of ears of the sow. The fourth calculated 
feature variable was orientation of the sow towards a rack based on the location of the 
centroid of the nose of the sow. To calculate the next 36 feature variables Euclidean dis-
tance was estimated between centroids of head, body or nose. For each of these three 
body parts Euclidean distance was calculated between consecutive frames of individu-
al body parts. Finally, the sum and the mean of Euclidean distance were calculated on 
windows of size 2 s, 5 s, 10 s, 20 s, 30 s and 45 s (3 body parts x 6 window sizes x  2 statis-
tical metrics = 36 feature variables). The main purpose of extraction of these 36 feature 
variables was to provide information to the model for classification of hay rack use on 
movement of different parts of sow body in various time windows (from 2 s to 45 s). 

Random forest classifier
RF classifier was used for classification of hay rack use events in pre-parturient sows. 
RF are machine-learning methods for constructing prediction models from data. RF 
classifier is an ensemble classifier that produces multiple decision trees, using a ran-
domly selected subset of training samples and variables (Breiman, 2001). Furthermore, 
this classifier can be successfully used to select and rank those variables with the great-
est ability to discriminate between the target classes (Belgiu and Drăguţ, 2016). Python 
package scikit-learn was used to train and validate the model on a labelled dataset 
with 12 sows (Pedregosa et al., 2011).  

Importance of 40 feature variables extracted from video data was evaluated with MDI. 
For the impurity importance, a split with a large decrease of impurity is considered 
important and as a consequence variables used for splitting at important splits are also 
considered important. Based on this idea, the impurity importance for a variable Xi is 
computed by the sum of all impurity decrease measures of all nodes in the forest at 
which a split on Xi has been conducted (Nembrini et al., 2018).

Results and Discussion
AUC and accuracy of automated detection of hay rack use behaviours in the validation 
set was 96%, sensitivity was 78.6% and specificity was 96.6%  (Table 2). 

Table 2: Performance metrics of classification of hay rack use in validation set    

Metric Value

Sensitivity 78.6%

Specificity 96.6%

Accuracy 96%

AUC 96%
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These results are comparable with results of Chen et al. (2020) in which long short-
term memory (LSTM) was used to detect pig enrichment engagement behaviours. The 
objective in this research was similar to ours in terms of behaviour of pigs i.e. to detect 
engagement with enrichment material. In this research it was possible to detect the 
interaction with enrichment material in weaner pigs housed in group pens with perfor-
mance from 96.5 % to 97.6% accuracy depending on which type of enrichment material 
was used. An important difference between algorithms applied in our study and in the 
study of Chen et al. (2020) was that LSTM applied in their study included temporal in-
formation on modelled variables, while RF model applied in our study infers only based 
on current values of modelled variables.

The most important feature variables for automated estimation of hy rack use behav-
iour were distance from nose to rack (MDI = 0.13) and orientation of head towards 
rack based on nose location (MDI = 0.13). Results of our study and Kashiha et al. (2013) 
indicate the importance of nose location and head orientation for recognition of behav-
iours in which pigs interact with other objects (i.e. drinker, hay rack). Touch and nose 
contact have an essential role in communication, recognition, social grooming and the 
maintenance of dominance relationships (Newberry and Wood-Gush, 1986). Results of 
our study confirm the important role of the nose for pigs, also apparent from etho-
logical studies such as of Stolba and Wood-Gush (1989)  who showed that pigs spend 
around half of the daylight period foraging with the nose for feed in a semi-natural 
environment. 

Figure 3: Labelling and classification for sow 147127 10 from the validation dataset of a) hay rack 
use behaviours. c) Activity level estimated on the basis of euclidean distance between centroids of 
sow’s body in consecutive frames. Presented variables are calculated on a sliding window of 4 h with 
15 min steps

Analysis of manually labelled hay rack use behaviours and comparison of these varia-
bles to the automatically estimated activity level of sows in a period before farrowing 
indicate high variability of expressed hay rack oriented behaviours. In 11 out of 12 sows 
the increase of activity level was very clear with a peak visible several hours before the 
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start of farrowing (Fig. 3), which is consistent with reported dynamics of sows’ activity 
level in this period (Oczak et al., 2019). In contrast, only 6 out of 12 sows reached their 
peak of labelled hay rack use behaviours at the same time as their peak of activity 
level (Fig. 3). The other animals had no clearly visible peak in labelled hay rack use be-
haviours or the peak was reached at different time than the peak of activity level i.e. 
around 24 h or 48 h or 72 h before the start of farrowing.

What became apparent from examination of confusion matrice was that although 
AUC, accuracies, sensitivity and specificity were high, the overestimate by the trained 
models of all hay rack use behaviours was also relatively high. In the validation set the 
labelled duration of all hay rack use behaviours was 25 h 40 m and 50 s, while automat-
ically classified duration was 44 h 34 m 42 s. 

Comparison of manually labelled hay rack use behaviours with results of classification 
within individual animals suggests high consistency of overestimates. Peaks of detect-
ed behaviours occurred in the same time as labelled by human observer and dynamics 
of variables was very similar (Fig. 3). Only in one sow out of 12 it was possible to observe 
2 automatically detected peaks in hay rack use behaviours which were not labelled by 
human observer at 5.5 and 4 days before the beginning of farrowing.

The possibility to perform nest-building behaviour should be offered to all sows in 
modern management systems. For this possibility, space and the provision of ade-
quate nest-building material are two relevant prerequisites (Wischner et al., 2009). 
Automated monitoring of hay rack use in pre-parturient sows might add important 
information on sow nest-building behaviour. This could support individual care for the 
sow in this sensitive period, considering that the necessary amount of enrichment or 
nest-building material is not defined in the law. Based on the information provided by 
such a monitoring system the farm staff could offer more nest-building material (refill 
the dispenser) to the sows which use it more frequently. 

The second objective of our study was to analyze if output of algorithm for hay rack 
use detection could potentially improve the performance of farrowing prediction com-
pared to current state-of-the-art techniques for farrowing prediction based solely on 
activity levels (Oczak et al., 2019; Traulsen et al., 2018). Our idea discussed in Oczak et 
al. (2019) was to automatically detect and differentiate between behaviours that con-
stitute nest-building behaviour i.e., rooting, pawing, and manipulation of pen or crate 
(Oczak et al., 2015). In the current study we focused only  on automated detection of 
one of these behaviours, ie. hay rack use. In Oczak et al. (2019) we hypothesised that 
such capability could provide more detailed information on sows’ behaviour and possi-
bly also increase the performance of developed models. Analysis of the performance of 
the developed models for automated detection of hay rack use in context of farrowing 
prediction suggests that outputs of the models could be useful for this purpose, as the 
algorithm correctly indicated dynamics of labelled behaviours i.e. picks in labelled hay 
rack use behaviours are automatically detected by the algorithm at the same time as 
by the labeller in 11 out of 12 sows.
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Conclusions
In our study we applied object detection algorithm RetinaNet with RF for classification 
of hay rack use behaviours performed by sows in farrowing pens in a period before 
farrowing. Distance between the sows’ nose and the hay rack was the most important 
feature variable, which indicated the importance of nose location for recognition of 
behaviours in which pigs interact with other objects. The developed models could be 
applied for automated monitoring of the use of nest building material in pre-parturient 
sows. Such monitoring might be especially important in sows housed on slatted floors 
considering that the necessary amount of enrichment or nest-building material is not 
defined in the law. 
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Abstract
Monitoring sow activity is valuable in moving towards more flexible housing during 
lactation as it strongly influences piglet survival. Detecting sows that are calm, do not 
suffer from health problems and nurse their litter efficiently is necessary to develop 
welfare-friendly systems. We developed procedures to automatically analyse sow ac-
tivity including postures, feeding and nursing. The method was trained on nearly one 
million images collected from 10 sows over 5 days each. Sow activity was recorded 
using two RGB cameras to observe the sow from the front and from the back. Three 
convolutional neural networks (CNN) were developed for the top front view, the top 
rear view and for the two angles of view. They were combined so that the lack of con-
sistency in prediction from the two single-view analyses triggered the third analysis. 
The sequential analysis of few successive images allows to confirm each detection. 
CNN were trained to identify eight main sow activities, with a mean precision of 85% 
for all traits. CNN were also coupled with an image segmentation based procedure to 
measure the intensity of nursing activity with distinction of pre and post massage from 
milk ejection.

Keywords: welfare, sow behaviour, image processing, deep learning, real-time

Introduction
For ethical, economical and societal reasons, it is necessary to reduce piglet mortality, 
especially when it depends on the sow, in connection with farrowing and lactation 
difficulties and if it results from the crushing of piglets by their mothers. In the future 
it would be beneficial, more profitable and more acceptable to the industry to produce 
sows that are able to rear more of their piglets to weaning. Guidelines limiting the use 
of strong restraint systems in pig farming are being adopted, but keeping sows blocked 
for several days around farrowing is still the only solution to limit losses by crushing 
in numerous populations. A Norwegian study evidenced that maternal behaviour has 
a genetic background (Vangen et al., 2005) that could be exploited in selective breeding 
to reduce piglet losses indirectly, for example by choosing sows that give easy access 
to the udder to their piglets. Being careful in their posture changes is also a desirable 
trait that would be worth to consider in selective breeding. Apart from a few etholog-
ical studies based on observer’s video analyses (Baxter et al., 2012), it has never been 
recorded and measured. 

Monitoring animals over a long time period enables to detect changes in activity level. 
With the fast evolution of sensor technologies, we can expect automatic collection of 
large amounts of various behavioural data. If accelerometers have been widely tested 
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to record pig behaviour (e.g. Ringgenberg et al., 2010; Matheson et al., 2017), embedding 
the sensor on the animal is a main limitation to their general use. More sophisticated 
sensors may facilitate these kinds of behaviour measurements (Lao et al., 2016, Dore 
et al., 2020). Cameras raise increasing interest because they are non-invasive, and can 
be used to monitor several features, such as posture  and water intake pattern. For 
example, sow postural activity in a crate can be estimated from images using a CNN 
with a very good accuracy (Nasirahmadi et al. 2019, Bonneau et al., 2021), but also from 
unsupervised methods (Okinda et al. 2018). In this work, we study the potential of using 
two cameras, to monitor the main postures of the sows and milking detection.  A group 
of lactating sows was video recorded, with two cameras positioned at the front and at 
the rear part of the crate. Video data were acquired over long periods of time, day and 
night. The set of image data extracted from the videos has been the subject of a de-
tailed study to develop image processing techniques and artificial neural network. This 
article presents the methodology developed to determine, postural activity, including 
sow feeding activity. In addition, an image segmentation method was developed to 
measure sow nursing activity. 

Material and methods

Monitoring Framework
Measurements were performed on lactating sows of the Large White breed, on an ex-
perimental farm. An artificial vision system was developed to carry out image acqui-
sition. Ten sows were raised in crate from the entrance to the exist of the farrowing 
unit. Two IP cameras (Bascom model) have been installed to visualize the front and rear 
part of the sow. Cameras recorded at 10 Hz, regular RGB images from 6am to 6pm, and 
B&W acquired from infrared (IR) the rest of the time. The objective was to obtain, from 
the acquired videos, sow activity information on different acquired videos, during sev-
eral days (night and day). Figure 1 below shows the two cameras used for one crate (a) 
and examples of night (b) and day (c) images acquired by the two cameras.  For (b) and 
(c), the images from the front and rear camera are merged.

Figure 1: Vision device with two cameras fixed at the front and rear part of the crate, with night and 
day image visualisation

We were interested in the identification of ten main activities and postures of the sow: 
standing with and without feeding activity, sitting, lying sternally, nursing activities 
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lying on the left or right sides, considering for each side, two possibilities (with and 
without piglet). Figure 2 presents images acquired with the two cameras, for the eight 
main sow activities. For each behavioral trait, the left and right images are respectively 
the images acquired with the rear and front cameras.

Figure 2: Images for the eight main sow activities under study, acquired from the rear camera (left 
side) and front camera (right side) 

Posture detection
The study focused on a set of videos acquired and recorded for 50 days (10 sows over 
5 days each). From these videos, an image-by-image scan was carried out to create the 
database of labelled images (Kabra et  al., 2013), with the aim of subsequently train 
and evaluate some CNN to predict sow posture. The training image database included 
about one million images, for the 8 activities, divided into 3 groups: 330000 images from 
the rear camera, 330000 images from the front camera and 330000 images obtained 
by concatenating the images of the rear and front cameras. Three neural networks 
were developed for this study, using the python library Tensorflow. Several CNN archi-
tecture were tested, and Inception V3 was retrained, as it provided the best empirical 
results. The Inception V3 neural network model is a CNN developed by Google, which 
was trained on the basis of ImageNet images which includes millions of images and 
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about 1000 categories, and which is composed of a training phase and a classification 
phase (Szegedy et al., 2015). The number of convolutional and fully connected layers is 
48, in Inception V3 architecture. As the training phase has already been carried out, we 
are therefore only interested in the classification or data extraction phase (re-learning 
only of the last network layer), which is very fast and efficient. CNN were re-trained 
using transfer learning, by re-learning only the last layer of the network, which greatly 
speed-up the training process without dramatic loss of accuracy (30 minutes to create 
each of the three CNN). 

Figure 3 presents the learning method general principle which includes a back propa-
gation algorithm, in order to create a CNN, by minimizing errors inside the CNN layers, 
and the prediction task used for sow activity identification, for a given image. The three 
neural network trained independently were created from the image database for eight 
activities. From acquired images by the two cameras, a fusion data method (Figure 4) 
was used to obtain the final prediction result: if at least two CNN give the same predic-
tion result, then the final prediction is this one, otherwise, if three prediction results 
are different then the sow activity is not determined.  

Figure 3: CNN development

Nursing Activity
When the sow is defined as lying on her side, when she is in one of two nursing sit-
uations (laying left with nursing or laying right with nursing), obtained during the 
first operation of the developed software, corresponding to sow activity identification, 
then a second operation, corresponding to the measurement of the nursing activity is 
launched. The image processing developed to carry out this operation consists in a first 
time to find automatically the rectangular area which contains the udder of the sow, in 
the rear image. For this, an artificial vision algorithm composed of image segmentation 
and mathematical morphology functions is used. Then the measurement algorithm 
is applied: it counts the number of points (pixels) that change of color intensity in the 
Red, Green and Blue color space, with  defined thresholds for Red, Green and Blue com-
ponents, in this area, between two successive images acquired at times t and t + 0.1 
seconds. The intensity of nursing activity, is obtained by calculating the ratio between 
the number of points that change color and the rectangular area of the udder. The 
Figure 5 presents the rectangular area of sow udder and the points with a significant 
color change between two successive images (blue color), that characterize the nursing 
intensity.
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Figure 5: Illustration of nursing measurements detected from level of udder movement

Evaluation
On the big set data of acquired images (about 330000 images for rear camera, for front 
camera and for junction of both images), an image processing algorithm was applied 
in order to remove similar images, particularly for sternal, lying left or lying right ac-
tivities (little movement of sows and the piglets). A dataset containing about 200000 
images for each of the three image type, was obtained with this algorithm. From this 
dataset, a random set with about 150000 images for each of image type (rear, front and 
junction) was extracted for CNN developement (training) and a second one with about 
40000 images, for CNN testing and evaluation. For each activity, precision, sensitivity 
and f1-score values were computed to compare the three CNN  and the fusion method, 
for the test images, with the following computations for each activity called p, from 
three confusion matrix data (True Positive (TPp), False Positive (FPp) and False Negative 
(FNp)) obtained in the prediction results:  

Results and Discussion
Table 1 presents the confusion matrix obtained for the eight activities with the three 
networks corresponding to individual CNN (rear camera (a), front camera (b) and  junc-
tion of both images (c)) and with the fusion method (d), for analysing and comparing 
the three CNN performances, for sow activity prediction. The first column presents the 
eight activities, the second one presents the TPp values, the others values in the matrix 
8x8 are the FN values in horizontal lines and the FP values in vertical columns. FNp and 
FPp are the mean values for each activity p. 

Table 2 presents the precision (P), sensitivity (S) and f1-score (F) values for the eight 
activities and the four prediction methods: CNN for Rear camera (CNN-R), CNN for 
Front camera (CNN-F),  CNN for the TWO cameras (CNN-TWO) and Fusion Method (FM). 
Regarding the four methods, you can see, making a comparison between all the results, 
that the best results are obtained with the Fusion method, with high mean success 
rates for Sensitivity, Precision and F1-score equal to 85%. For the three individual CNN, 
the best results are obtained with CNN-R (84%). This CNN-R network (rear camera) can 
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work alone to predict with accuracy, the sow activities. We can see that the best results 
are generaly obtained for Sitting, and Standing activities (about 99%). For Laying left or 
right activities, without or with nursing,  the result quality is variable, between 65% and 
85%. Also, the activities such as Sternal and Lying left or right, without any piglets, can 
be difficult to discriminate. This point can be explained by the fact that it is difficult to 
annotate (expertise) these three activities, with accuracy, in the CNN training opera-
tion. If we take into account the sequential aspect of the measures in real time, in our 
software, improvements are done, for identification of these activities (Sternal and the 
four Lying activities). This principle permits to reduce false identification. 

Table 1: Confusion matrix for eight activities for four methods (three individual neural networks 
and a fusion method)

The developed algorithm analyses the images acquired with the two cameras, identify 
the sow activity and record the results (the postural activity and the nursing intensity) 
into one file, with a frequency of 1 Hz, in live mode. Due to the absence of dedicated da-
taset, nursing activity was only evaluated by visual observations. This algorithm makes 
it possible to carry out detailed analyzes of the sow activity, to study their behavior 
over time and to carry out various comparisons between sows. Figure 6 presents the 
results obtained for one sow, during about 24 hours (86400 seconds). 

The activity numbers between 1 and 8, are associated respectively to the following ac-
tivities: Lying left, Lying left with nursing, Lying right, Lying right with nursing, Sternal, 
Sitting, Standing without feeding and Standing with feeding.
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Table 2: Quality of four methods

CNN-R 
Prediction result

CNN-F 
Prediction Result 

CNN-TWO
Prediction Result

FM
Prediction Result

S P F S P F S P F S P F

Sternal 0,83 0,76 0,79 0,71 0,83 0,76 0,79 0,88 0,84 0,83 0,87 0,83

Sitting 0,99 0,92 0,95 0,97 0,86 0,91 0,97 0,88 0,93 0,99 0,87 0,93

Standing 
feeding 0,99 0,93 0,96 0,96 0,89 0,92 0,96 0,92 0,94 0,97 0,92 0,95

Standing 
not feeding 0,86 0,98 0,91 0,75 0,94 0,84 0,83 0,94 0,88 0,86 0,98 0,92

Lying right 0,65 0,78 0,71 0,86 0,7 0,77 0,81 0,76 0,78 0,83 0,81 0,82

Lying right 
nursing 0,86 0,68 0,76 0,56 0,79 0,65 0,62 0,67 0,65 0,67 0,75 0,71

Lying left 0,74 0,85 0,79 0,91 0,77 0,84 0,94 0,77 0,85 0,92 0,86 0,89

Lying left 
nursing 0,75 0,82 0,78 0,72 0,69 0,7 0,63 0,73 0,68 0,75 0,75 0,75

MEAN 
RESULTS 0,83 0,84 0,83 0,80 0,81 0,80 0,82 0,82 0,82 0,85 0,85 0,85

Figure 6: Results obtain during a long time (sow activity (blue) and nursing (red))

A detailed analyze of piglet nursing activities results obtained with the image segmen-
tation algorithm, for several sows and for different time ranges (during day or night), 
showed that these results are similar to the nursing general activity, that we can see in 
many experimentation and tests of the piglet behavior: there are three main periods in 
one nursing activity. The first one is a first operation of piglets to obtain, to eject milk 
(a lot of movement of the udder (high intensity values)), the second one is the nursing 
(weak movement of udder (slow intensity values)) and the last one consists, like the 
first operation, to eject milk (big movement of the udder (high intensity values) to begin 
to prepare the next feeding (about one hour after) (Figure 7).
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Figure 7: The three stages of piglet nursing activity – Artificial vision results

Conclusion
This paper proposed an artificial vision device constituted by two IP RGB cameras (with 
IR integrated sensor for night acquisition), connected to a computer, with the develop-
ment of a real-time algorithm (working frequency of 1 Hz), for sow activities identifica-
tion, using deep learning and image processing methods. The obtained result with the 
developed software permit to obtain data file which show the duration and the time 
range for the main activities, for long periods, night and day, including the measure-
ment of feeding activities for sows and piglets (nursing activity). The image processing 
software can be used with only the rear camera or with the two cameras to increase the 
accuracy of prediction, for Sitting or Standing with feeding activities. To optimize the 
sow activity identification, sequential analysis of few successive images will be tested 
to allow to confirm each identification, and so to improve the activities identification, 
for Sternal and Lying activities.

The measures obtained permit to finely analyse the activity pattern of sows over long 
periods of time, to define variations over time for each sow and to compare different 
sows, in order to identify, in particular, the individuals which present a deviant profile 
by comparing them to those which have a normal profile. The developed device will 
be installed in different pig farms in order to test and validate the developed soft-
ware, with the objective to see if the complete device including the two cameras and 
the developed software is able to operate in various environments, with different floor 
colours, various barrier positions, and also modifying the position and orientation of 
the two cameras. In order to improve the software, new images acquired in various pig 
farms will be annotated to enrich the training image database, and updating the neural 
networks. This type of method used for sow farms, using video devices to take meas-
urements, will be tested for other animals such as sheep, cattle and goats.
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Abstract
Determining changes in sow posture can provide information on the production and 
health of animals. However, manually evaluating images is extremely time-consuming 
and standard image processing approaches can require seconds per image to process. 
The use of deep learning techniques has the advantage of being a more efficient meth-
od when compared to traditional image processing. However, transition sow postures 
such as sitting, and kneeling are difficult to discern using RGB images alone. The aim 
of this study is to compare the use of different images as input to models based on 
deep learning for the detection of sow postures. Using Kinect v.2 cameras, images were 
collected from 7 sows housed in farrowing crates. A total of 4229 images were labeled 
manually according to the postures (standing, kneeling, sitting, ventral recumbency, 
and lateral recumbency). Deep learning algorithms (AlexNet) were adapted to detect 
sow postures from five types of images: color (CNNrgb model), depth (depth image trans-
formed into grayscale: CNNdepth model), and three fused images composed with the 
color and depth images (CNNblend, CNNdiff, and CNNfcolor models). The results showed that 
depth and fused models presented the best results. CNNfcolor presented 95.5% of aver-
age accuracy, followed by CNNdepth (94.3%) CNNblend (90.3%), and CNNdiff (86.7%). CNNrgb 
model presented 76.8% average accuracy. The results of this study illustrate the im-
provement in the classification of postures using depth or fused image methods. Other 
studies may contribute to the development of increasingly rapid and accurate models 
by using a larger database, evaluating different fused methods, computational models, 
systems, breeds of sows, and incorporating additional postures.

Keywords: computer vision, deep learning technique, image pre-processing, sow 
posture detection.

Introduction
Currently in the US swine industry, lactating sows are housed in farrowing crates to 
protect the piglets from overlays. However, even with the use of farrowing crates, the 
pre-weaning mortality for piglets is 17.3% (Stalder, 2018). The risk factors contributing 
to pre-weaning mortality are generally classified into three main categories: piglet fac-
tors, sow factors, and environmental factors. Muns et al., (2016) highlights the need to 
understand sow comfort, as sow comfort impacts piglet development and the risk of 
crushing.
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Accessing the behaviour of pigs is important to identify their state of health and 
well-being and can provide important information about the performance of the pro-
duction system (Brown-Brandl et al., 2013). Sow posture changes can result in piglet 
crushing, mostly by sows lying down (Damm et al., 2005). More importantly, it ap-
pears that the sow’s control over the final stages of laying is critical (Johnson & March-
ant-Forde, 2008). Slower postural changes may be a sign of more protective mothers 
and be related to lower piglet mortality rates from crushing. Therefore, to evaluate 
the interaction between the crates and the sow there is a need to develop automatic 
detection methods.

However, the investigation of behaviours is still performed manually, depending on 
trained observers and time to evaluate the data, which makes it impossible to generate 
quick answers for decision making. Thus, Deep Learning techniques have been used 
as an automatic way to assess the behaviour of lactating sows. Such computational 
models, based on artificial intelligence, allow a quick interpretation of data, and have 
great potential for use in production systems. On the other hand, the type of data used 
to train these models plays an important role in getting the most accurate results. 

Several works use RGB and depth images to detect sow postures (Bonneau et al., 2021; 
Kasani et al., 2021; Lao et al., 2016). Despite providing a good representation of the 
scene, the RGB image is a two-dimensional function representing a three-dimensional 
scene. By losing depth information, detecting transitional postures such as sitting, and 
kneeling is more challenging. On the other hand, depth images, even adding depth 
information, lose in terms of color representation and scene details, important infor-
mation to differentiate the animal from the other objects in the image.

Zheng et al. (2018) studied a Convolutional Neural Network (CNN)-based posture detec-
tor and used only depth images from sows in its development. The authors obtained 
an average accuracy of 93.58% (five posture classes). The highest accuracies were for 
the standing, ventral, and lateral recumbency classes and the lowest for the sitting 
and sternal recumbency positions. In another study, Zhu et al. (2020) used the same 
database for the detection of postures but used different methods of merging RGB and 
depth images in the development of the computational models. All models that used 
fusion methods obtained better results and, in the most accurate model, the accura-
cies for all posture classes were above 90%.

These studies demonstrate that CNNs are promising in identifying sow postures. Fur-
thermore, combined image fusion methods can contribute to the development of more 
accurate models. New studies may contribute to the development of increasingly ac-
curate models for the detection of different postural categories in different systems, 
with different species of sows. Thus, this study aims to develop a computational model 
for the classification of sow postures using different types of images as the input of 
the classifiers. The hypothesis is that by merging the RGB and depth images, some 
features in the images can be highlighted which can help the models to classify the 
sow postures.
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Material and methods
The experiment was conducted at the United States Department of Agriculture - Agri-
cultural Research Service of the US Meat Animal Research Center in Clay Center, Ne-
braska, the United States. Data collection was performed in accordance with federal 
and institutional regulations regarding proper animal care practices and was approved 
by the U.S. Center for Animal Research Institutional Animal Care and Use Committee 
(2015-21) (IACUC approval: 1837).

The collections were carried out from January 2020 to April 2021 in a farrowing facility 
where the 546 sows (Landrace x Yorkshire) were individually installed in 3 rooms with 
a capacity for 20 animals each. Inside of each room, the animals were distributed in 
two rows of ten metallic pens, separated by 1.2 m. The building has a microclimate 
controlled with sensors and controllers so that the air temperature inside the rooms 
was kept around 25°C and was gradually reduced to 20°C until the end of the lactation 
cycle. The installation consisted of individual feeders and two nipple drinkers. Animal 
waste fell from the stalls through fully slatted metal floors into a shallow, sloping pit 
in each room.

At the top of each crate, at a height of 2.55 m, a single depth camera (Kinect V2®) was 
installed in waterproof plastic boxes that were fixed to a metal structure to collect im-
ages (top view) of the stalls and animals. Such cameras were responsible for collecting 
color (RGB) and depth (distance matrix) images. Images were collected 24 hours a day 
at an average rate of one image every 2.5 seconds. The cameras were connected to 
minicomputers (Windows 10 Home, Microsoft, Redmond, WA, USA) located in front of 
each of the bays that ran the image collection program developed in MATLAB® R2019b 
software (The MathWorks Inc.). The minicomputers were connected via Ethernet ca-
bles to data storage stations (DS1621+, Synology Inc, Bellevue, WA) with five hard drives 
(ST10000VN0004, Seagate Technology LLC, Cupertino, CA, USA).

Sow posture classification
For this analysis, images of seven sows were used for a period of 12 hours. The images 
were divided into five categories of sow postures (Table 1): standing, sitting, kneeling, 
ventral recumbency, and lateral recumbency.

Table 1: Ethogram of the postures used for the classification of images and for the development of 
the computational model

Posture Description

Standing Animal supporting the body on all four legs

Sitting Animal supporting the body on both front legs (bent hind legs)

Kneeling Animal supporting the body on its hind legs (folded front legs)

Ventral recumbency Animal lying vertically with front legs hidden/hind legs and udder 
could be visible (right side, left side) or not;

Lateral recumbency Animal lying on its side with all four legs turned to the side
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A total of 4229 images were used in the development of the computational model (Fig-
ure 1): 1041 images for the standing class, 403 for the kneeling class, 1029 for the sitting 
class, 724 for the ventral, and 962 for the lateral recumbency classes.

Image pre-processing 
Five types of images were used to participate as inputs of the computational model 
(Figure 1): color (RGB image), depth (depth image transformed into grayscale) and three 
merged images composed with the depth and color images (blend, diff, and false color). 
The merged images were created according to the MATLAB functions: blend is the image 
composed of the color and depth images using an “alpha blending”, which gives a de-
gree of transparency to one of the images before superimposing them. The “diff” creates 
a difference between the color and the depth, and the “false color” creates a composite 
color image showing the two images superimposed in different ranges of colors. Gray re-
gions in the composite image show where the two images have the same intensities. The 
magenta and green regions show where the intensities are different (MathWorks, 2020).

Figure 1: The number of images for each posture class and examples of the five types of images that 
were tested as input to the computational model: (A) color image; (B) depth image transformed into 
grayscale; (C) fused images – blend; (D) diff; and (E) false color

Development of computational models 
Classifier computational model based on Convolutional Neural Network was developed 
with MATLAB® R2020b software using the Deep Learning Toolbox package. The first 
step in developing the model was to divide the data (images) into training, validation, 
and testing sets. Percentages of image distribution between the groups were 80%, 10%, 
and 10%, respectively. Such data was provided to the classifier model through the input 
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layer. Data augmentation techniques (reflection and translation) were used to increase 
the training database. 

For the development of the computational model, the pre-trained AlexNet (Krizhevsky 
et al., 2012) network was used, replacing the last classification layer with the new learn-
ing categories: the sow postures (standing, sitting, kneeling, lateral, and ventral recum-
bency). The hyperparameters - number of epochs, learning rate, batch size, and solv-
er were defined empirically and through literature. The classifier’s performance was 
evaluated using metrics extracted from a confusion matrix, comparing real responses 
(classified by an observer) and the responses predicted by the model. Through the con-
fusion matrix, it is possible to evaluate the efficiency of the classifiers in terms of aver-
age accuracy, precision, recall, and F1-Score. These metrics were thoroughly described 
and summarized by Sokolova & Lapalme (2009) and can be computed using the formu-
las described in the Table 1. All metrics were calculated based on the values identified 
in the confusion matrix as true positives (tp), true negatives (tn), false positives (fp), and 
false negatives (fn). Values identified as tp are those correctly identified as belonging to 
the class and tn are the values correctly identified as not belonging to the class. The fp 
values are those misidentified as belonging to the class and the fn misidentified as not 
belonging to the analyzed class (Sokolova & Lapalme, 2009).

Table 1: Metrics extracted from a confusion matrix for multiclass classification

Measure Formula Measure Formula

Average Accuracy Precision�

F1 – ScoreM Recall�

Values identified in the confusion matrix (tp) true positives, (tn) true negativas, (fp) false positives, and 
(fn) false negatives. Recall and precision values were calculated by class: (µ) micro-average. F1-Score 
was calculated for all classes: (M) macro-average. 

Results and Discussion
Metrics extracted from the confusion matrices were used to evaluate the efficiency of 
CNN-based classifier models that used different images: color (CNNrgb), depth (CNN-
depth), blend (CNNblend), diff (CNNdiff), and false color (CNNfcolor). The results showed that 
the inclusion of depth information improved the performance of the models, as both 
CNNdepth and all merged models (CNNdepth, CNNdiff and CNNblend) present higher accura-
cies than CNNrgb (Figure 2). Among all models, CNNdepth and CNNfcolor had the highest 
accuracies and F1 scores. The accuracies achieved were 94.3% for CNNdepth and 95.5% 
for CNNfcolor. Respectively, F1-Score values were 4.5% values. The lowest average accu-
racy value was found for CNNrgb (76.8%). Kasani et al. (2021) investigated eight deep 
learning-based feature extraction frameworks to classify four sow postures (sitting, 
lying right, lying left, and standing) from RGB image dataset collected from animals 
(Yorkshire x Landrace) housed in gestation crates. Different from this study, all models 
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that used RGB images presented high average accuracy (> 99%). An explanation for the 
inferior performance of CNNcolor may be the number of postures (five) used for classi-
fication in the current study. Furthermore, postures such as kneeling, and the division 
of the lying posture into two categories added greater challenges to the training of the 
models.

Zheng et al. (2018) studied a CNN-based posture classifier using depth imaging and 
found an average accuracy of 93.58% and an F1-Score of 90%, values slightly lower than 
those found for this study when only depth image was used. Although the results were 
close, some differences in the studies may explain the improvement in the perfor-
mance CNNdepth. One of them may be related to the type of facility in which the animals 
were housed. While the sows in this study were confined in farrowing crates, the sows 
in the aforementioned study were in free farrowing pens, which may have added varia-
tions in the images analyzed, as the sow can move freely through the pens. 

Other differences between this study and the one developed by Zheng et al. (2018) 
indicate that the performance of CNNdepth can still be improved. Despite having used 
the same number of postures as in the current study (five), the authors did not use 
the “kneeling” posture and used the “ventral decubitus”, which is a more static pos-
ture. The authors also used strategies used to improve the images, including random 
noise compensation, hole filling, and image depth enhancement. Furthermore, they 
used a pre-trained network (ZFNet) as a model to detect sow postures. In the current 
study, the distance values   of the depth image were only transformed into a grayscale 
range, and the AlexNet network was used to detect postures. These data indicate that 
the models used in the current study showed good average accuracies and that they 
can still be improved with the use of a larger database, different image pre-processing 
strategies to further improve the quality of these images.

Figure 2: Metrics (Average Accuracy and F1-Score) extracted from the confusion metrics obtained 
from the classifiers
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CNNfcolor was the best model according to the average accuracy and F1-Scores and the 
confusion matrix with the predictions of this model in the posture categories can be 
seen in Table 2. As mentioned earlier, the correct classifications accounted for an av-
erage accuracy of 95.5%, distributed in the class “kneeling” (9%), “lateral recumbency” 
(22.7%), “sitting” (24.9%), “standing” (23.5%), and “ventral recumbency” (15.4%).

The CNNfcolor presented high values of precision (mean = 95.2%) and medium to high val-
ues of recall (mean = 93.3%). The lowest values of precision and recall were in the “ven-
tral recumbency” (90.3%), and in the “kneeling” class (77.6%), respectively. The precision 
results indicate that CNNfcolor committed a few mistakes when bringing in data from 
other classes and classifying them as if it were the desired output (mean error < 5%). 

Regarding the recall results, the only class that presented a value lower than 95% was 
“kneeling” (77.6%). This means that the model classified 77.6% of the “kneeling” sam-
ples correctly and classified the remaining 22 % of kneeling images as other classes 
as “sitting” (10%),”standing” (10%), and “ventral recumbency” (2%). One possible cause 
for this misclassification is that “kneeling” is a transitory posture between “standing” 
and “lying”. In this position, the model probably uses the height difference between 
the rump and the sow’s shoulder as an indication of this posture. The height differ-
ence when the sow is seated might be similar to the height differences in some of the 
“kneeling” images, leading to the model misinterpreting five of the images as if they 
were sitting. While in the standing position, a difference in height between the croup 
and the shoulders may be very similar to kneeling in cases where she has her head 
down, contributing to five misclassifications. The same can be thought of for the ven-
tral recumbency position if the sow presents the head raised. In addition, this was the 
category with the lowest number of examples for training the model and this may have 
hampered the learning of the model for this category. Nevertheless, a larger database 
with more examples in this category may improve the model’s accuracy.

Zhu et al. (2020) studied different computer models and different image fusion meth-
ods to detect sow postures (“standing”, “sitting”, “sternal recumbency”, “ventral recum-
bency” and “lateral recumbency”). As with the results of this study, all image fusion 
methods presented better results than the models trained with RGB, and the depth 
images separately. The authors found the best model using an image concatenation 
method, the precision values for the postures: “standard”, “sitting”, “sternal recumben-
cy”, “ventral recumbency” and “lateral recumbency” were, respectively, 99.74%, 96.49%, 
90.77%, 90.91%, and 95.47%. The sows (MeiHua) were housed individually in open far-
rowing pens (Zheng et al., 2018). Similar to the current study, there were classification 
errors between sitting, sternal and ventral recumbency postures that may have similar-
ities due to the variation in height between head, shoulder, and rump, which may have 
made learning the model difficult.

Furthermore, Zhu et al. (2020) used a different computational model (ZFNet) to detect 
sow postures, selected different postures, and used a later fusion method on the im-
ages, which first used independent models to extract the feature map from RGB and 
depth images separately, and then the two maps were stacked and submitted to the 
classification model. Thus, the information from the two images was only merged af-
ter being submitted to a convolution layer of the classification model. In the current 
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study, no later fusion method was studied, but the results obtained with CNNfcolor were 
promising to highlight the main characteristics of the different images (RGB and depth) 
before submitting them to a computational model. As mentioned, the kneeling posture 
added a major challenge in training the model, which can be improved as the database 
grows by adding more samples of this class. In addition to increasing the database, 
different image fusion methods and computational models can be studied to improve 
the results. According to the potential of each model to classify certain postures, other 
models can be used to merge this information and improve the results even more.

Table 2: Confusion matrix between the predicted class by CNNfcolor and the true label, obtained from 
the postural categories labeled manually

True label
Predicted label

Recall
Kneeling Lateral rec. Sitting Standing Ventral rec.

Kneeling 38 (9%) 0 (0%) 5 (1.2%) 5 (1.2%) 1 (0.2%) 77.60%

Lateral rec. 0 (0%) 96 (22.7%) 0 (0%) 0 (0%) 4 (0.9%) 96.00%

Sitting 1 (0%) 0 (0%) 105 (24.9%) 0 (0%) 2 (0.5%) 97.20%

Standing 0 (0%) 0 (0%) 0 (0%) 99 (23.5%) 0 (0%) 100.00%

Ventral rec. 1 (0.2%) 0 (0%) 0 (0%) 0 (0%) 65 (15.4%) 95.50%

Precision 95.00% 100.00% 95.50% 95.20% 90.30% 95.50%

Conclusions
This study investigated the use of different types of images as input to computer mod-
els to identify postures of lactating sows. The intention was to investigate whether 
different image fusion methods could highlight some parts of the images and help im-
prove the results of the computational model to identify sow postures. The models that 
used the depth image (CNNdepth) and all the models that used merged images (CNNdiff, 
CNNblend and CNNfcolor) resulted in better accuracies than the model that used only the 
RGB image (CNNrgb) as input. The “kneeling” category had the greatest difficulty in being 
classified correctly. Despite this challenge, CNNfcolor presented good values   of average 
accuracy, precision and recall for all classes. The results of this study illustrate the 
improvement in posture classification using depth or fused images. Other studies can 
contribute to the development of increasingly faster and more accurate models, using 
a larger database, evaluating different fused methods, computational models, systems, 
sow breeds, and also incorporating additional postures.
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Abstract
The spatiotemporal distribution of animals in controlled housing systems is a good in-
dicator of their physiological wellness and welfare. However, to monitor the pigs in far-
rowing pens for spatial distribution analysis, the existence of farrowing crates brings 
inevitable visual occlusions, leading to a need for occlusion-resistant computer vision 
methods. This study aims to use Center Clustering Network (CClusnet) to characterise 
pig distribution patterns in farrowing pens with closed and half-open crates. Three videos 
with crates closed and three with crates half-open were collected. A total of 4,600 images 
were extracted from the videos and labelled to train CClusnet, and the trained model was 
then used to analyse individual video frames. The model outputs, including centre points 
of individual piglets and semantic segmentation of the sow and piglets, were accumu-
lated into piglet-position heatmaps (PPH) and bodily-space-usage heatmaps (BSUH) for 
spatial distribution analysis, respectively. The BSUH of sows revealed differences in sow 
space usage, e.g., the sow utilized 1.5 times more space in half-open crates than in closed 
crates in this study. In addition, the BSUH of sows showed different preferences in sow 
lying sides, e.g., five of the six sows had unbalanced lying side frequency. The BSUH of 
piglets demonstrated the most frequent area that piglets visited or stayed in, e.g., around 
the heat pad and the pen border. The PPH supplemented the missing information under 
occlusions, especially the suckling area of piglets. Our method could be further used for 
sow lying side preference analysis and thus precaution of lesions due to one-side lying.

Keywords: deep learning, space usage, animal welfare, farrowing crate, animal 
housing design

Introduction
In modern pig farrowing pen systems, crushing or overlying by the sow contributes to 
around 50% of the postnatal piglet mortality, which brings animal welfare concerns and 
a great economic loss to the pig industry (Andersen et al., 2005). To reduce piglet mortal-
ity, various farrowing pens with farrowing crates, which confine the sow during parturi-
tion and lactation, have emerged as the predominant farrowing environment during the 
last 50 years (Wackermannová et al., 2017; Robertson et al., 1966; Baxter et al., 2018).

Over the past decades, the welfare of pigs related to the adoption of farrowing crates has 
attracted increasing attention, and farrowing systems with less confinement have been 
suggested and adopted in some countries, such as the United Kingdom, Switzerland, 
and Finland (Baxter et al., 2018). There has also been voluntary uptake of loose-farrowing 
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alternatives (King et al., 2019). Farrowing pen with a hinged farrowing crate has been 
proposed to improve the welfare of lactating sows, in which the crate can be half-opened 
several days post-farrowing (Ceballos et al., 2020). Ceballos et al. (2020) found that sows in 
half-open crates utilized the extra space and had fewer teat lesions than in closed crates. 
Nevertheless, piglet behaviour and welfare were not investigated in this study.

When analysing animal welfare, the spatiotemporal distribution of animals can be used as 
an important indicator of their physiological wellness and welfare status (Ross et al., 2009; 
Estevez & Christman, 2006). An accurate spatial distribution analysis usually requires long-
term and high frame-rate video monitoring, which is labour-intensive and cannot be done 
manually. Nowadays, deep learning methods have shown great power in analyzing animal 
videos automatically. However, when these methods are applied to monitor the pigs in far-
rowing pens, the existence of farrowing crates brings inevitable occlusions, which remains 
an unsolved challenge in deep learning (Wang et al., 2018; Hafiz & Bhat, 2020). We previ-
ously developed Center Clustering Network (CClusnet) to count piglets in farrowing pens 
with occlusion problems (Huang et al., 2021). CClusnet uses every visible pixel to predict the 
centre of an object, even if the object centre is occluded, which would be suitable for ani-
mal spatial distribution analysis in farrowing pens with occlusions. To the end, this study, 
using CClusnet, aims to analyse and compare the spatiotemporal distribution patterns of 
pigs in farrowing pens with half-open and closed farrowing crates.

Material and methods

Experimental data
Three videos from farrowing pens (Figure 1) with closed farrowing crates and three vid-
eos from pens with half-open crates were selected from a previously published study 
(Ceballos et al., 2020). All animal procedures in this study were approved by the Univer-
sity of Pennsylvania’s Institutional Animal Care and Use Committee (Protocol #804656). 
The six videos (Table 1) were taken by top-view cameras with a frame rate of 7 FPS and 
a resolution of 1024×768 pixels. Each video included one sow (DNA Genetics, Colum-
bus, NE) and the number of piglets in each pen varied from 7 to 17. The farrowing pen 
dimensions were 2.1×2.0 m with a farrowing crate whose hinged sides had the dimen-
sions of 0.64×1.73 m. Totally, 18,117 images were extracted from the six videos every 
50 frames (7 s interval), among which 4,600 images were labelled for piglets centres, 
individual piglet masks, and sow masks as required by CClusnet (Huang et al., 2021). 

Figure 1: Image examples of farrowing pens. (a) a farrowing pen with half-open farrowing crates and 
(b) a farrowing pen with closed farrowing crates
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Table 1: Summary of video details. The value in parentheses stands for the average. NA, not available 

Description Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Total

Days post 
farrowing 5 5 5 4 5 5 NA

Farrowing crates Half-open Half-open Half-open Closed Closed Closed NA

Time period 08:45-
15:20

07:45-
15:27

08:30-
14:46

08:46-
14:35

08:10-
13:53

08:50-
12:57 NA

Extracted frames 3,307 3,899 3,188 2,928 2,726 2,069 18,117

Labelled images 1,100 1,000 1,000 500 500 500 4,600

Visible piglets per 
labelled image 7-13 (8.9) 7-9 (8.9) 7-13 

(12.6)
10-17 
(16.0)

11-17 
(15.6)

9-11 
(10.9)

7-17 
(11.4)

CClusnet training and its outputs
CClusnet, a deep learning-based method initially developed for piglet counting under 
occlusion (e.g., occlusions from farrowing crates) (Huang et al., 2021), was adopted and 
trained using the labelled images (Table 1). The 4,600 labelled images were randomly 
divided into a training set and a validation set with a ratio of 4:1. Image augmentation, 
including flips and Gaussian blur, was performed five times for the original training 
set, resulting in a new training set with 18,400 images. The model with the best perfor-
mance on the validation set was kept for further inference.

Figure 2: The flow of our method. CClusnet outputs a semantic segmentation map (b) and piglet 
center points (c) for each video frame. These maps and center points are further accumulated into 
two bodily-space-usage heatmaps or BSUH (with lying side frequency for sows) (d) and (e), and 
a piglet-position heatmap or PPH (f) 
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The trained CClusnet model was then used to predict the individual frames of the six 
selected videos and the flow chart is illustrated in Figure 2. CClusnet had two outputs 
for each frame, including a semantic segmentation (a three-dimensional one-hot ma-
trix) for both sow and piglets (Figure 2b) and object centres for individual piglets (Figure 
2c). These two outputs were further accumulated to generate two bodily-space-usage 
heatmaps (BSUH) and a piglet-position heatmap (PPH), respectively.

Bodily-space-usage heatmap (BSUH)
To show the spatial distribution of the sows and piglets, semantic segmentation results 
of extracted frames were accumulated to generate BSUH. Suppose there were n detect-
ed frames of a video, then the heatmaps for the sow and piglets were

,  (1)

where

, (2)

and segmapi
(c) ∈ R384×512 was a semantic segmentation map (a 0-1 matrix) for a class 

c ∈ {piglet, sow}. The functions max() and min() were the maximum and minimum val-
ue of a matrix, respectively, and 1 ∈ R384×512 was a matrix with all elements equal to 1. 
Equation 2 meant the accumulation of segmentation maps, and Equation 1 meant the 
normalization.

From the BSUH, the space usage (in percentage) of the sow, represented by the propor-
tion of all pixels ever occupied by a sow in all heatmap pixels, could be extracted by

, (3)

where m = 384 × 512 was the number of pixels in the semantic segmentation map and-
binary() was a conditional function that

. (4)

The sow lying side (if lying) in each frame was also extracted and accumulated to lying 
side frequency when generating BSUH. A minimum rotated bounding rectangle and 
a corresponding coordinate axis in its centre were generated for the sow mask (Fig-
ure 3). The sow mask centroid was calculated and a vector from the rectangle centre to 
mask centroid was formed. The detection rationality was that the sow mask centroid 
would be different from the bounding rectangle centre with an opposite direction to-
wards the head and feet due to the lying shape of the sow, and this offset could be 
used to determine the lying side. Specifically, if the vector pointed to the second or the 
fourth quadrant of the coordinate axis, then this lying posture was classified as left-
side lying and otherwise right-side lying.
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Figure 3: The sow lying side detection

Piglet-position heatmap (PPH)
Due to the occlusions from the farrowing crates, some body parts under the farrow-
ing crates were invisible. Therefore, the information of these parts was missing in 
BSUH, which was more serious for small-size piglets. To compensate for the missing 
parts due to occlusions, the center points of piglets in each frame were accumulated 
to PPH, which gave more precise information of object locations. For each video, each 
center point was represented by a two-dimensional Gaussian distribution, so that the 
PPH ∈ R384×512 was defined as

, (5)

where

, (6)

cp was a piglet center point in the frame i, d = 2 was the variable dimension for each 
pixel p, and 

 (7)

was covariance matrix.

Results and Discussion
The BSUH and PPH results for each video are shown in Figure 4 and Table 2. The BSUH 
of sows could reveal the sow space usage differences (Table 2). In our study, the sow 
space usage ranged from 53.0% to 63.6% (58.6% on average) in half-open crates, while 
dropped in closed crates with a range from 36.3% to 38.8% (37.9% on average). The sow 
utilized 1.5 times more image space in half-open crates than in closed crates, which 
was consistent with the finding that sows utilized the additional space provided to 
them after opening the crates (Ceballos et al., 2020). 
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The BSUH of sows demonstrated the main and frequent lying side (Table 2). For exam-
ple, most of the sows in this study showed unbalanced lying sides: the sows in Videos 
1, 2, 4, and 5 lay more on the left side and the sow in Video 3 lay more on the right side, 
while only the sow in Video 6 lay equally on both sides (Table 2). These uneven lying 
sides were also consistent in the heatmap. For example, a right-side and a left-side sow 
lying posture were clearly seen in Video 3 (Figure 4c1) and Video 4 (Figure 4d1), in which 
the prominent lying side was 4-5 times more frequent than the opposite lying side.

Table 1: The image space usage and lying side frequency of sows in different farrowing pens. L, left, 
R, right

Farrowing crates Video index Space usage (%) Lying side (%)

Video 1 63.6 L: 62.5, R: 37.5

Half-open Video 2 53.0 L: 62.1, R: 37.9

Video 3 59.2 L: 20.8, R: 79.2

Video 4 38.8 L: 83.6, R: 16.4

Closed Video 5 38.7 L: 73.4, R: 26.6

Video 6 36.3 L: 48.9, R: 51.1

The BSUH of piglets demonstrated the frequent area piglets visited or stayed in. For ex-
ample, the piglets concentrated frequently around the heat pad and pen border in five 
video cases (Figure 4a2 and Figure 4c2, 4d2, 4e2, and 4f2), while there was an exception 
in Video 2, where the sow frequently lay with its udder against the heap pad (Figure 
4b1).

The PPH supplemented the missing information in the BSUH where the object was in-
visible under occlusions. For example, in our three videos with closed crates, the piglet 
centres happened to locate frequently in the area where was occluded by crates (Figure 
4d3, 4e3, and 4f3). As the centres output by CClusnet were hardly affected by the occlu-
sion, the PPH could be a substitution for piglet spatial distribution analysis. In addition, 
the long bands, bounded by red boxes in PPH (Figure 4a3, 4b3, 4c3, 4d3, 4e3, and 4f3), 
were the area where piglets suckled frequently as we retrospected the videos. However, 
this information was not obvious in BSUH (e.g., Figure 4d2 and 4d3). Therefore, the PPH 
could reveal and complement some missing information in BSUH due to occlusions. 

Our method could be further used for sow lying side preference analysis and thus pre-
caution of lesions due to one-side lying. This is especially important during the period 
of lactation when lesions are commonly seen in sows (Rolandsdotter et al., 2009). A long 
time one-side lying may cause heavy lesions (e.g., shoulder lesions and teats lesion, 
Rolandsdotter et al., 2009; Rioja-Lang et al., 2018). As our method could demonstrate fre-
quent lying side of a sow, it could be further used to determine which side has a higher 
probability of lesions, with a longer monitoring period.
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Figure 4: Bodily-space-usage heatmaps (BSUH) and piglet-position heatmaps (PPH) 

Conclusions
This paper demonstrated a computer vision method for analysing spatiotemporal dis-
tribution patterns of pigs in farrowing pens. Two kinds of heatmaps, namely BSUH and 
PPH, were generated by accumulating the semantic segmentation maps and piglet cen-
tres, which were output by CClusnet. The BSUH of sow could reveal differences in sow 
space usage, e.g., the sow utilized 1.5 times more image space in half-open crates than 
in closed crates in this study. In addition, the BSUH of sows showed different preferenc-
es in sow lying sides, e.g., five of six sows had unbalanced lying side frequency in the 
videos. The BSUH of piglets demonstrated the frequent area piglets visited or stayed, 
e.g., around the heat pad and the pen border in most video cases. The PPH supplement-
ed the missing information in BSUH due to occlusion (e.g., frequent suckling area of 
piglets). Our method could be further used for sow lying side preference analysis and 
thus precaution of lesions due to one-side lying. 
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Abstract
Group housed sows have a higher occurrence of lameness. Continuous monitoring 
of lameness is necessary for high welfare standards. Some electronic sow feeders are 
designed with a corridor that holds the potential for continuous monitoring. The use 
of overhead 3D cameras (color + depth), along with state-of-the-art machine learning 
algorithms have shown promising results in gait analysis and detection of lameness 
in sows. However, sows don’t always walk through these corridors at a regular pace or 
with uniform directionality. This adds complexity to model development that depends 
on gait cycle analysis. Therefore, detecting lameness from a few images, instead of 
longer video streams, is important.

In this study, the use of few-shot classification using top view depth images for lame-
ness detection is explored. Few-shot classification is the machine learning technique 
of classifying and prediction based on limited training data. This study uses 2-way sup-
port set, lame vs non-lame and multiple shots 1,3,5 and 10 where each shot is a combi-
nation of multiple frames (1,5,10,15,30,60) of depth images derived from a 30 fps video 
streams. From a total of 1077 pigs, of which 34 had some level of lameness, a few shot 
classifier was modeled. The results show a worst-case accuracy of 33% at 1 shot with 
1 frame. On the high end, an accuracy of 93% with both specificity (non lame) and 
sensitivity (lame) of 93% at 10 shots and 60 frames was achieved demonstrating the 
effectiveness of the few-shot approach.

Keywords: lameness, depth images, few-shot learning, meta learning 

Introduction
Lameness in gestating sows is an agonizing condition that not only affects the welfare 
of the animal but also results in economic challenges to producers (Dewey et al. 1993, 
Heinonen et al. 2006). Studies (Heinonen et al. 2013, Conte et al. 2015) have shown early 
detection of lameness is important for treatments to be effective. Lameness is usually 
assessed by subjective visual gait scoring systems (Main et al. 2000, Deen et al. 2011). 
Such systems are time consuming, labor intensive requiring trained professionals and 
offer subjective variations in scoring (Main et al. 2000). 

The use of technology and sensors to objectively detect lameness has seen tremendous 
growth in the last decade. Conte et al. (2014) measured and characterized lameness in 
sows using multiple measurements - force plates to analyze weight distribution of the 
legs, kinematics (stride, speed joint angles) and accelerometers to study time spent 
standing, frequency of stepping during feeding and time taken to lie down after feeding. 
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Meijer et al. 2014 used pressure mats, which provide both kinetic and kinematic data to 
assess the compensatory force distribution in lame versus sound sows. Amezcua et al. 
(2014) used infrared thermography to study temperature differences in the hind legs of 
sows of various gait scores (0-2 ranging from normal to non-weight bearing on at least 
one hind leg) at various anatomical areas (lower metatarsus, upper metatarsus, pha-
langes and tarsus) and reported observing significant mean temperature differences 
at low metatarsus and phalanges between the normal sow (gait score 0) and lame sow 
(gait score 2).

More recently computer vision techniques powered by machine learning and deep 
learning models and the use of 2d and 3d cameras have been used in various species 
to detect lameness. Van Hertem et al. (2014) evaluated three different classification 
methods – ordinal logistic regression, nominal logistic regression and linear regression 
on consecutive frames of 3D video to perform a 5-point classification on lameness in 
dairy cows. Jabbar et al. (2017) used Hilbert Transform on depth images of dairy cows 
to calculate height movements of hip joint, hooks and spine along with Support Vector 
Machine (SVM) based classifier and achieved 96% accuracy with 100% sensitivity and 
75% specificity in lame/non-lame detection. Zhao et al. (2018) analyzed leg swings of 
dairy cattle and extracted motion curves to generate 6 features set (gait symmetry, 
speed, stride length, tracking up, stance time and tenderness) to train a decision tree 
classifier and achieved accuracy of 91% along with 90% sensitivity and 95% specifici-
ty in detecting 3 levels of lameness.  Wu et al. (2020) used Long Short-Term memory 
(LSTM) derived step size characteristic vector and side view 2d color images for lame/
non-lame classification in dairy cows with 98% accuracy. Condotta et al. (2020) explored 
the use depth images in sows and analyzed temporal changes in height measurements 
of various parts of the body along with estimated step parameters (stride, time) to de-
tect lameness.   

As promising as the computer vision techniques are, these approaches require video 
data stream of animals walking at a regular pace through a corridor or an alley and 
side/top view images/videos. Acquiring and analyzing data in a setting such as group 
housed pens is quite challenging. The movement of animals is not as fluid, mostly stat-
ic, their strides/steps/speed are often irregular and lack consistent directionality. An-
imal movement within the pen may not yield consistent data needed for models that 
use gait analysis to make meaningful inference. The problem is further exacerbated in 
sows with some form of lameness whose movement is further restricted due to pain. 
A solution to this problem is to develop lameness detection models from limited data.

In this study, the use of few-shot classification to detect lameness using limited training 
data is explored. Few shot learning (FSL) is a meta learning task (Finn et al. 2017, Chen 
et al. 2021) where a classifier adapts to classify from an unseen small input/output set 
using prior knowledge gained from similar tasks. Different approaches to FSL such as 
matching networks (Vinyals et al. 2016), prototypical networks (Snell et al. 2017), mod-
el-agnostic meta learning (Finn et al. 2017) have shown great results in image classifica-
tion. The FSL technique has been adapted to recognize actions/activities in humans. Bo 
et al.(2020) developed Temporal Attention Vectors (TAVs) to recognize human actions 
with a few labeled videos. Feng et al. (2019) used FSL with wearable sensors for human 
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activity recognition by addressing negative transfer via the use of a metric that meas-
ure and increase cross-domain class-wise relevance. This study explores the use of FSL 
using temporal attention vectors developed by Bo et al. (2020), applying them to depth 
image frames, to perform lame/non-lame classification.

Materials and Methods
The video data for the study was collected at US Meat Animal Research Center (US-
MARC) at Clay Center, Nebraska over a nine-month period from November 2020 to July 
2021. Data collection was performed in accordance with federal and institutional reg-
ulations regarding proper animal care practices and was approved by the U.S. Center 
for Animal Research Institutional Animal Care and Use Committee (2015-21) (IACUC 
111.0). A total of 1078 Landrace x Yorkshire sows/gilts, 518 recently weaned sows/gilts 
and 560 sows at 110-day of gestation, were used in the study. An overhead camera 
system consisting of Microsoft Azure Kinect DK camera was installed at a height of 3 
meters from the floor capturing both 2d (color) and 3d (depth) videos. The videos were 
recorded at 30 frames per second at 1080p resolution for color stream and 512x512 
pixels for the depth stream. The depth camera was set to use the wide field of view 
(wfov) mode 120x120 degrees. The 1078 animals were visually assessed for lameness 
by trained professionals. Thirty-four sows were identified as lame. Since the number of 
non-lame animals were significantly larger than the number of lame animals, 34 non-
lame animals were randomly selected to represent the non-lame class. 

Preprocessing
The videos were preprocessed using MATLAB (v R2020b) and the Image Processing tool-
box. Minimal preprocessing was required to isolate the only pig from the background 
and other unwanted objects in the frames. The use of binary thresholding and con-
nected components to detect the largest object in the frame was enough to remove 
everything but the pig from the images. The depth images were further filtered using 
a median filter of window size 5x5 to smooth out discontinuities.  

Overview - Few Shot Learning
The primary objective in Few Shot Learning (FSL) is to use limited labeled training 
data for classification. Few shot learning (FSL) is generally presented as a N-way-K-Shot 
classification problem where there are K labeled training data samples for each of the 
N classes and K is rather small. The goal for the model is to learn to detect classes from 
a just a few samples. The N classes and the K samples form a support set with N*K 
labelled samples. The task is to then classify samples from a query set Q among the N 
classes from the support set. An example case is shown in Figure 1 with a 3-way-2-shot 
image classification task where there are 2 images (k=2) for 3 dog breeds (N=3) and the 
task is to label Q=4 dogs from the query set as one of the 3 classes from the support set.   

To solve such a problem, a meta-learning approach is used where FSL learns how to 
classify from other experiences/similar problems. The meta learning algorithms typi-
cally employ two methods 1) Metric Learning, such as Siamese Networks proposed by 
Koch et al. (2015) where the model learns to learn a distance function that can be used 
for comparison or 2) Model Agnostic (Finn et al. 2017) where a neural network model 
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adapts to new examples in new task. The learning for image classification tasks starts 
by using a base dataset D with large sample size and typically does not contain data 
from the new unseen class that requires detection. The training happens in a fixed 
number of episodes E, where in each episode, K samples from each of the N classes in 
the support set along with Q query samples are chosen to train a model for classifica-
tion. During each episode the models train to maximize the detection accuracy of the 
Q images from the query set.  

Figure 1:  3-class 2-shot few shot learning. The model learns to classify the images from the query 
set by looking at 2 images from each of the 3 classes

2-Class-K-Shot-M-Frame Selection
This study uses a 2-Class-K-shot-M-Frame classification approach. The two classes are 
lame and non-lame. The K-shots are not individual images but rather M depth frames 
concatenated together. M will be referred to as frame length. For this study, multiple 
frame lengths M = 5, 10, 15, 30, and 60 were chosen to go along with multiple shots 
K=1,3,5, and 10. The frames were selected as two different groups – 1) Consecutive 
group where M consecutive frames at time intervals 1/30 seconds were collected and 2) 
Sampled group where M frames were sampled at 0.5 seconds. The base class data was 
represented by a total of 68 videos (34 videos for each class) and a 3-second window 
was extracted from them. At 30 frames per second, there were a total of 34*30*3=3060 
depth image frames from both classes available for making the K-Shot-M-Frame base 
data and support and query sets. 
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Feature Extraction (TAV) 
The temporal information of the frames was extracted using the Temporal Attention 
Vectors (TAV) approach developed by Bo et al (2020). Figure 2 shows the different stages. 
TAVs encode the temporal information from a sequence of frames into a smaller sub-
set. The algorithms starts with video frames represented as X = (f1,f2 .. fM) where each 
frame fM  is just the depth image of dimension 512x512. These frames go through a Con-
volutional Neural Network (CNN) for feature extraction yielding F=[p1,p2…pM] where pi 
is of dimension 1xD. The CNN feature extractor is the ResNet-152 network pre-trained 
on ImageNet and the parameters are frozen. The next step is to convert the M 1xD 
dimensional feature to an aggregate set of P TAVs (where P < M). Bo et al (2020) further 
trained an importance score learner but this study only uses the TAVs. Furthermore, 
the size of the aggregate set (P) was set to 3 i.e. the temporal information in the M 
frames are represented by 3 vectors. The TAV initialization and computation is done 
using the Dynamic Gaussian approach suggested by Bo et al. (2020).  

Figure 2:  Using temporal attention vectors from depth images 

Classifier
The classifier was trained using the Model Agnostic Meta learning (MAML) framework 
proposed by Finn et al. (2017). UCF101 (action recognition data set) was used as the base 
data and contains 101 classes of action categories. A 2 layer (each with 150 neurons) 
neural network with cross-entropy loss was trained. During the meta learning stage, 
the algorithm created multiple episodes, each episode containing 2 randomly selected 
classes from the UCF101 data set and K shots/groups of M frames from the two classes 
to form the support set and 2 groups of M frames to form the query set. The trained 
model was then used in the meta testing stage where the new data (lame/non-lame 
videos) are used for support/query set and the model adapts to predict the new data. 
The number of episodes used to build the classifier was set to 6000.
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Results and Discussion
Tables 1 and 2 contain results of using multiple shots (1,3,5,10) and combinations of 
various frame lengths in the consecutive and sampled group respectively. The group 
“consecutive” refers to the shots being consecutive frames of length M and the group 
“sampled” refers to groups of frames at specific intervals. The two categories were in-
vestigated to understand how the selection of frames and the temporal evolution of 
the frames affect the detection accuracy. Frame length of 1 and shot size of 1 performs 
the worst at around 30% accuracy as expected. The K=1, M=1 setting is essentially ask-
ing the model to learn from just a single frame. For the M=1 setting, increasing the 
shots does not lead to improved accuracy in any of the groups. At M=1, K=10, the accu-
racy is 38% implying that single frames do not have the information needed to learn to 
distinguish between the two classes in focus. As the number of frames increase, the ac-
curacy increases. Even at just 5 consecutive frames and 3 such instances/shots select-
ed, the accuracy is 54% indicating the meta learning model has learned to exploit the 
similarity/dis-similarity to understand the difference by just looking at 3 occurrences 
of 5 frames. This is expected as more frames generally tend to have more information 
for the model to learn from. In some of the image classification studies using few shot 
learning, a 3-shot model performed well at almost 70% accuracy. However, the accuracy 
of 54% in this case seems to indicate that query set and support set might have similar 
elements in them for example frames of both lame sow and non-lame sow possibly 
just standing. A good accuracy of 91.67% accuracy was achieved at 10 shots and 30 
frames.  Further increase in frame lengths or the number of shots did not significantly 
increase the accuracy. For example in 30 and 60 frames, which correspond to 1 sec and 
2 sec of consecutive frames, probably have redundant data that some of the earlier 
frames have already captured and hence does not improve accuracy. Another impor-
tant observation from Table 1 is that both the sensitivity (lame sows) and specificity 
(non lame sows) at the best accuracy is around 93%.

For the “sampled” case (Table 2), however, the results did not have a consistent pattern 
except that the accuracies are lower than the consecutive frames counterparts. With 
5 frames selected at 0.5 second interval and 3 shots, the accuracy is 43% compared to 
54% for consecutive frames settings with the same M and K. Increasing the number 
of frames does not improve the accuracy and/or the sensitivity and specificity values. 
Even at 30 frames and 10 shots, the best accuracy was at 70%. This is probably caused 
by the sampling process that leads to grouping of frames that are out of sync and the 
temporal attention vectors cannot encode the motion as reliably as it can in the con-
secutive group case.



290 Precision Livestock Farming ’22

Table 1: Accuracy/Sensitivity (Lame)/Specificity Non-lame) values for Consecutive group
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1 1 33.33% 26.67% 40.00% 3 1 36.67% 26.67% 46.67%

3 35.00% 26.67% 43.33% 3 38.33% 30.00% 46.67%

5 36.67% 30.00% 43.33% 5 53.33% 40.00% 66.67%

10 36.67% 30.00% 43.33% 10 53.33% 40.00% 66.67%

15 38.33% 30.00% 46.67% 15 58.33% 43.33% 73.33%

30 38.33% 30.00% 46.67% 30 58.33% 43.33% 73.33%

60 45.00% 36.67% 53.33% 60 63.33% 50.00% 76.67%

5 1 38.33% 26.67% 50.00% 10 1 38.33% 30.00% 46.67%

3 41.67% 30.00% 53.33% 3 50.00% 40.00% 60.00%

5 53.33% 40.00% 66.67% 5 66.67% 60.00% 73.33%

10 63.33% 46.67% 80.00% 10 75.00% 66.67% 83.33%

15 66.67% 50.00% 83.33% 15 80.00% 73.33% 86.67%

30 73.33% 60.00% 86.67% 30 91.67% 90.00% 93.33%

60 78.33% 66.67% 90.00% 60 93.33% 93.33% 93.33%

Table 2: Accuracy/Sensitivity (Lame)/Specificity (Non-lame) values for Sampled group S=0.5 seconds
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1 1 33.33% 26.67% 40.00% 3 1 35.00% 26.67% 43.33%

3 36.67% 23.33% 50.00% 3 43.33% 40.00% 46.67%

5 38.33% 23.33% 53.33% 5 43.33% 33.33% 53.33%

10 41.67% 26.67% 56.67% 10 45.00% 30.00% 60.00%

15 41.67% 26.67% 56.67% 15 40.00% 30.00% 50.00%

30 43.33% 26.67% 60.00% 30 50.00% 40.00% 60.00%

60 46.67% 33.33% 60.00% 60 46.67% 40.00% 53.33%

5 1 30.00% 26.67% 33.33% 10 1 40.00% 30.00% 50.00%

3 40.00% 26.67% 53.33% 3 53.33% 43.33% 63.33%

5 53.33% 46.67% 60.00% 5 56.67% 40.00% 73.33%

10 46.67% 33.33% 60.00% 10 56.67% 33.33% 80.00%

15 50.00% 33.33% 66.67% 15 66.67% 46.67% 86.67%

30 58.33% 36.67% 80.00% 30 70.00% 53.33% 86.67%

60 58.33% 36.67% 80.00% 60 66.67% 50.00% 83.33%
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Conclusion
In this study, lameness detection of sows using few-shot learning (FSL), which is a meta 
learning paradigm, was explored as a 2-class-K-way-M-Frame learning problem. This 
approach was chosen to address the issue of training models with limited data that 
is often the case in group housed pens. Depth images of various frame lengths were 
concatenated to form groups – some consecutive frames and others sampled at fixed 
intervals. A FSL model was trained to be able to classify the group of frames as lame or 
not-lame using just a few samples. The model achieved the best case accuracy of 93% 
at 60 consecutive frames (0.5sec) and 10 shots highlighting effectiveness of meta learn-
ing when training data is limited. Further study is warranted to study the lameness 
detection problem as a multi-class (multiple levels of lameness) few shot learning task.
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Abstract
As meat consumption increases, the proportion of livestock industry to total agricul-
tural production is increasing every year. Broiler production accounted for 12.5% of the 
livestock production in 2020. However, the breeding environment of broilers is gradual-
ly deteriorating due to heatwaves caused by recently global warming and high density 
of breeding. Also, broilers have difficulty regulating their body temperature, as they 
have high metabolic heat generation and are covered with feathers. Thus, broilers are 
vulnerable to high summer temperatures. To solve this, a tunnel ventilation which is 
a typical method is used in domestic broiler houses to effectively relieve heat stress 
in summer. However, heat stress was not evaluated under various broiler growth con-
ditions, livestock ventilation conditions and thermal insulation. The purpose of this 
study was to validate and develop an energy model to quantitatively evaluate the heat 
stress of livestock using building energy simulation. In a mechanically ventilated broil-
er house, weather and internal micro-climate data were measured at various points 
in the house, and then a model validation was performed using the field data. The 
conditions for the simulation included the livestock age, breeding density, the thermal 
insulation of the wall, ventilation of the livestock, and the presence of a cooling pad. 
The results of the heat stress evaluation were derived and then analysed through the 
temperature humidity index. As a result, it was possible to reduce the damage to live-
stock because of climate change, by preventing mortality due to the heat stress of the 
broilers inside the house.

Keywords: Broiler house, Building Energy Simulation, Heat stress, Temperature 
Humidity Index

Introduction
Due to the increase in meat consumption, domestic livestock production continues 
to increase to 19.1 trillion won in 2015 and 20.3 trillion won in 2020, and the ratio of 
livestock to agricultural and forestry production is also increasing from 37.6% to 39.0%. 
(MAFRA, 2020). Among, the livestock industries, the poultry industry which is divided 
into broilers (raised for meat use), and laying hens (chickens raised to produce edible 
eggs) were considered to be one of the high-ranking sectors in livestock production. 
In 2020, the broiler industry alone accounts for 10.0%. (MAFRA, 2020). Moreover, meat 
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consumption per capita in Korea is increasing from 13.4 kg in 2015 to 14.7 kg in 2020. 
(KREI, 2021)

The consumption of chicken has steadily increased, and the number of breeding an-
imals per area has increased compared to the number of farms, which requires tech-
nology to control and operate the internal environment complexly. However, the cur-
rent broiler facilities lack the production application of cutting-edge technologies such 
as ICT, and lack of production bases such as unlicensed chicken houses and outdated 
breeder farms and hatcheries. Under these circumstances, in the cold weather, they 
are suffering from killing due to viral infections such as Avian Influenza, and in the hot 
weather, abnormal climates and heatwaves caused by warming continues day after day.

Therefore, in this study, an energy model was developed to analyse the micro-weath-
er environment inside the facility by inputting external weather data into the model 
to quantify the heat stress of livestock occurring in summer. Factors affecting heat 
stress were analysed through field experiments, and were used in the model to proper-
ly maintain the internal environment. If the weather forecast and the developed model 
are linked, it is expected that the heat stress index of livestock according to the abnor-
mal climate will be analysed in advance to proactively respond to heat wave damage.

Material and methods

Broiler house selection and field experimental methods
The target livestock facility is located in Yeonggwang-gun (35.322, 126.467), Jeollan-
am-do, Korea. It is a forced ventilation type broiler house with a width of 18m, a length 
of 100m, and a peak height of 6m. From September 25 to October 28, 2020, a total of 
34,000 chickens were bred per rotation production cycle for a month. A meteorological 
station was installed outside the house, and 12 air temperature and humidity sensors 
(3X4) were installed inside to measure and collect data at 5-minute intervals, and mi-
cro-weather analysis was performed for each section. 

Tunnel ventilation is a representative ventilation method that is effective in minimiz-
ing heat stress in summer because the air velocity around the chickens. Under this 
type of ventilation method, air velocity is rapidly formed, the ventilation rate per hour 
is high, and the effective temperature is also reduced. It is necessary to measure the 
flow rate, a factor as important as air temperature and humidity. Therefore, 27 hot wire 
anemometers (3X9) were installed inside the building, one per 10m distance, and the 
internal velocity was measured by zone during tunnel ventilation and then uniformity 
was analysed. In addition, since the actual air volume of the ventilation fan installed in 
the livestock facility may differ from the designed air volume depending on conditions 
such as inlet conditions and fan aging, the actual air volume of the tunnel fan was 
measured. The broiler breeders control the number of tunnel fans operating according 
to the internal air temperature during the summer, so the relationship between air 
volume and static pressure was measured by changing the number of fan operations.
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Development of dynamic energy model and validation
A heat stress model for broilers chicken was developed. The program for calculation 
used TRNSYS (University of Wisconsin-Madison. Solar Energy Lab., USA), a building en-
ergy simulation tool that numerically calculates the heat and energy flow of a building 
over time.  Based on the energy balance equation, the temperature and humidity of the 
internal air was calculated by considering the heat loss and heat gain by convection, 
radiation, conduction, ventilation, infiltration, and internal heat sources on the wall 
surface as a whole building. The structure and covering of the livestock house were 
designed identical to the design of actual livestock house, and the actual ventilation 
amount measured through field experiments was entered. In addition, the age and 
breeding density of chickens were also considered by reflecting the amount of latent 
heat energy generated by broilers, which is an internal heat source, as boundary con-
ditions as in equations (1) and (2). (CIGR, 2002) This is to more accurately simulate the 
internal thermal environment.

 (1)

 (2)

where qtot is total energy generation of broiler, qs is sensible energy generation of broiler,  
d is number of breeding days and t is indoor temperature

In order to evaluate the reliability of the model for calculating the heat stress of live-
stock, the inside air temperature and humidity data of the house measured in the field 
and the calculation results were compared. The validation was performed using vari-
ous statistical indicators such as coefficient of determination, RMSE, and MAPE.

Analysis of heat stress index for livestock

Table 1: Heat stress index previous research for poultry

Considered 
factor Heat stress index formula Reference

dry bulb 
temp., relative 
humidity

NRC (1971); Dikmen 
and Hansen (2009)

dry/wet bulb 
temp. Tao and Xin (2003)

dry/wet bulb 
temp., air speed Tao and Xin (2003)

dry/wet bulb 
temp., breeding 
age

Chepete et al. 
(2005)

dry bulb 
temp., relative 
humidity, area

Moraes et al. (2008)

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
10.62
1000

(1.1678 × 𝑑𝑑𝑑𝑑2 + 11.137 × 𝑑𝑑𝑑𝑑 + 35.753)0.75[1000 + 20 + (20 − 𝑡𝑡𝑡𝑡)] 

 

𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 =
10.62
1000 (1.1678 × 𝑑𝑑𝑑𝑑2 + 11.137 × 𝑑𝑑𝑑𝑑 + 35.753)0.75{0.61 × [1000 + 20 × (20 − 𝑡𝑡𝑡𝑡)] − 0.228 × 𝑡𝑡𝑡𝑡2} 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (1.8  × 𝑇𝑇𝑇𝑇 + 32) − [(0.55 − 0.0055 × 𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇) × (1.8 × 𝑇𝑇𝑇𝑇 − 26.8)] 
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The heat stress of livestock can be defined as the result of a heat load in which livestock 
cannot maintain homeostasis. Its thermal balance is affected by various factors such 
as surrounding climate, livestock breeding, and environmental management. In order 
to apply the heat stress index to the model, a literature survey was first conducted, and 
then the heat stress index of the land system is shown in Table 1. The heat stress of 
chickens inside was evaluated by applying the air temperature and humidity calculat-
ed according to the results of the energy simulation model to this index.

Results and Discussion
The experimental broiler house structure had a door in the west, a tunnel ventilation 
fan in the east, and an inlet in the east and west direction respectively. Air tempera-
ture and humidity in broiler house were analyzed by evenly dividing the inner section 
and measuring it in a 3X4 section. As a result of analyzing the internal microenviron-
ment along the longitudinal direction of the house, the closer to the ventilation fan, the 
more internal heat was accumulated in the air, and the temperature increased by about 
1.57℃. However, there was no significant difference in air temperature and humidity 
according to the width direction. The average external wind speed on the day of the 
experiment was 2 m/s, and the southwest wind close to the west wind dominated, with 
the largest internal velocity of 3.15m/s near the entrance in the north. (Figure 1)

In addition, as a result of measuring the actual ventilation volume by changing the 
number of tunnel fans operated, it was found that fan performance decreased by about 
30% compared to the maximum design flow provided by the manufacturer. (Table 2) 
This difference is analysed due to the difference between the standard test method 
and the field measurement environment of the fan performance curve. Since the in-
ternal high temperature stress may be underestimated when input to the calculation 
model according to the design performance of the fan, it seems that it should be ap-
plied to the model in consideration of the decrease in performance of the tunnel fan. 

The energy model validation was conducted as data for a week from October 4th to 10th, 
and the time step was set to 5 minutes. Since there is a difference in air temperature 
and humidity for each internal area, it was analysed whether the calculation results 
were included within the minimum and maximum values of the experimental values. 
(Figure 2) As a result of analysis using statistical indicators, the MAPE of air temperature 
is 4.66% and the humidity is 5.69%, which is analysed to be more reasonable than the 
10% error criterion of the 1-hour timestep model presented in the ASHRAE guideline.

Figure 1: Results of internal air velocity measurement by broiler house area 
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Table 2: Reduction rate of actual fan flow rate compared to design fan

Static pressure difference (Pa)
Tunnel fan flow (CMH)

Reduction rate (%)
Design Actual

20 32,934 23,061 30

30 30,428 22,048 27.5

40 27,861 20,880 25.1

Figure 2: Comparison of experimental results and simulation results for air temperature and (left 
column) relative humidity (right column) inside the broiler house  

Conclusions
In order to quantify the heat stress of chicken raised in the facility, a dynamic ener-
gy model was developed to calculate the internal microclimate environment. Through 
series of field experiments were conducted in the broiler house. The internal flow rate 
and actual ventilation amount were measured during tunnel ventilation, and the mod-
el was verified using the results of the internal air temperature and humidity experi-
ment. The heat stress index was calculated using the developed model to compare and 
analyse the degree of risk. In future studies, the results of field experiments will be 
used to develop a temperature humidity velocity index calculation model rather than 
a temperature humidity index only.
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Abstract
Precisely predicting the dynamic changes of indoor temperature and relative humidity 
is very beneficial to create a good indoor environment for laying hen houses. While, 
current models fail to consider the cooling efficiency variation of the evaporative cool-
ing pad system, and its effect on indoor temperature and relatively humidity change 
of laying hen houses. In this paper, a new hourly model to predict the annual indoor 
temperature and relative humidity as well as its variation in layer houses was created 
and validated. In the proposed prediction, a mathematical model of the cooling effi-
ciency was adopted to consider the quantitative influence of the evaporative cooling 
pad system on the indoor thermal and humid environment. Results showed the pre-
dicted values of indoor temperature and relative humidity were consistent with the 
field measurements. The overall average prediction error of indoor temperature was 
0.67 °C, and average error of indoor relatively humidity was 3.1%. If the dynamic cooling 
efficiency variation of the evaporative cooling pad system was not taken into account, 
the accuracy of the prediction model would be reduced to some extent. Contrastively, 
when the cooling efficiency was fixed on 80%, the predicted temperature error would 
rise from 0.67 °C to 1.4 °C, and the relative humidity error was from 3.1% to 5.4%. This 
study can provide a technical guidance for animal building design and thermal envi-
ronment control.

Keywords: temperature, humidity, laying hen house, thermal environment, 
evaporative cooling pad, cooling efficiency

Introduction
Appropriate indoor thermal and humid environment is very beneficial for laying hens 
to improve their health, production performance and egg quality under housing sys-
tems (Olgun et al., 2007; Freitas et al., 2017). Therefore, precisely predicting the dynamic 
changes and rules of temperature and relatively humidity (RH) in laying hen house 
throughout the year would be strongly helpful for the industry’s development.

According to the calculation methods of enclosure heat gain, indoor thermal and hu-
mid model can be divided into steady state model and non-steady state model. The 
steady state model predicts the indoor thermal and humid environment by considering 
the heat transfer of the building enclosure as a two-dimensional steady state process. 
Several steady state models have been developed to predict the hourly change of aver-
age temperature and RH inside animal buildings based on heat balance, energy-mass 
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balance and deep learning, by taking natural ventilation, thermal buoyancy, solar radi-
ation and so on into consideration (Cooper et al., 1998; Zhao et al., 2013, Xie et al., 2019). 
However, these models did not consider the influence of cooling efficiency variation of 
the evaporative pad system and its humidification effect. In fact, as a standard cooling 
method in laying hen houses (Malli et al., 2011), the cooling efficiency of the pad system 
typically ranges within 30%~95% (Dağtekin et al., 2009; Petek et al., 2012; Rong et al., 
2017), which is significantly affected by surface wind speed, pad material and structure, 
and etc.

The non-steady state model is developed mainly based on the energy consumption 
simulation software of civil buildings (including DOE-2, EnergyPlus, TRNSYS, DeST, etc.) 
(Zhu et al., 2012), which fully considers the non-steady state heat transfer process of 
the enclosure. Bantle et al. (1989) accurately simulated the annual energy consumption 
of chicken house with DOE-2 software, and Ahachad et al. (2008) used TRNSYS to esti-
mate the changes of indoor temperature and cooling load of chicken house. However, 
these studies did not model the changes of indoor RH, nor did it consider the dynamic 
change of cooling pad efficiency. Moreover, there are also great differences between 
laying hen housing and civil buildings in the structure, indoor temperature and RH pro-
duction, and ventilation requirements, etc., resulting in uncertainties of the prediction 
results by directly using the civil simulation software.

This study used MATLAB software to build and validate an hourly model for year-round 
temperature and RH environment prediction of laying hen houses to provide a reliable 
tool for animal building design and housing environment regulation.

Material and methods

Experimental laying hen house
Field test was carried out on a laying hen farm in Handan, China in July 2019. The layer 
house was in west-east orientation with a size of 100 m long, 12 m wide and 5 m high. 
The enclosure was 0.5 mm thick sandwich steel plate with 150 mm thick foam plate. 
The house was mechanically ventilated by 16 single speed fans installed on the west 
wall. Cooling pads was 1.75 m high, 9 m long and 0.15 m thick setting in the east, north 
and south walls. The stocking density, age, weight and egg production of laying hens 
were 19.6 hen m-2, 55 weeks, 1.5 kg, and 50 g d-1 egg-1, respectively.

Temperature and RH were continuously measured by T/RH data loggers (U23-001, 
HOBO, USA) at every 5 min. As shown in Figure 1, 26 T/RH data loggers were installed 
in the house, 2 loggers were close to gable walls, and other loggers were evenly located 
inside the 1st, 3rd, and 5th aisles at the cage bottom of the 2nd tier and 4th tier. Air velocity 
of each fan was measured by a hot-wire anemometer (model KA41 L, Kanomax, Osaka, 
Japan), and ventilation rate was calculated by multiplying air velocity and surface area 
of the fan. A weather station was installed on the roof of the house to continuously 
monitor the outdoor temperature and RH (accuracy: ±0.2 °C, ±2.5%). Sensors (accuracy: 
2% reading) were installed on the east wall and roof to continuously detect the total 
solar radiation intensity at every 1 h. When the indoor temperature was higher than 28 °C, 
the cooling pad was operated, otherwise, it was turned off.
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Figure 1: Top view of the indoor temperature and relative humidity measuring points

Cooling efficiency of the evaporative cooling pad
In laying hen house, the cooling pad system is usually used in conjunction with fans 
to cool the birds, and cooling efficiency of the pad system is usually variable (Dağtekin 
et al., 2009; Petek et al., 2012; Rong et al., 2017). By analysing its heat and mass transfer 
process (Du et al., 2003), cooling efficiency of a pad system can be modelled as:

 (1)

where η is cooling efficiency, %; ρ is air density, kg m-3; v is wind speed through the 
cooling pad, m s-1; cp is air specific heat capacity at constant pressure, J kg-1 °C-1; α is 
specific surface area of cooling pad, m2 m-3; h is the heat transfer coefficient between 
air and water on the cooling pad surface, W m-2 °C-1; L is the thickness of cooling pad, m.

Jiang (2006) considered the comprehensive influence of specific surface area and heat 
transfer coefficient as volume heat transfer coefficient hv, and fitted the hv of fiber pa-
per, a typical pad material (hv=12.28305ν0.69922). Then a new equation of η was obtained 
as: 

 (2)

Based on the definition of cooling efficiency, dry-bulb temperature tc (°C) and moisture 
content dc (kg kg-1) of the air passing through the cooling pad could be expressed as:

 (3)

 (4)

where ts is outdoor air wet-bulb temperature, °C; ds is outdoor air moisture content at 
saturation, kg kg-1; γ is latent heat of vaporization of water, J kg-1.

Hourly model for year-round temperature simulation
The heat balance equation of large-scale laying hen house was shown in Equation (5).

 (5)

where ti is indoor air temperature, °C; τ is time, s; V is volume of laying hen house, m3; 
Qs is sensible heat production of laying hens in the house, W; Qw is the heat gain of 
enclosure, W; Qh is supplemental heat in laying hen house if there is, W; Qe is heat of 
lighting and other equipment in laying hen house, which is usually ignored due to its 
small value; Qv is the heat loss due to ventilation and air penetration of the house, W.
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For the caged laying hens, the total heat output (Qt) can be calculated by equation (6), 
which is recommended by CIGR (1984).

 (6)

where Qt is total heat output of caged laying hens, W; M is the total weight of laying 
hens, kg; Y is egg production, kg d-1.

Then, the Qs, Qw and Qv can be calculated by equations (7)~(10).

 (7)

 (8)

 (9)

 (10)

where K is heat transfer coefficient of enclosure, W m-2 °C-1; A is area of enclosure, m2; tsa 
is outdoor integrated temperature, °C; I is solar radiation intensity, W m-2; ρs is absorp-
tion coefficient of solar radiation from enclosure surface; h0 is heat transfer coefficient 
of outer surface of enclosure, W m-2 °C-1; m is ventilation mass flow rate, kg s-1; tc is tem-
perature of the air passing through cooling pad, which could be calculated by equation 
(3) when the system is operating; otherwise, it is equal to t0. Data of the ambient air 
were obtained from the typical hourly meteorological data in China based on DeST.

By substituting equations (3) and (6)~(10) into equation (5), the prediction model of dy-
namic temperature in laying hen house could be given as equation (11). The model was 
built based on MATLAB, with 1 h as the time step.

 (11)

Hourly model for year-round relatively humidity simulation
Moisture balance equation of large-scale laying hen house is given in equation (12) as:

 (12)

where di is indoor air moisture content, kg kg-1; Wl is moisture production of laying 
hens, kg s-1; Ww is moisture production of the enclosure surface, which is typically ne-
glectful, kg s-1; Wv is moisture emitted from the house to outside via ventilation, kg s-1.

Then, the Wl and Wv can be calculated by equations (13)~(14).

 (13)

 (14)

where Ql is latent heat production of laying hens, W; dc is moisture content of air after 
passing the pad, which is calculated by equation (4); otherwise, it is equal to d0.
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By substituting equations (4) and (13)~(14) into equation (12), the prediction model of 
dynamic RH in layer house could be given as equation (15) with 1 h as the time step.

 (15)

Results and Discussion

Model performance on year-round temperature and relatively humidity prediction
In this study, the average of 26 measuring points of temperature and RH was used as 
the measured values. Predicted values of indoor temperature and RH were compared 
with the measured ones as shown in Figure 2.

a. Temperature                                              b. Relatively humidity 

Figure 2: Comparison of predicted and measured values of indoor temperature and relative humidity 
in the experimental laying hen house

Figure 2 illustrated that the predicted values of indoor temperature and RH had the 
same change pattern as the measured values. The average prediction error of tempera-
ture was 0.67 °C, and that of RH is 3.1%. Compared with other reported results, accuracy 
of the developed model to predict the dynamic change of indoor temperature and RH 
was improved, which can satisfy the control requirement of laying hen house environ-
ment. The prediction error might be caused by the deviation of the physical parameters 
of the enclosure and the cooling pad due to a long-time usage, and the influence of 
management activities such as air infiltration, disinfectant spraying, manure cleaning, 
workers’ activities, etc, which were exclusive in the model. 

Influence of cooling pad efficiency
Previous studies on thermal environment simulation simplified the cooling pad effi-
ciency to 80% (Wang et al., 2008), while, it practically varied with several factors (such 
as wind speed passing through the pad) (Dağtekin et al., 2009; Petek et al., 2012; Rong et 
al., 2017). To illustrate effect of cooling efficiency variation, this study used fixed cool-
ing efficiency of 80% and the calculated dynamic values (equation (2)) in the model to 
predict the indoor air temperature and RH in laying hen house, and compared with the 
measurements (July 28) in the field. The results were shown in Figure 3.
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a. Temperature                                          b. Relatively humidity 

Figure 3: Effect of the cooling pad efficiency on the indoor temperature and RH prediction 

Figure 3 showed that the predicted indoor temperature and RH by 80% and varied cool-
ing efficiency were basically agreed during night, because the cooling pad was turned 
off for lower indoor temperature at night. In daytime (especially at noon and after-
noon), along with the outdoor temperature and solar radiation rose, the cooling pad 
was operated, and differences of the predictions with fixed and varied cooling efficien-
cy were observed. With a constant efficiency of 80%, the maximum difference between 
predicted and measured indoor air temperature was 1.4 °C, and that of RH was 5.4%, 
which were all greater than the errors (0.67 °C for temperature and 3.1% for RH) calcu-
lated with changed cooling efficiency. It is concluded that the cooling efficiency varia-
tions of evaporative pad system with different wind speeds should be considered into 
the indoor temperature and RH prediction models to improve its accuracy.  

Year-round temperature and relative humidity prediction in typical area in China
To show its application potential, the developed model was used to predict the year-
round indoor temperature and RH of laying hen houses in the cities of Wuhan and Har-
bin of China as an example. The input parameters of laying hen houses in two regions 
were supposed to be the same (Liang et al., 2021). The hourly temperature and relative 
humidity predictions for the whole year in Wuhan (central China) and Harbin (north-
ern China) as an example were shown in Figure 4.

Figure 4 illustrated that indoor temperature of laying hen house in Wuhan was mostly 
between 10 °C and 25 °C, which could meet the basic requirements of thermal and hu-
mid environment in winter. However, indoor temperature can easily reach over 28 °C 
and RH was higher than 80% for most of time in July and August, showing a relatively 
poor cooling effect of the pad system for hot and humid weather. Therefore, in this 
areas, appropriately increasing ventilation should be considered to meet the require-
ments of heat and humid environment in laying hen houses during summer. As for 
Harbin, the house could basically meet the requirements of thermal and humid envi-
ronment in summer, and the temperature in the house was mainly between 12 °C and 
27 °C. However, the indoor temperature was usually lower than 13 °C, or even below 0 
°C in winter. Therefore, in the cold region, integrated solutions including appropriate 
increasing of  stocking density and insulation performance of house enclosure, as well 
as balanced ventilation could be taken to satisfy its thermal and humid environment 
of laying hens.
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a. Temperature in Wuhan                         b. Relatively humidity in Wuhan

c. Temperature in Harbin                         d. Relatively humidity in Harbin

Figure 4: Hourly simulation values of the indoor temperature and relative humidity in the laying 
hen house in Wuhan and Harbin

Conclusions
An hourly model for year-round temperature and RH environment predictions in laying 
hen house in China was developed based on cooling efficiency mathematical models 
and heat and moisture balance equations, and the accuracy of the model was verified 
by field test. The main conclusions were as follows: 

1. Predictions of indoor temperature and RH were well consistent with the field 
measured values. The overall average prediction error of indoor temperature 
was 0.67 °C, and that of indoor relatively humidity was 3.1%, showing the model 
had a good performance to predict the dynamic changes of environmental pa-
rameters in laying hen house.

2. If the dynamic variation of the cooling pad system efficiency was not taken into 
account, the accuracy of the prediction model would be reduced.
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Abstract
Duck industry which is one of the fast-growing industries occupied 6th in the livestock 
industry in South Korea. However, there are few studies for quantitatively predicting 
the internally thermal and moisture environment of duck houses. In this study, the 
high-accuracy recurrent neural network (RNN) models for predicting the internal air 
temperature and relative humidity according to the type of duck houses, seasons, en-
vironmental variables were developed by learning the monitoring data of the internal 
and external environments of the mechanically and naturally ventilated duck house 
measured at field experiments. The optimal sequence length of learning data for the 
development of the RNN model was selected as 120 minutes. As a result of the valida-
tion, both air temperature and relative humidity could be accurately predicted within 
1% error. In addition, the simplified RNN models were additionally developed by learn-
ing only from the data of external air temperature, relative humidity, and duck weight, 
which are relatively easy to acquire at the farms. The accuracy of the simplified RNN 
models was similar to the basic model for predicting the internal air temperature and 
relative humidity of duck houses in real-time.

Keywords: duck house, environmental monitoring, prediction of internal 
environments, machine learning, recurrent neural network

Introduction
Recently, artificial neural network (ANN) has been actively used as a method to accu-
rately predict the dependent variables from independent variables in the agricultural 
fields. The recurrent neural network (RNN) model, which is one of the ANN models, has 
been actively applied to the agricultural field due to the advantage of being suitable for 
dealing with time-series data. However, few studies focused on predicting the internal 
environment of livestock houses. The RNN model has the advantage of high accuracy 
and improving the model through continuous learning. Therefore, it is expected that 
the RNN model can be applied to develop the model for predicting the internal environ-
ments of duck houses in real-time.

In this study, the RNN models according to the type of duck houses, seasons, envi-
ronmental variables were developed for predicting the internal air temperature and 
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relative humidity of the mechanically and naturally ventilated duck houses. The inter-
nal and external environmental data of the duck houses monitored at field experiments 
such as external air temperature, relative humidity, solar radiation, wind speed, wind 
direction, ventilation rate of the mechanically ventilated duck house, and weight of the 
duck were used as learning data for RNN model development. Because ventilation is 
one of the most important factors affecting the internal environments of duck houses, 
the ventilation rates of the mechanically ventilated duck house were monitored and 
used as learning data. The data of wind speed and direction were used as learning data 
instead of the ventilation rate of the naturally ventilated duck house because it was 
hard to quantitatively monitor the natural ventilation rate at field experiments. The 
accuracy of the developed RNN models was evaluated according to the type of duck 
houses, seasons, environmental variables. In addition, the simplified RNN models were 
developed to improve the applicability of the RNN model to the field. The simplified 
RNN models were developed by learning only from external air temperature and rela-
tive humidity data, which is relatively easy to acquire at the farms. Finally, the accuracy 
of the simplified RNN models was compared with that of the basic model for predicting 
the internal air temperature and relative humidity of duck houses in real-time.

Material and methods

Data collection of environments of duck houses
A mechanically ventilated duck house and a duck house converted from a plastic 
greenhouse were used for developing the RNN model of mechanically and naturally 
ventilated duck houses, respectively. The internal environments of these duck houses 
could be directly compared with each other because these duck houses were located at 
the same farm (126°38’ E, 34°53´ N). To develop the RNN models for predicting the inter-
nal environments of duck houses, validate them, and then enhance their accuracy, the 
monitoring data of the external and internal environments observed during the field 
experiments were used. As shown in Figure 1, 12 and 15 sensors (HTX 75, Dotech Inc.) 
were installed to measure the internal air temperature and relative humidity of the 
mechanically and naturally ventilated duck houses, respectively. These sensors were 
installed at a height of 1.2 m at regular intervals to prevent breakdown by birds. When 
the exhaust fans were operated in the mechanically ventilated duck house, AC clamp 
sensors and an electrometer were installed for the monitoring of electric current flow. 
The data of the ventilation rates, air temperature, and relative humidity inside the 
duck house were monitored at 1 s intervals. However, the data averaged over 5 min 
were used to develop the RNN model. To observe the weather data, a portable weather 
station (Watchdog 2900ET, Aurora, IL, USA) was installed on the roof of the control room 
in the farm. Weather data such as the wind environments, solar radiation, air temper-
ature, relative humidity, and rainfall were measured at 1 s intervals, and data averaged 
over 5 min were recorded.
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(a) Mechanically ventilated duck house

(b) Naturally ventilated duck house

Figure 1: Sensor locations for air temperature and relative humidity in mechanically and naturally 
ventilated duck houses (P in figure means the measurement point) 

Design of RNN model of duck houses
In this study, a single-layered LSTM model suitable for learning long-term data was 
used. As learning parameters, the learning rate was set to 0.01, and the tanh function, 
which is known to generally have high accuracy for the RNN model, was used as the ac-
tivation function. The Adam optimizer was applied as the optimizer (Kingma & Adam et 
al., 2014), and the loss was learned so that the mean square error was minimized (Esfa 
et al., 2016; Rumelhart et al., 1986; Wang et al., 2017). For RNN learning, missing data 
were linearly interpolated. Detailed information of the dataset for development of the 
RNN model such as the monitoring period and the number of total dataset is presented 
in Table 1. Specifically, 70% of the data measured for each rearing period were used as 
the learning data for model development considering the time series, while 30% of the 
data for each rearing period were used as data to validate the developed RNN models. 
The data of external air temperature, relative humidity, and solar radiation, as well as 
ventilation rate and weight of the duck, were used as training data in order to develop 
the RNN model for predicting the internal air temperature and relative humidity of the 
mechanically ventilated duck house. Although it is hard to quantitatively monitor the 
ventilation rates of the naturally ventilated duck house, the external wind speed and 
wind direction are the main factors for natural ventilation. Therefore, when the RNN 
models of the naturally ventilated duck house were developed, the wind speed and 
wind direction data were used as training data instead of the ventilation rate.

Table 1: Identification results of the proposed algorithm

Monitoring 
Period Seasons Growing Days Starting Date 

of Monitoring
Date of 

Shipment Total Dataset

1st growing period Summer 45 days 6 Aug. 2018 12 Sep. 2018 12,960

2nd growing period Autumn 41 days 11 Oct. 2018 13 Nov. 2018 11,808

3rd growing period Winter 30 days 9 Dec. 2018 7 Jan. 2019 8640
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Validation of RNN models
The developed RNN model of the duck houses was validated by comparing the pre-
dicted data of the air temperature and relative humidity using the RNN model with 
the measured data of the air temperature and relative humidity data during the field 
experiments. The optimal sequence length was selected by comparing the accuracy of 
the RNN model developed according to sequence lengths of 30, 60, 90, 120, 150, and 180 
min. Additionally, the accuracy and characteristics of the RNN model for the mechan-
ically ventilated duck house were compared with those of the BES model developed in 
a previous study (Lee et al., 2020). Statistical indices such as coefficient of determina-
tion (R2), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) 
were calculated to validate the RNN models by comparing the predicted data obtained 
using the developed RNN model with the data measured during the field experiments 
using Equations (1)–(3), respectively.

 (1)

 (2)

 (3)

where R2 is the coefficient of determination, RWSE is the root-mean-square error 
(°C, %), MAPE is the mean absolute percentage error (%), n is the total data according to 
time, Ri is the measured data at a specific time, R–l is the average of the measured data 
at a specific time,  is the predicted data at a specific time, and C–l is the average of the 
predicted data at a specific time.

Comparison of accuracy of RNN models
In Analyses conditions for the developed RNN model were a total of 24 cases as shown 
in Table 2. The data of external air temperature, relative humidity, solar radiation, ven-
tilation rate, and weight of the duck were used as training data in order to develop the 
RNN model of the mechanically ventilated duck house for estimating the internal air 
temperature and relative humidity. The data of external air temperature, relative hu-
midity, solar radiation, wind speed, wind direction, and weight of the duck were used 
as training data in order to develop the RNN model of the naturally ventilated duck 
house for estimating the internal air temperature and relative humidity.

Considering the applicability of the RNN models to the field, simplified RNN models 
were additionally developed by learning only the data of the external air temperature, 
relative humidity, and duck weight, which are relatively easy to acquire at duck farms. 
It was generally difficult to quantitatively monitor the ventilation rate of duck hous-
es at duck farms. Because most farms do not install their own weather stations, it is 
difficult to observe the external wind environment and radiation in real time. How-
ever, it is relatively easy to obtain the data of external air temperature and relative 
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humidity from simple sensor installation and through the Meteorological Agency. The 
duck weight is an important factor affecting the internal environment of duck houses. 
These data could be calculated from growing days. The accuracy of simplified RNN 
models was then compared and analysed. Additionally, the accuracy of RNN models 
can be improved when time-series data are trained in reverse order according to previ-
ous studies (Srivastava et al., 2015; Sutskever et al., 2014; Vinyals et al., 2015). Therefore, 
in this study, the RNN models were developed by learning time-series data in reverse 
to improve their accuracy.

Table 2: Experimental conditions of learning data for developing RNN model 

Conditions Conditions Number 
of Cases

Learning 
data
(Independent 
variables)

Mechanically 
ventilated 
duck house

Basic 
model

(1) External air temperature, external 
relative humidity, solar radiation, 
ventilation rates of duck house, and duck 
weight

4
Simplified 
model

(2) External air temperature, external 
relative humidity, and duck weight

Naturally 
ventilated 
duck house

Basic 
model

(3) External air temperature, external 
relative humidity, solar radiation, wind 
speed, wind direction, and duck weight

Simplified 
model

(4) External air temperature, external 
relative humidity, and duck weight

Dependent variable Internal air temperature and internal relative 
humidity 2

Seasons
Summer (30 Jul. 2018–12 Sep. 2018),
autumn (4 Oct. 2018–13 Nov. 2018), and
winter (26 Nov. 2018–7 Jan. 2019)

3

Total - 24

Results and Discussion

Validation of RNN models
The developed RNN model of the duck houses was validated by comparing the predict-
ed data of the air temperature and relative humidity using the RNN model with the 
data of the air temperature and relative humidity data measured during the field ex-
periments. For developing the RNN model, the accuracy according to several sequence 
lengths was compared to determine the sequence length of the training data. To quan-
titatively compare the accuracy of the RNN models, the statistical indices of R2, RMSE, 
and MAPE were calculated, and the results are shown in Table 3. The sequence length 
should be at least 120 min to ensure that the deviation between internal relative hu-
midity data predicted by the RNN model and measured during field experiments was 
within 1%. When the sequence length was 150 and 180 min, the accuracy of the RNN 
model was not significantly improved compared to other sequence lengths, but it took 
a long time to develop the RNN model. Therefore, the optimal sequence length was 
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selected at 120 min, and it was applied to the development of RNN models. Addition-
ally, the RNN model was able to predict more accurately compared with the BES model 
developed in the previous study (Lee et al., 2020). The BES model was developed using 
the equilibrium equation of physical factors, and it was possible to apply it in changing 
conditions. Although the accuracy of the RNN model was high for the condition of the 
trained data, the accuracy of the RNN model was uncertain for untrained new data. 
However, the RNN models were expected to be highly applicable to the field because 
the RNN models could be continuously improved by learning the monitoring data in 
the future. 

Table 3: Identification results of the proposed algorithm

Internal Air 
Temperature

Sequence Length for LSTM Model BES Model
(Lee et al., 2020)30 min 60 min 90 min 120 min 150 min 180 min

R2 0.96 0.96 0.98 0.99 0.99 0.99 0.95

RMSE (°C) 0.61 0.51 0.35 0.23 0.25 0.22 0.70

MAPE (%) 1.50 1.22 0.85 0.45 0.47 0.44 1.71

Internal relative 
humidity

Sequence Length for LSTM Model BES Model
(Lee et al., 2020)30 min 60 min 90 min 120 min 150 min 180 min

R2 0.91 0.95 0.96 0.98 0.98 0.98 0.92

RMSE (°C) 3.16 2.35 1.62 1.11 1.08 1.09 4.61

MAPE (%) 3.12 2.16 1.57 0.79 0.78 0.79 4.33

Analysis of accuracy of RNN model according to seasons and applicability of 
simplified RNN model
Ventilation operation, evaporation of litters, condensation at the wall, etc. were differ-
ent according to seasons. However, the RNN models were developed by dividing the 
training data according to seasons because it was difficult to quantitatively monitor 
the data as these factors constantly changed. The accuracy of the RNN models trained 
in reverse order is shown in Tables 4 and 5. The accuracy of the RNN model of the 
naturally ventilated duck house was lower than that of the mechanically ventilated 
duck house. Because the internal environments of the naturally ventilated duck hous-
es were operated through natural ventilation, there were several uncertainties such as 
non-uniformity of the internal environments. As a result of comparing the accuracy of 
the RNN model trained in reverse order according to seasons, the RNN models of both 
the mechanically and the naturally ventilated duck houses predicted the internal air 
temperature and relative humidity with errors of less than 1% in the summer. In sum-
mer, the accuracy of the RNN models was the highest compared with other seasons. 
In summer, the exhaust fans were maximally operated in the mechanically ventilated 
duck house, and the vent openings of the naturally ventilated duck house were max-
imally open. In the case of the simplified RNN model for applicability to the field, the 
accuracy of the simplified RNN models for both the mechanically and the naturally 
ventilated duck houses was similar to the accuracy of the basic RNN models. This is 
because the time factor included the changes over time of solar radiation, ventilation 
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Table 5: Accuracy of RNN model of naturally ventilated duck house according to seasons and 
variables (reverse order)

Summer
Basic Model Simplified model

Internal
Air Temperature

Internal
Relative Humidity

Internal
Air Temperature

Internal
Relative Humidity

R2 0.994 0.996 0.995 0.995

RMSE (°C, %) 0.414 1.103 0.390 1.313

MAPE (%) 0.813 1.254 0.891 1.512

Autumn
Basic Model Simplified model

Internal
Air Temperature

Internal
Relative Humidity

Internal
Air Temperature

Internal
Relative Humidity

R2 0.996 0.998 0.997 0.996

RMSE (°C, %) 0.385 0.914 0.352 1.496

MAPE (%) 1.891 1.048 1.701 1.819

Winter
Basic Model Simplified model

Internal
Air Temperature

Internal
Relative Humidity

Internal
Air Temperature

Internal
Relative Humidity

R2 0.997 0.984 0.997 0.989

RMSE (°C, %) 0.229 0.866 0.239 0.744

MAPE (%) 1.187 0.490 1.285 0.550

Table 4: Accuracy of RNN model of mechanically ventilated duck house according to seasons and 
variables (reverse order)

Summer
Basic Model Simplified model

Internal
Air Temperature

Internal
Relative Humidity

Internal
Air Temperature

Internal
Relative Humidity

R2 0.988 0.980 0.987 0.981

RMSE (°C, %) 0.221 1.065 0.224 1.070

MAPE (%) 0.412 0.731 0.390 0.761

Autumn
Basic Model Simplified model

Internal
Air Temperature

Internal
Relative Humidity

Internal
Air Temperature

Internal
Relative Humidity

R2 0.998 0.998 0.999 0.998

RMSE (°C, %) 0.137 0.499 0.121 0.482

MAPE (%) 0.526 0.401 0.643 0.406

Winter
Basic Model Simplified model

Internal
Air Temperature

Internal
Relative Humidity

Internal
Air Temperature

Internal
Relative Humidity

R2 0.983 0.991 0.985 0.991

RMSE (°C, %) 0.487 0.647 0.403 0.728

MAPE (%) 2.317 0.332 1.654 0.463
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rate, ventilation configuration, etc. Therefore, the internal air temperature and rela-
tive humidity of the duck houses could be predicted by obtaining the data of external 
air temperature and relative humidity from installed sensors and the Meteorological 
Agency. In addition, the internal environments of duck houses could be more appropri-
ately managed using these simplified RNN models.

Conclusions
The RNN models developed in this study have the advantage that they can be continu-
ously improved by learning monitoring data in the future. The simplified RNN models 
with high accuracy are expected to be highly applicable to the field. They can be applied 
to control the internal environment of livestock farms and identify the occurrence of 
high-temperature stress for livestock. Furthermore, predicting the internal environ-
ments of livestock houses is important because the poor internal environment of live-
stock houses cause sensor corrosion or malfunction. In the future, for the convergence 
of ICTs and application of smart farms in duck houses, the RNN models of duck houses 
developed in this study can be applied to predict and control the internal environments 
of duck houses using the model predictive control (MPC) technique.
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Abstract
Automated animal activity recognition (AAR) has achieved great success due to the 
development of deep learning methods trained on large-scale datasets, providing rich 
insights into animal health and welfare and alleviating the workloads of animal care-
takers and veterinarians. However, constructing centralised data across diverse sources 
(e.g., farms) faces two challenges: 1) data ownership and privacy issues when accessing 
farm data, and 2) limited storage and computational capabilities in a single central re-
pository. Federated learning (FL), which allows data owners to collectively train a mod-
el while keeping their data stored locally, provides a privacy-preserving decentralised 
solution. This study introduced the FL-based framework for the first time to AAR fields 
and explored its feasibility and effectiveness in improving model performance by unit-
ing sensor data from different farms. Three state-of-the-art FL strategies (i.e., FedAvg, 
FedProx, and FedBN) were compared against SingleSet (i.e., training an individual model 
within each client) based on two public datasets. These two datasets consist of 87,621 
and 42,943 2-s motion data (tri-axial acceleration and tri-axial angular velocity) acquired 
from horses and goats, respectively. The results demonstrated that FedAvg, FedProx, and 
FedBN could accurately classify activities of horses and goats, outperforming the Sin-
gleSet with different increments in average accuracy (horses: 12.07%, 12.05%, 11.89%; 
goats: 4.05%, 4.07%, 4.16%). This proved the promising capability of FL to enhance AAR’s 
performance without privacy leakage. In addition, empirical analyses were conducted 
to assess FL’s performance from two aspects, including data sizes and clients numbers, 
providing rich insights into FL’s appropriate applications in the future.

Keywords: animal welfare, wearable sensor, deep learning, privacy-preserving, 
distributed learning

Introduction
Automated animal activity recognition (AAR) with wearable sensors has attracted in-
creasing attention, providing rich insights into animal health and welfare and alleviat-
ing the workloads of animal caretakers and veterinarians. In recent years, deep learn-
ing-based approaches have dominated this task due to their high performance with 
the help of large-scale training datasets. However, in reality, building a big dataset for 
one farm or institution is difficult, and limited training data easily cause the model’s 
overfitting problem, yielding unsatisfactory performance. As shown in Figure 1, training 
models based on data within a single site always have low accuracies due to data limi-
tations, whereas the accuracy significantly increases when using centralised data from 
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both sites. Thus, data collaboration across diverse sources (e.g., farms) is increasingly 
desired to learn a global model. However, collecting large quantities of centralised data 
from different farms tends to face two challenges: 1) data access is often restricted due 
to data ownership, privacy concerns, and strict sharing policies, and 2) constructing 
and modelling all data samples in a single machine or central repository is impractical 
due to the high storage costs and limited computational capabilities. To this end, there 
is a need for a distributed learning paradigm that enables to build a collaborative model 
without privacy leaking and alleviates the burden on data gathering for a single entity.

Federated learning (FL), which is a new collaborative learning strategy, has emerged 
as an attractive solution to mitigate the aforementioned problems (Brendan McMahan 
et al., 2017; Acar et al., 2021). It allows learning from distributed clients (data sources) 
by aggregating the locally trained models without exchanging the client’s data. Such 
a mechanism promotes privacy preservation between independent and decentralised 
data stores while producing trained models that leverage datasets of all participating 
clients (Deng et al., 2020; Durrant et al., 2021). Meanwhile, it enables us to train models 
under individual clients with less storage and computational capabilities. In recent 
years, FL has been increasingly designed for various applications due to its privacy-pre-
serving nature, including mobile edge devices, industrial engineering, and health care 
(Li et al., 2020a; Li et al., 2020b; Li et al., 2021a). However, as far as we know, no previous 
work employed FL models in AAR tasks based on decentralised data.

In this study, we introduced the FL-based framework for the first time to the AAR fields, 
and explored its feasibility and effectiveness of improving model performance using 
decentralised data. Three state-of-the-art FL strategies, i.e., FedAvg (Brendan McMahan 
et al., 2017), FedProx (Li et al., 2020c), and FedBN (Li et al., 2021b), were compared against 
SingleSet (i.e., training an individual model within each client), based on two public da-
tasets. These two datasets consisted of 87,621 and 42,943 2-s motion data (tri-axial ac-
celeration and tri-axial angular velocity) acquired from horses and goats, respectively.

Figure 1: Testing accuracy based on data within a single site and centralised data
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Material and methods

Data description
The data used in this study contained two public datasets collected from horses (Kam-
minga et al., 2019) and goats (Kamminga et al., 2018), respectively. They were denoted as 
horse-dataset and goat-dataset, respectively. The horse-dataset was a centralised data-
set comprising 87,621 2-s samples acquired from six horses with neck-attached IMUs. 
It contained six activities, i.e., eating, galloping, standing, trotting, walking-natural, and 
walking-rider. The activity amount of these six horses, i.e., Happy, Zafir, Driekus, Galo-
way, Patron, and Bacardi, was 23,625, 11,071, 10,127, 24,602, 12,849, and 5,347, respec-
tively. Amongst, the tri-axial motion data from the accelerometer and gyroscope were 
exploited as bi-modality data, forming up to two tensors (1 × 3 × 200) for each sample.

The goat-dataset was a real-world dataset consisting of 42,943 2-s motion data col-
lected from five goats on two farms. Each goat’s collar was attached to six sensors (i.e., 
tri-axial accelerometer and gyroscope) that were fixed with different orientations. Five 
main activities were included, i.e., standing, running, eating, trotting, and walking. The 
sample number of the five goats, i.e., three domestic pygmy goats from one farm and 
two larger and more wild goats from another farm, was 13,902, 5,321, 11,954, 7,523, and 
4,243, respectively. Amongst, the tri-axial accelerometer and gyroscope data from all 
six sensors of the collar were utilised, forming up to two tensors (1 × 18 × 200) for each 
sample. Note that the sampling rates of the tri-axial accelerometer and gyroscope were 
set to 100 Hz in both two datasets. All these samples would be normalised before being 
fed into the network (Mao et al., 2021).

Federated learning (FL) framework for AAR
Federated learning (FL) was initially proposed by Google (Brendan McMahan et al., 
2017), where a group of data owners collectively trained a model while keeping their 
data stored locally. Herein we adopted FL paradigms to achieve automated AAR where 
sensor data were located in different farms (clients), and presented the FL framework 
for AAR in Figure 2.

Let G and L = {lk}K
k=1 represented the global model and K local client models, respectively. 

Dk = {(xk
i, yk

i )}N
i
k
=1 represented a set of the dataset in the k-th client, where yk

i  ∈ {1, …, C}was 
the corresponding label of the data instance xk

i (i ∈ {1, …, Nk}), C was the number of label 
categories, and Nk was the data number of the k-th client. Each communication round 
of the framework mainly consisted of three steps:

1) Local model update and upload. Each farm (k-th farm) trained the local model (lk) 
based on its own dataset (Dk) for E local epochs, and then uploaded the updated model 
parameters to a trusted third-party (global server unit).

2) Global model update. The third-party randomly selected local models from several 
farms (here we selected all of the client models by default) and then aggregated their 
parameters to update the global model G. The most popular existing and easiest FL 
strategy is FedAvg, and its aggregation algorithm is defined as below:
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 (1)

where wG and wk were the parameters of global model G and model lk, respectively.

3) Gobal model delivery. Each farm downloaded the latest global model parameters wG 
and used them as the updated weights for decision-making or the next model updating 
cycle. Note that the local model initialisation took place at the first delivery round.

Except for the FedAvg, as introduced above, FedProx and FedBN were further designed 
based on it. In reality, FedAvg often suffered from slow convergence and performance 
degradation in most non-iid contents(Deng et al., 2020)we study communication effi-
cient distributed algorithms for distributionally robust federated learning via periodic 
averaging with adaptive sampling. In contrast to standard empirical risk minimization, 
due to the minimax structure of the underlying optimization problem, a key difficulty 
arises from the fact that the global parameter that controls the mixture of local losses 
can only be updated infrequently on the global stage. To compensate for this, we pro-
pose a Distributionally Robust Federated Averaging (DRFA. Thus, FedProx was proposed 
to tackle the statistical heterogeneity by restricting the local updates to be closer to 
the initial (global) model. Specifically, the original loss function L(w) within FedAvg was 
added by a new term, i.e, μ–2 ||w – wG||2, where μ denoted the hyperparameters.

Considering the feature shift non-idd issue, i.e., local clients may store examples with 
different distributions compared to other clients, FedBN as an effective method was 
further presented. It kept the client BN layers updated locally without communicating 
and aggregating them at the global server. All these three FL strategies were imple-
mented in this study to verify the effectiveness of FL under AAR tasks.

Figure 2: Federated learning (FL) framework for AAR across multiple farms
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Implementation details
We employed the cross-modality interaction network, which has been previously val-
idated in improving horse activity classification performance (Mao et al., 2021), as the 
basic classification model to achieve AAR under the FL setting. Four common evalua-
tion metrics were utilised: precision, recall, F1-score, and accuracy. To verify the mod-
el’s generalisation ability, we performed the leave-one-out-based validation method 
where one individual’s samples were separated as the testing set, and the data from 
the remaining subjects were used to be training set in each client. As for the horse-da-
taset, we reconstructed it into two clients, one containing training data from Happy 
and Zafir and testing data from Bacardi, and another containing training data from 
Driekus and Galoway and testing data from Patron. This matched the setup proposed 
by Li et al. (2021b), i.e., balanced sample numbers across clients. As for the goat-dataset, 
we constructed two clients corresponding to two farms.

During training, softmax cross-entropy loss with L2 regularisation (a weight decay of 
0.15) was used. An Adam optimiser with an initial learning rate of 1 × 10−4 was em-
ployed, and the learning rate decreased by 0.1 times every 20 epochs. The number of 
local update epochs, communication rounds, and batch size was set to 1,100, and 256, 
respectively. The best model with the highest average testing accuracy across all clients 
was saved as the optimal model over the last five communication rounds. We per-
formed three repeated runs for each experiment, and the final results were presented 
with format mean±std from the three-trial run. All experiments were executed using 
the PyTorch framework on an NVIDIA Tesla V100 GPU.

Results and discussion
Overall, experiments results demonstrated that FedAvg, FedProx, and FedBN exhibited 
superior performance to the SingleSet in terms of all evaluation metrics. In addition, 
a comprehensive investigation of the FL’s performance was conducted on horse-da-
taset,  concerning two practical aspects (i.e., local data sizes and clients numbers). It 
provided empirical insights into the appropriate applications of FL in AAR tasks in the 
future.

Performance on horse-dataset
To evaluate the effectiveness of FL strategies, we presented the comparative results of 
three FL methods and the SingleSet on horse-dataset in Table 1. It revealed that FedAvg, 
FedProx, and FedBN displayed promising capabilities for behavioural classification with 
increments of 11.42%, 11.49%, 11.62% in average precision, 13.51%, 13.51%, 13.33% in 
average recall, 13.75%, 13.79%, 13.73% in average F1-score, and 12.07%, 12.05%, 11.89% 
in average accuracy compared with the SingleSet, respectively. This was ascribed to 
the fact that FL enabled to access different clients’ data implicitly to learn more pat-
tern characteristics, whereas the SingleSet was only trained on the limited data within 
a single site. In addition, FL methods showed smaller variances than the SingleSet in 
values of all evaluation metrics over multiple runs, indicating FL methods’ good stabil-
ity and robustness. This was because that FL could discover more general and discrim-
inative patterns effectively (Li et al., 2020a). Figure 3 shows the training process of the 
two client models under three FL methods and SingleSet. We can observe that FedAvg 
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and FedProx displayed approximate training curves and increased faster and smoother 
than FedBN, indicating that FedAvg and FedProx had larger convergence rates. These 
observations showed inconsistency with what was given by previous findings (Li et al., 
2021b), which might be due to the discrepancy of data characteristics between different 
datasets.

Performance on goat-dataset
To better understand the benefits of the FL mechanism in real-world scenarios, we fur-
ther validated the effectiveness of FL approaches in comparison with the SingleSet on 
goat-dataset. As illustrated in Table 2, the FedAvg, FedProx, and FedBN exhibited superi-
or performance for behavioural classification with increments of 1.55%, 4.98%, 3.02% in 
average precision, 8.46%, 8.38%, 9.10% in average recall, 8.03%, 8.13%, 8.19% in average 
F1-score, and 4.05%, 4.07%, 4.16% in average accuracy compared with the SingleSet, 
respectively. This demonstrated that the FL methods could also effectively improve the 
classification performance in a real-world application. Moreover, it is worth noting that 
the FedBN achieved better performance than FedAvg and FedProx with higher average 
values in recall, F1-score, and accuracy, which was inconsistent with the experimen-
tal results on the horse-dataset (Table 1). This might be explained by the fact that the 
goat-dataset existed feature shift non-iid issues due to the different behaviour patterns 
between two kinds of goats in two farms. And the issues could be effectively alleviated 
when applying FedBN that kept the local batch normalisation parameters not synchro-
nised with the global model (Li et al., 2021b). In addition, we presented the training pro-
cess of two client models under three FL methods and SingleSet in Figure 4. It can be 
observed that FedAvg, FedProx, and FedBN showed similar convergence rates, although 
they fluctuated greatly with different degrees in the early training stage. Moreover, the 
testing accuracy showed overfitting phenomenons when SingleSet was applied, mainly 
because of the limited amount of data in a single client.

Table 1: Comparison (mean±std) of SingleSet and federated learning (FL) methods on horse-dataset

Methods Precision (% ) Recall (%) F1-score (%) Accuracy (%)

SingleSet 66.370.65 66.151.50 64.781.54 79.870.82

FedAvg 77.790.25 79.660.18 78.530.20 91.940.16

FedProx 77.860.19 79.660.19 78.570.15 91.920.09

FedBN 77.990.32 79.480.22 78.510.18 91.760.22

Table 2: Comparison (meanstd) of SingleSet and FL methods on goat-dataset

Methods Precision (% ) Recall (%) F1-score (%) Accuracy (%)

SingleSet 62.950.45 57.951.61 57.182.18 92.010.55

FedAvg 64.500.11 66.411.08 65.210.53 96.060.21

FedProx 67.935.48 66.330.63 65.310.33 96.080.22

FedBN 65.971.62 67.051.62 65.371.55 96.170.24
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Figure 3: Testing accuracy of client 1 (a) and client 2 (b) on horse-dataset

Figure 4: Testing accuracy of client 1 (a) and client 2 (b) on goat-dataset

Discussion and analysis
To observe the behaviour of FL methods over different data capacities, we presented 
the average testing accuracy of FL methods and SingleSet under various local dataset 
percentages (from 10% to 100%) in Figure 5(a). The variation of testing accuracy of Fed-
Avg, FedProx, and FedBN showed approximate trends over various local data sizes and 
levelled off when each of the local clients was attributed more than 50% data from its 
original data amount. Moreover, the testing accuracy of SingleSet started to significant-
ly drop from a local dataset size of 20%, whereas the FL methods conducted on 10% lo-
cal data had comparable accuracy with the SingleSet performed on full-size local data. 
It indicated that FL methods could effectively mitigate the performance degradation 
due to the reduced data amount. Compared to the SingleSet, the improvement margin 
gained from FL methods increases gradually as data size decreases, indicating the good 
capability of FL under the scenarios with a small amount of data.

To further probe into the impacts of clients number on the model’s performance, we 
displayed the experimental results under various numbers of clients (K = 2, 3, 5) in 
Figure 5(b). The results reflected that FL methods achieved substantially higher testing 
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accuracy than the SingleSet under different clients numbers, especially in scenarios 
where very low testing accuracy was obtained when the model was trained under more 
than two clients. It demonstrated that FL methods could effectively benefit from collab-
orative training on distributed data and enhance the performance of AAR.

Figure 5: Testing accuracy over varying local dataset sizes (a) and clients numbers (b)

Conclusions
In this study, we first introduced the FL-based framework to AAR-based tasks, and ex-
plored the applicability and effectiveness of FL in automated AAR by uniting data from 
different farms. The results revealed that FL strategies (i.e., FedAvg, FedProx, and Fed-
BN) exhibited superior performance to the SingleSet in terms of all evaluation metrics, 
proving the promising capability of FL to enhance AAR’s performance without privacy 
leakage. In addition, empirical analyses were conducted to assess FL’s performance on 
AAR from two practical aspects, including local data sizes and clients numbers, provid-
ing rich insights into the appropriate applications of FL in the future.
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Abstract
In Norwegian commercial salmon farming more than 300 million Atlantic salmon are 
put to sea in net cages each year. A single net cage can contain up to 200 000 salmon, 
making management by direct human observation impossible. More than 15% of At-
lantic salmon put out to sea die in the first three months, and this is partially attributed 
to suboptimal seawater acclimation (smoltification) and, consequently, management 
of fish welfare. Accurate, non-invasive and high-throughput methods are sorely need-
ed to rapidly determine the smoltification status of individual salmon and their overall 
level of welfare. Recent advances in hyperspectral imaging systems have made it possi-
ble to rapidly image a large volume of fish at high speed with high spectral and spatial 
resolution. We sampled n=1834 fish in total, across four experiments, and developed 
methods for image analysis based on machine learning algorithms using the spectral 
data in the images. Automatic scores from the image analyses were compared to man-
ual scores of operational welfare indicators for each fish to evaluate the correlation 
between the two methods. We found positive correlations in the range 0.5-0.8 between 
the quantitative trait estimates derived from image analyses and manual scores. To-
gether these results demonstrate the feasibility of monitoring and consequently con-
trolling for smoltification status before putting smolt out to sea and operational wel-
fare between various operations such as delousing. 

Keywords: operational welfare indicators, fin health, smoltification, hyperspectral 
imaging

Introduction
Norway is the largest producer of Atlantic salmon (Salmo salar), with more than 300 
million salmon put out to sea each year (Sommerset et al., 2020). In 2020 it was report-
ed that 1,701,347 Atlantic salmon were used for research in Norway, which accounted 
for 74.5 percent of the total number of reported research animals (Kristiansen et al., 
2021; Mattilsynet, 2021). In both research projects and commercial salmon farming the 
overall welfare of the fish in a production unit is inferred through observation of op-
erational welfare indicators (OWIs). These are manually assessed in individual fish of 
a sub-sample from the production unit. Examples of OWIs are fin damage, eye damage, 
skin ulceration and lice infection, among others. Each OWI is given a score 0, 1, 2 or 3 
where 0 is perfectly healthy and 3 is a severe injury (Noble et al., 2018). The process of 
manually assigning these welfare scores is time consuming and prone to variations 
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between observers due to the subjective nature of the method. This paper discusses 
the feasibility of hyperspectral imaging as a rapid and objective method of measuring 
a selection of OWIs. 

Material and methods

Experimental data
The dataset presented here was collected over the course of 4 different experiments in 
the period from 2020 to 2021. For the purpose of this paper, one welfare indicator of in-
terest was selected for each of these experiments in order to present a proof of concept 
for using hyperspectral imaging as an automated tool for OWI estimation. 

In all experiments, hyperspectral images were taken on both the left and right side of 
each fish. The fish were presented to the camera on a conveyor belt moving at a speed 
between 10 and 20 cm/s. OWIs were recorded by trained manual observers for the same 
fish and used as reference data. 

Trial 1 was a smoltification experiment performed in 2020 at the Nofima Centre for Re-
circulation Aquaculture at Sunndalsøra in Norway, and dorsal fin health was here cho-
sen as the trait of interest. Trial 2 was a feeding trial done at the Tromsø Aquaculture 
Research Station in 2021, where the welfare trait of interest was smoltification state. 
Trial 3 was a disease treatment trial done at the same time and place, and the trait of 
interest here is the eye health. Trial 4 was a sea lice counting experiment in collabo-
ration with Mowi and the Institute of Marine Research’s research station in Matre in 
2021, the aim of which was to develop an automated way of counting the lice. The fish 
were euthanized before imaging except for trial 2 where they were anesthetized in the 
sampling points throughout the trial and euthanized in the last sampling point. 

For each OWI the correlation between the hyperspectral index and the manual OWI 
score was calculated. In trial 1, the dorsal fin was analyzed and compared with the 
manual OWI. The interrater agreement between 2 observers for dorsal injuries was 
calculated to be 0.66 in percentage agreement with a Spearman’s correlation of 0.56 
and a Cohen’s kappa of 0.40. In trial 2, hyperspectral images of 120 fish, sampled before, 
during and after smoltification, were analyzed and correlated with smoltification sta-
tus, assessed by quantifying plasma chloride levels after a 24-hour seawater challenge 
test. In trial 3, the use of hyperspectral imaging to evaluate eye haemorrhaging was 
tested. In trial 4, the potential of hyperspectral imaging to detect degrees of sea lice 
infection was assessed. Trial 2 is an exception in this case since the OWIs for smolti-
fication are silvery colour, parr stripes and darkening of the fins, while the reference 
data used here is a laboratory-based welfare indicator (LABWI), namely blood serum 
chloride ion concentration after a 24-hour sea water challenge (Noble, et al., 2018). 

Image analysis
An object detection model was developed for automatically detecting the various parts 
of the fish (figure 1). This model was trained on approximately 1000 images where the 
following features were labelled: eye, pectoral fin, pelvic fin, anal fin, dorsal fin, adipose 
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fin, and caudal fin. The purpose of this was to be able to analyze the different parts of 
the fish individually. 

Figure 1: Example of an image segmentation with bounding boxes for the different parts of the fish: 
eye (A), pectoral fin (B), dorsal fin (C), pelvic fin (D), anal fin (E), adipose fin (F) and caudal fin (G). 

Similarly, a separate model was developed for detecting sea lice in the images, the 
purpose of which was to establish a method for quickly counting the number of lice in 
an image. This model was used for pre-labeling the images, which were then manually 
approved. 

Hyperspectral indexes (HSIs)  based on the shape and spectral signature of the various 
features, partly based on Skjelvareid et al. (2017), were developed to comply with the 
manual OWIs. An exception is trial 2 where a supervised model between the spectral 
data and the reference data was developed. The image feature selected in trial 2 was an 
average light absorbance spectrum from the caudal fin pixels, which is hypothesized to 
indicate the degree of darkening of the fin edges. 

Statistical analysis and modelling
For trial 1 the correlation between the discrete OWI scores and the continuous HSI 
scores was calculated according to Cox (1974), while the Pearson correlation (Pearson, 
1895) was used for trial 2 and trial 4. The correlation in trial 2 was obtained by training 
a model that predicted plasma chloride levels from the spectral data, applying this 
model to a test set and then calculating the correlation between reference values and 
predicted values. For trial 4 the hyperspectral images were preprocessed to produce 
a contrast between the lice and the skin of the salmon, and a manual count from these 
images assisted by a machine learning object detection model was done. For trial 3 the 
agreement was taken to be the accuracy with which one can assign a discrete score 
from the HSI that agrees with the manual OWI scores. 

Results and discussion

In trial 1 and trial 3 we found the OWIs for the dorsal fin and the eye to have the lowest 
correlation between the subjectively human scored OWIs and the hyperspectral scores 
(figure 2 and figure 3 respectively). This low correlation can be due to a phenomenon 
called ‘attenuation of error’ where correlations are generally lower between two 
variables if one or both is measured with error (Adolph & Hardin, 2007). Part of the 
error can be attributed to the OWIs scored by human observers. It was observed that 
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different scorers weighted different aspects of an injury differently, despite training 
from a common scoring sheet and a standardized scoring scheme. 

Table 1: Summary of the four trials and the agreement between manual welfare scores and the 
corresponding hyperspectral indexes.

Number of fish 
scanned with 

HSI

Number of fish 
with manual 

reference 

Indicator 
type Feature Agreement with 

manual WI

Trial 1 725 290 OWI Dorsal fin injuries 0.54

Trial 2 849 120 LABWI Plasma chloride 0.73

Trial 3 300 300 OWI Eye injuries 0.55

Trial 4 1124 1124 OWI Lice count 0.65

Figure 2: Raincloud plot (Allen et al., 2021) comparing manual OWI scores and hyperspectral index 
scores for active dorsal fin injuries in trial 1. 

For instance, dorsal fin injuries are a complex trait comprising multiple aspects such as 
remaining surface area of the fin, presence and severity of split fins and the presence 
and intensity of haemorrhaging, and some observers place emphasis on different as-
pects of the injury. 

This highlights the need for an objective method for measuring OWIs. The correlation 
between the HSI scores and manual OWI scores in trial 1 is on par with the interrater 
agreement between two human scorers, which demonstrates that the hyperspectral 
system agrees almost as well with a human observer as two human observers agree 
with each other. 

Despite some of these challenges, clear differences are visible between eye measure-
ments of the same fish before and after handling or stressful crowding events (figure 3). 
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For instance, in trial 3 one can clearly see that handling of fish for sampling increas-
es the instances of eye injuries from the first sampling event to the second sampling 
event two hours later. Moreover, the effect of crowding shows as an increasing trend 
of eye severity with higher levels of crowding on the second sampling (figure 3). This 
agrees with findings that handling and crowding causes stress in Atlantic salmon (Bas-
rur et al., 2010; McCormick et al., 1998), but for the first time we can objectively quantify 
and compare this effect on eye injuries. 

Figure 3: Box and whisker plot contrasting eye injury scores measured using a hyperspectral index 
variable (y axis) at different crowding levels (0, 1 and 3) for trial 3. The OWI scores for these fish were 
either 1 (white fill) or 2 (grey fill) of the boxes. There is a notable increase in HSI between sampling 1 
pre-treatment (dashed line) and sampling 2 post-treatment (solid line) for all crowding levels. 

The correlation between the hyperspectral measurement and plasma chloride levels 
was the highest (R2 = 0.73) and this may be due to the fact that plasma chloride levels 
are not prone to errors associated with human scoring. Of all the reference measure-
ments, blood chloride levels, which is a LABWI that reflects the salmon’s ability to regu-
late chloride ion concentrations in the blood as it transits from freshwater to saltwater 
(Stefansson et al., 2008), was the most accurate and reproducible. Furthermore, the 
characteristic morphological changes during the parr-smolt transformation, including 
fading of distinctive parr marks, silvering, and darkening of the fins (Folmar & Dick-
hoff, 1980), can be detected in the hyperspectral images. Yet, hyperspectral data needs 
to be validated by additional smoltification indicators and seawater performance in 
future studies as hypoosmoregulatory ability does not necessarily indicate completion 
of smoltification (Duston & Saunders, 1990). In general, the ability to regulate blood 
chloride concentration levels below 150 mmol/L has been used to demonstrated hy-
poosmoregularity (Noble et al., 2018). In the present study, serum chloride concetra-
tion was predicted from a non-invasive external hyperspectral measurement (figure 
4). In this instance, HSI prediction correctly classified 11 out of 12 fish with measured 
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Cl-concetrations below a more conservative threshold of 140 mmol/L, demonstrating 
an accuracy of 97.5%, specficity 96.6% and sensitivity of 100%. These values are com-
parable but higher than those of Svendsen et al. (2021), who reported an accuracy of 
90%, specificity of 97% and sensitivity of 73% in Atlantic salmon parr and smolt across 
multiple sites in Norway. 

Figure 4: Scatter plots of the blood chloride model from trial 2 applied to a test set. The same plot 
has been coloured according to sampling date (left) and smoltification index (right). Samplings 1, 
2 and 3 referred to in the figure legend are consecutive sampling points over 5 weeks during the 
smoltification period (15th February, 8th March and 22nd March 2021 respectively). A Cl-concentraiont 
of 150 mmol/L or lower has been considered indicative of a seawater adapted salmon (Noble et al., 
2018). This data suggests that a  more conservative threshold of 140 mmol/L can be used to separate 
parr from smolt. 

Conclusions
Hyperspectral index scores were compared to manual welfare scores for individual fish 
in order to evaluate the correlation between the two methods. These correlations were 
found to be in the range 0.5-0.8. For dorsal fin injuries this is on par with the interrater 
agreement between two manual scorers. One can hypothesize that the same would be 
true for the eye injury scores if two raters had been compared in trial 3. We also found 
a positive correlation between HSI scores and plasma chloride levels after a 24-hour 
sea water challenge, and between lice counts in the field and from hyperspectral imag-
es. Together these results demonstrate the feasibility for using hyperspectral imaging 
as a technique for automatically monitoring welfare in Atlantic salmon and quantify-
ing traits such as fin and eye injuries, smoltification status and louse infection levels. 
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Abstract
The objective of this research was to develop an automated method for image based 
monitoring of pain in horses. The purpose of application of computer vision was to en-
able automated extraction of behaviours of the horse from videos, which should reduce 
manual workload otherwise needed for human labelling, increase objectivity of behav-
iours labelling and quantify changes in behaviours too slight for the human eye to no-
tice. The reason to do so was calculate the time budgets for each behaviour. Addition-
ally, computer vision offered a possibility of continuous, 24/7 monitoring, which was 
not possible based on human observation. We recorded videos from 66 horses housed 
in a hospital of the University of Veterinary Medicine in Vienna. Most horses were in 
pain. A total of 16,816 key body points were labelled, including the nose, right and left 
ear, the wither, the tail and the hoofs. We detected key body points of 13 horses with 
Resnet 50 backbone in Loopy software. These were used as an input to Long Short-Term 
Memory (LSTM) model to estimate the time budget for different activity types: resting, 
feeding/foraging, alert and lying. The accuracy of the model was 95,65%. As pain can 
have a significant impact on the time budget of horses, these results could be a basis 
for video based pain detection in horses.  

Keywords: pain in horses; behaviour time budget; image processing; computer vision

Introduction
The International Association of Study of Pain (IASP) defines pain as an unpleasant 
sensory and emotional experience associated with actual or potential tissue damage, 
or described in terms of such damage (Lipton, 1991). The unpleasant sensory and emo-
tional experiences that constitute pain give rise to subtle or overt changes in behaviour 
that may offer the strongest indication of the presence, localization and severity of the 
pain.

Detailed knowledge of both normal and pain-related behaviours in equines is impera-
tive to detect pain properly. However, subtle behavioural changes due to pain may be-
come apparent if behaviour is analysed carefully. The time budget of basic behaviours 
(resting, feeding, lying and alert) can be an indicator of pain (Auer, 2021).
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The Composite Pain Scale (CPS) described by Ask (2020), is regarded as a valid option to 
score pain and less operator-sensitive (e.g. less subjective) than other methods because 
of using multiple variables (behavioural, physiological or both) of well-defined param-
eters. For accurate pain assessment with CPS it is required to observe horses several 
times a day (Gleerup, 2016). These frequent assessments might tire a horse and require 
a lot of time for vets for its analysis.

Computer vision offers a possibility of continuous, 24/7 monitoring, which is not possi-
ble based on human observation. This can potentially help vets quickly detect unusual 
behaviours or detect pain in horses. A benchmark for animal pose estimation using 
computer vision is provided by Hu (2021). It can be useful for behaviour recognition and 
pose estimation in horses is recognized by Mathis (2021). Additionally, usage of video 
technology for recording of horses reduces some of the disadvantages of direct obser-
vation such as that, horses in the presence of a human tend to hide some behaviours 
like pain, as from a predator (Torcivia, 2020). 

The objective of this paper is to use computer vision techniques and time series analy-
sis in order to enable automated extraction of the key body points of the horse from vid-
eos and their basic behaviours. This should reduce manual workload otherwise, needed 
for human labelling, increase objectivity of behaviours labelling and quantify changes 
in behaviours too slight for the human eye to notice. In the follow up studies, automati-
cally detected changes in basic activities are planned to be linked to pain state in horses. 

Materials and methods

Animals and housing
Experiments were conducted at the clinic of the University of Veterinary Medicine Vi-
enna. In total, 66 horses were recorded. The horses were admitted to the clinic with 
different pain levels and they were recorded at different stages of their recovery. All the 
horses were kept in pens individually (Figure 1).

Figure 1. Horses in individual pens.

Video recording
The videos for post hoc analysis were recorded with Gopro Hero 4 action camera (San 
Mateo, USA) in a time-lapse mode (TLM) in 2 frames per second (fps). The wide-angle 
lens allowed an overview of the whole box and a horse. The advantage of Gopro Hero 4 
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camera was that it could have been  moved between pens easily. The camera was pow-
ered with battery packs that provided power sufficient for more than 24 hours. We 
decided to use TLM with 2 fps to limit the memory size of the videos and compress 
24 hours of real duration in a video length of approximately 1 h. The quality of the 
video (2704x2028 pixels resolution) was verified in the pilot study and it was estimated 
as good enough to visually follow key points even with quick movements of the horse.

Dataset
The dataset consisted of 66 horses, with 24 hours of continuous recording for each one.  
Videos were  recorded with a frame rate of 2 fps. This gave a total of 11.404.800 images. 
Nevertheless, this does not mean that all the images were usable to train a machine 
learning model.  In the night images, because of the absence or low light, the horse was 
not visible. In addition, when horses were resting images were very similar and with 
little variance. In total 11.401.989 were discarded.

Key body points were manually annotated, these are the nose, withers, tail, right and 
left ear, right and left front limb and right and left hind limb. The key body points were 
selected as the most relevant body points of the horse to detect the basic behaviours 
of the horse. In total key body points of 13 horses were manually annotated out of 66 
giving a set of 2,811 images (Table 1).

Table 1: Key body points.

Key body points No. images labelled No. horses

Nose 2100 13

Withers 2750 13

Tail 1842 13

Right ear 1626 13

Left ear 1654 12

Right front limb 1770 12

Left front limb 1854 12

Right hind limb 1732 12

Left hind limb 1845 12

Basic behaviours were also manually annotated (Table 2). These behaviours were ‘lay-
ing’, defined as the horse was on the ground; ‘resting’, defined as the horse was stand-
ing but not moving at all; ‘feeding/foraging’, defined as the horse was eating the feed lo-
cated on the ground or in the feeder and head was moving; ‘alert’, defined as the horse 
was standing but some movements of the head and ears were observed, the horse was 
attentive and was looking around.

Loopy software (Loopbio, Vienna, Austria), was used for labeling of key body points.  
Loopy was also used to train a Resnet 50 model with an input of 740x480 and strides 
equal to 8 to automatically detect the key body points. 
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Table 2: Behaviour time budget.

Behaviour Duration (s) No. horses

Resting 44492 9

Feeding/Foraging 18936 9

Lying 247 1

Alert 16842 9

Data analysis
During the visual inspection of results of automated detection of key body points, it 
was observed that some key body points were detected in a wrong position or missed 
(Figure 2).

Figure 2: Key body point detection with Loopy software a) All key body points were correctly detected. 
b) Key body points associated with the front limbs were not detected. The same model was used for 
classification of key body points for both images.

Figure 3: Average horizontal ‘x’ and vertical ’y’ location of each key body point of one horse calculated 
on a 15-seconds interval. 
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To smooth the error of key points missing or in a wrong place, an average of each value 
of pixel position of detected key body points was calculated on intervals of 15 seconds 
(2 fps x 15 seconds = 30 key body points) (Figure 3). Interval of 15 seconds was consid-
ered a suitable interval to automatically detect the basic behaviours of horses. 

Algorithm
Long short-term memory (LSTM) was used as a recurrent neural network (RNN) to train 
a model to detect the basic behaviours. The neural network was built with 16 units in 
the input layer LSTM, 8 units in the hidden layer LSTM and 3 units in the output dense 
layer, one layer for each basic behaviour. The optimal LSTM window value was between 
2 minutes and 4 minutes meaning that the neural network needed as an input an in-
terval of key body points coordinates of 2 or 4 min to predict the current basic behav-
iour. The rest of hyperparameters were: learning rate of 0.0001 with ADAM optimizer; 
a dropout of 0.5 to prevent an overfitting of the model; a decay rate of 0,97; sigmoid acti-
vation function; categorical cross entropy as a loss function and batch size equal to 12.

Tensorflow and Keras framework was used to create the model. Less than 2 minutes 
was necessary to converge a model using an Intel Core i7-1165G7 @ 2.80GHz CPU. The 
model was trained with different hyperparameters until the best result was found.

Results and Discussion
It has been shown that variation in basic behaviours such as lying, resting and feeding 
can be a promising indicator of pain and monitoring it can improve equine welfare 
(Auer et al, 2021). Moreover, Egan et al. (2021) concluded that behaviour variability might 
be a promising indicator of subtle pain. Behaviours such as playing, social interaction, 
tail biting or aggressiveness (Chen, 2019) in animals can reflect the health, welfare and 
growth status, e.g. in pigs (Larsen, 2021). Using traditional computer vision and deep 
learning methods it is possible to recognize behaviour in livestock (Chen, 2021).

On the other hand, facial expressions have been presented as a sensitive measure of 
pain in horses. Ly et al. (2021) proposed Deep Region and Multi-Label Learning (DRML) 
and AlexNet for face recognition in horses. Broomé et al. (2021) introduced a method 
to detect pain, which was induced, in horses with different facial expressions using 
Convolutional LSTM.  

In our study, the pain was not induced. Horses were admitted to the clinic with differ-
ent pain levels, giving us a very good representation of pain in horses. As a first step 
of our research on pain detection in horses, an attempt was made to classify the basic 
behaviour of the horse in ‘resting’, ‘alert’ and ‘feeding/foraging’. The accuracy and con-
fusion matrix of the developed model was presented in Table 3 and Figure 4.

Analysis of the confusion matrix revealed that the ‘resting’ and ‘alert’ classes got 
a higher error in their classification than ‘feeding/foraging’. Considering this, ‘resting ‘ 
and ‘alert classes’ were joined into a single ‘resting’ class and also the structure of the 
last layer (dense layer) was changed to two units, since only two behaviours needed to 
be detected. 
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Table 3: Accuracy for 3 labels.

Behaviour Accuracy Total Accuracy

Resting 78,37%

85,35%Feeding/Foraging 92,45%

Alert 50,00%

The results of classification of two classes ‘resting’ and ‘feeding/foraging’ shown an 
accuracy of 95.65% (Table 4) and an improvement in the misclassification of basic be-
haviours (Figure 5).

Table 4: Accuracy with 2 labels.

Behaviour Accuracy Total Accuracy

Resting 98,33%
95,65%

Feeding/Foraging 93,58%

Figure 4: Confusion matrix a) 3 classes. b) 2 classes.

Additionally, a comparison is shown with the predicted behaviours in a horse and the 
behaviours that were annotated (Figure 6).

As shown in Figure 6a, the areas highlighted in blue are clearly, when the horse is rest-
ing, as seen more key body points have a constant value, but the area highlighted in red 
shows more movement of the key body points. This suggests the horse is not resting 
but rather in alert mode.



340 Precision Livestock Farming ’22

Figure 5: Comparison between the ground truth basic behaviours and predicted a) 3 classes. b) 2 
classes.

Figure 6: Location of key body points and basic behaviour of a horse a) Average horizontal ‘x’ and 
vertical ’y’ location of each key body point of one horse b) Basic behaviour annotated.

Conclusions
The results of classification of basic behaviour with LSTM indicated that when only 
two classes were used (resting and feeding/foraging) a high accuracy was shown, but 
when a model with three classes was trained and validated (resting, alert and feeding/
foraging) the accuracy decreased by 10,3 %. It was challenging the second model to 
differentiate when the horse was ‘resting’ or it was in ‘alert’. To improve the results of 
classification of three classes we propose to review the labelled data for ‘resting’ and 
‘alert’ classes. In the next step, output of classification of basic behaviours will be used 
to detect changes in relation to pain in horses. The reference for pain will be CPS.
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Abstract
On a research and demonstration dairy farm, 65 cows were equipped with a market 
available rumen bolus for continuous monitoring of activity and core body tempera-
ture. Based on individual, animal-specific decision algorithms, the sensor system is-
sues messages in the case of abnormalities affecting health. The messages relevant 
to health (increase in core body temperature, decrease in core body temperature, de-
crease in activity, and decrease in the number of drinking cycles per day) are compared 
with veterinarian-documented disease diagnoses (‘ProGesund’) to assess sensitivities 
of disease detection by the bolus. Thus, a disease-specific assessment is calculated as 
the proportion of cases of a disease for which a health-related message was issued by 
the sensor system in a respective observation period. The results show a sensitivity of 
61% for the detection of clinical hypocalcemia and 43% for the detection of mastitis. 
Considering reproductive diseases, sensitivities of 64% for retained placenta and 25% 
for metritis were determined. The sensor’s potential for detecting diseases of the loco-
motor system was low (5%). Early detection of disease by the sensor system has been 
demonstrated in many cases. This suggests in a certain potential of the sensor system 
with regard to supporting health monitoring of a dairy herd, which however strongly 
depends on the disease. In the analyzed data set, only 20% of all health-related mes-
sages issued by the sensor system could be assigned to ‘ProGesund’ diagnoses.

Keywords: rumen bolus, activity, temperature, sensitivity, digital, smart farming

Introduction
Animal-specific sensor systems for dairy farming were initially focused on reproduc-
tive management but now also offer support for (early) detection of diseases and calv-
ing. In Germany, 20% of farmers have adopted such sensor systems to monitor ani-
mal behavior so far (Gabriel et al., 2021). The parameters activity (Nechanitzky et al., 
2016, Chase et al., 2017) or core body temperature (Adams et al., 2013, Venjakob et al., 
2016), which can be recorded by means of sensor systems, may show changes in case 
of disease. This fact raises hopes for an early detection of diseases (i.e., earlier than 
abnormalities would be detected by the farmer or veterinarian), potentially resulting in 
reduced spread of infectious diseases, milder courses of disease, and thus decreased 
performance losses and lower treatment costs. Dairy farmers are often exposed to 
a plethora of information when applying sensor systems (see Mollenhorst et al., 2012, 
Rutten et al., 2013). Thus, it is challenging to interpret health-related messages and, 
if necessary, initiate appropriate measures. Knowledge about the precision of com-
mercially available sensor systems is still rare. Therefore, the aim of this study is to 
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demonstrate the potential of a selected sensor system with regard to its contribution 
to health monitoring of a dairy herd.

Material and methods

Data
In the dairy herd of the ‘Staatsgut Achselschwang’, a state farm, 65 dairy cows of dif-
ferent breeds (mainly Simmental breed, also Brown-Swiss and Holstein) were equipped 
with a Classic rumen bolus (smaXtec animal care GmbH, Graz, Austria) in 2018. This 
version of the Classic rumen bolus continuously records activity and core body tem-
perature including the number of drinking cycles (indirectly via core body temperature) 
and thus derives estrus, calving, and health status. The herein analyzed data stems 
from the period of July 2018 until the end of June 2020. It is thus an extension of the 
data set of the study by Pfeiffer et al. (2020). 

The rumen bolus issues messages to the dairy farmer in case of abnormalities in the 
recorded parameters. Issuing of messages is based on individual animal-specific de-
cision algorithms, taking into account the history of the individual animal. Health-re-
lated messages include the following categories: increase in core body temperature, 
decrease in core body temperature, decrease in activity, and decrease in the number of 
drinking cycles per day. In this process, no suggestion of a particular disease is given by 
the sensor system and the interpretation is up to the farmer.

In addition to the health-related messages issued by the rumen bolus, this study 
makes use of documentation on diseases whose diagnoses were made or confirmed by 
the farm veterinarian or hoof trimmer as part of the ‘ProGesund’ project. Although all 
diagnoses were confirmed by the farm veterinarian, no daily veterinary examination of 
all cows took place. Diseases for which no treatment was necessary were not included 
in the analysis. In this study, the diseases mastitis, clinical hypocalcemia, retained pla-
centa, metritis, and diseases of the locomotor system are analyzed. All cases of masti-
tis were confirmed by pathogen detection in milk samples (including subsequent Cali-
fornia mastitis test, bacteriological milk analyzing, and any necessary resistance test). 

Sensitivity analysis of the sensor system
To determine the sensitivities of the sensor system with regard to a detection of dis-
ease cases, the documented diagnoses were compared with the health-related mes-
sages issued by the sensor system. A disease-specific assessment was made of the 
proportion of cases of disease in which a message was issued by the sensor system in 
the observation period from 6 days before (d-6) to one day after (d+1) the documented 
diagnosis (d0). For clinical hypocalcemia, the observation period was limited to d-2 to 
d+1 and for retained placenta to d1 to d+1. In this step, the assumption is made that 
the message assigned to a case of disease as correct-positive was actually issued due 
to the disease and not due to some other unknown cause. For each disease, the sen-
sitivity of the algorithm implemented in the sensor system was determined for the 
respective observation period (number of correct-positive diagnoses / number of all 
diagnoses, in %). For each case of disease, the day of diagnosis and the day of the first 
health-related message issued by the sensor system were compared. Two diagnoses of 
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the same disease in one animal had to be at least 14 days apart to be considered two 
independent diagnoses (see also Kim et al., 2019). This did not apply to diagnoses of 
different diseases. 

Results and Discussion
The analysis includes a total of 70 cases of mastitis, 31 cases of clinical hypocalcemia, 
11 cases of retained placenta, 24 cases of metritis, and 42 cases of diseases of the loco-
motor system. Table 1 visualizes the day of the first health-related message issued by 
the sensor system in each case of disease, relative to the day of the first diagnosis (d0).

Table 1: Day of first health-related messages issued by the sensor system for disease cases for all 
five analysed diseases

diagnosis

d-6 d-5 d-4 d-3 d-2 d-1 d0 d+1

Mastitis (n=70), 
sensitivity1 = 43% xx xxx x xxx xxxxx xxx xxxxxxxxx xxxx

Clinical hypocalcemia 
(n=31), 
sensitivity1 = 61%

period not considered xx xxxx
xxxx

xxx
xxx xxx

Retained placenta (n=11), 
sensitivity1 = 64% period not considered xxxxx xx

Metritis (n=24),
sensitivity1 = 25% x x x x x x

Diseases of the locomotor 
system (n=42),
sensitivity1 = 5%

x x

X = in each case of disease only the first health-related message issued by the sensor system 
(correct-positive) in the respective observation period is considered, messages issued at a later day 
in the cases of disease are not shown or taken into account for determining the sensitivities
1 sensitivity [%] = number of correct-positive diagnoses / number of all diagnoses, in the respective 
observation period
2 pathogen: E.coli, CNS, Strep. spp. and others
3 dermatitis digitalis, sole ulcer, panaritium, tyloma, paralysis and others 

The sensitivity of the sensor system is highest for retained placenta (64%), followed 
by clinical hypocalcemia (61%), mastitis (43%), metritis (25%), and diseases of the lo-
comotor system (5%). The cases of mastitis and metritis described here were detected 
primarily by an increase in core body temperature. Table 1 visualizes that the majority 
of all cases of mastitis and metritis recognized as correct-positive were already de-
tected by the sensor system on days d-6 to d-1. When animals suffered from clinical 
hypocalcemia or retained placenta, the sensor system documented abnormalities re-
lated to all parameters monitored (activity, core body temperature, number of drinking 
cycles), with messages on decreased activity predominating in hypocalcemia. For these 
two diseases, a considerable proportion of messages was also issued prior to visual 
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diagnosis. Thus, the analyzed data set demonstrated a certain potential of early detec-
tion of disease cases using sensor systems for certain disease.

Due to individual animal courses of disease and different severity of symptoms, the 
analyzed diseases differ in terms of their potential detection by the sensor system on 
the basis of changes in activity or core body temperature. When a cow suffers from 
mastitis, one of the decisive factors is the responsible pathogen. For example, acute 
mastitis is often accompanied by fever, which can be reliably detected by continuous 
recording of core body temperature. Studies thus also demonstrated that high sensi-
tivities in the sensor-assisted detection of mastitis can be achieved (Adams et al., 2013, 
Kim et al., 2019). Increase in body temperature is also reported as a typical symptom of 
metritis (Benzaquen et al., 2007), explaining the dominance of issued messages of such 
type. When a cow suffers from clinical hypocalcemia, a decrease in activity and body 
temperature are typical symptoms (Venjakob et al., 2016, Chase et al., 2017), as they 
were responsible for the majority of messages issued by the sensor system. The litera-
ture shows that activity alone is not sensitive enough for early detection of diseases of 
the locomotor system and that additional indicators such as milk quantity, feed intake, 
and rumination need to be included for this purpose (see e.g., Ito et al., 2010, Van Her-
tem et al., 2013, Grimm et al., 2019).

Due to the circumstances, the herd managers of the dairy farm had access to the mes-
sages issued by the sensor system during the entire period analyzed and therefore 
included them in the herd management. As a result, the day of diagnosis (d0) may have 
been influenced by the sensor messages. It can be surmised that health management 
without the sensor messages would have resulted in a diagnosis at a later date for 
some cases of disease. However, such a shift of the date of diagnosis to the right would 
result in an even greater relative advantage of the sensor system for early detection. It 
also has to be considered that the health management and thus the detection of cases 
of disease of the dairy farm studied can be classified as above average. 

In the analyzed data set, only 20% of all health-related messages issued by the sensor 
system could be assigned to documented disease diagnoses. However, as a limitation 
of this study, it has to be considered that no gold standard for disease diagnosis was 
applied. Therefore, only diagnoses that resulted in a treatment were included in the 
analysis. Thus, cases of disease without clinical symptoms (such as cell count increases 
or subclinical hypocalcemia) were not considered. For health-related sensor messages 
that could not be assigned to a documented disease diagnosis, possible causes were 
analyzed. Heat stress (temperature-humidity index ≥ 70), period around calving, oes-
trus (increase in core body temperature), vaccination (increase in core body tempera-
ture), and cell count > 200,000 were identified as possible causes for these messages. 

The sensitivity of disease detection can be increased by including additional parame-
ters such as feed intake or milk yield, for example. Indeed, the new version of smaX-
tec’s rumen bolus also monitors rumination as an additional parameter. Thus, further 
positive effects regarding health monitoring of the herd can be expected. However, the 
results demonstrate that there are often several days between the first message issued 
by the sensor system and the diagnosis (d0). This shows that it is a challenge for farm-
ers to identify causes for the sensor systems’ messages on the one hand and to initiate 
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appropriate measures at the right time on the other hand – even if more information is 
provided. Also, finding a balance between a high sensitivity and, at the same time, the 
highest possible specificity of the sensor system is not trivial (Mottram, 2016). 

Conclusions and outlook
Sensor systems such as the rumen bolus can be a useful tool to support dairy farmers in 
herd health management. They give indications which animals require particular atten-
tion. However, cases of disease still need to be detected by the dairy farmer and diagnosed 
by the veterinarian. The results show that additional visual monitoring of herd health by 
the dairy farmer is still essential. In a next step, building on the analysis of this dataset, an 
economic evaluation of sensor systems for health monitoring will be pursued.
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Abstract
Rumination is an essential part of the physiology of dairy cows. In this context, rumi-
nation activity is considered a useful indicator of stress, but also as an early detection 
of diseases and metabolic disorders.

The SMARTBOW accelerometer-based sensor system provides rumination alerts based 
on individual thresholds of rumination patterns in dairy cows. Detailed knowledge 
about the association between sensor-based rumination patterns and rumen physiolo-
gy would help to detect conspicuous animals and to evaluate the success of treatments. 
The aim of this study was to investigate the association between sensor-based rumi-
nation alerts and rumen fluid parameters in Holstein-Friesian cows. For this, rumen 
fluid was collected from 50 pairs of cows with (ALRT) and without (NALRT) rumination 
alerts by the sensor system via stomach tube at the start and at the end of rumination 
alerts. Pairs were matched based on day of lactation. The parameters pH, redox poten-
tial, methylene blue reduction test and sedimentation/flotation time were examined 
directly after sampling and storage in a water bath at 38–39 °C for 5 min. Protozoa were 
analysed microscopically by counting chamber to evaluate number.

Results showed significant (P < 0.05) differences between both groups in rumen pH, 
redox potential, methylene blue reduction test, sedimentation/flotation time and num-
ber of protozoa at the first rumen fluid extraction. Furthermore, greater variations in 
rumen fluid parameters were observed for ALRT compared to NALRT cows.

Keywords: rumen fluid, rumination time, health alert, rumen disorders, accelerometer

Introduction
For the detection of changes in rumen function and associated disorders, rumen flu-
id evaluation has long been used as a diagnostic  (Holtenius et al., 1959; Leek, 1983; 
Dirksen & Smith, 1987; Dirksen et al., 1990). Indicators of rumen health are: rumen 
pH, redox potential, methylene blue reduction time, sedimentation/flotation time and 
number of protozoa (Dirksen & Smith, 1987; Steen, 2001; Huang et al., 2018).

Sensor systems (e.g., accelerometers, rumen bolus) provide detailed insights into ru-
men physiology, particularly the rumination time in dairy cattle. Accelerometers are 
commercial available for the detection of rumination and show good validated perfor-
mance (Borchers et al., 2016; Reiter et al., 2018; Stygar et al., 2021). The SMARTBOW (SB) 
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ear-tag-based accelerometer system (Smartbow/Zoetis LLC, Weibern, Austria) provides 
additional health alerts based on the decline in rumination time. 

The association between the time a cow spends ruminating and digestive disorders 
has already been investigated. Stangaferro et al. (2016) reported a sensitivity of 93% 
for detecting digestive disorders by the monitoring of accelerometer-based rumination 
time and activity. DeVries et al. (2009) investigated the relation between rumen pH and 
rumination time by challenging lactating dairy cows with repeated ruminal acidosis. 
A decline in rumination time was associated with diseases and digestive disorders, but 
no specific patterns were detected. The resulting challenge for dairy producers is to 
use the information provided by sensor technology in real time for the prevention or 
detection of diseases (Beauchemin, 2018).

To the best of our knowledge, no research has been carried out into the interaction be-
tween rumination alerts and changes in rumen fluid. The results could lead to a better 
interpretation of rumination alerts.

Material and Methods
All study procedures were approved by the State Office of Agriculture, Food Safety and 
Fisheries Mecklenburg-Vorpommern, Germany (7221.3-2-013/21) and noted by the Eth-
ics Committee of the University of Veterinary Medicine, Vienna. The study was con-
ducted between April and October 2021 on a conventional dairy farm in the north of 
Germany housing approximately 1900 Holstein-Friesian cows.

Animals, housing and feeding
Within the first 10 days of lactation animals were housed in a fresh cow pen equipped 
with cubicles with straw chalk bedding. Cows were milked twice daily in a 12-side-by-
side milking parlour. After this period, cows were integrated into groups of approxi-
mately 200 animals according to reproduction status, lactation number and somat-
ic cell count. The free-stall barns were equipped with cubicles supplied with straw 
chalk bedding or recycled manure solid. After day 10 of lactation, cows were milked in 
a 48-side-by-side milking parlour three times per day. The average energy-corrected 
milk yield (ECM, based on 4% butterfat and 3.4% protein) was 10,301 kg per cow in 2021. 
The feeding ration consisted of a total mixed ration (TMR) based on corn silage, grass 
silage and concentrates (rape seed as extraction meal and expeller, soy extract grist) 
and dietary supplements and was supplied every 4 h. During the study period, the diet 
composition was adjusted based on weekly analyses of the dry matter of the main 
components.

Rumination alerts
All cows were equipped with SB tags (size and weight 52 × 36 × 17 mm, 34 g). The ear 
tags recorded 3-dimensional acceleration data of head and ear movements at a fre-
quency of 1 Hz. The data were sent in real time to receivers (SMARTBOW wall points), 
which were connected to a local server on the farm to process and analyse the incom-
ing data. Algorithms provided an ‘acute rumination alert’ caused by an urgent rumina-
tion decline within the previous 24 h. Furthermore, a ‘long-time rumination alert’ was 
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provided based on a decrease in rumination time over several days. The rumination 
alerts were presented in Smartbow software and sent to a mobile device.

Selection of animals
Cows with rumination alert (ALRT) were matched in pairs with healthy cows (NALRT) 
based on their lactation day and number of lactations. Healthy NALRT cows had to 
meet the criteria of rectal temperature less than 39.5 °C, a body condition score within 
the range 2.5–4 according to Edmonson et al. (1989) and a lameness score less than 3 
according to Sprecher et al. (1997). A rumination alert was considered as valid if it per-
sisted for at least 12 h, and the sample of rumen fluid was collected within the first 12 h 
of the alert.

Rumen fluid collection
Rumen fluid was taken twice using an oral stomach tube (SELEKT Rumen Fluid Collec-
tor, Nimrod Veterinary Products, Moreton-in-Marsh, UK). The first extraction (Ex1) was 
performed after the onset of the alert and the second extraction (Ex2) after the end of 
the alert. The sampling steps were performed according to the guidelines by the Smart-
Cow consortium (Muizelaar et al., 2020).

Rumen fluid examination
Rumen fluid samples were collected to study the parameters: rumen pH, redox poten-
tial, methylene blue reduction time, sedimentation/flotation time and protozoa num-
bers. The cows’ status (ALRT vs NALRT) of each sample was blinded prior to examina-
tion by replacing the animals’ identification number with a sample number randomly 
assigned by a second person. The pH and redox potential were measured using a port-
able electronic pH-meter (G1501 Serie, GHM Group Greisinger, Regenstauf, Germany; 
pH electrode GE 114-WD; redox electrode GR 175 BNC). Methylene blue reduction time 
and sedimentation/flotation time were determined according the methods described 
by Dirksen & Smith (1987). For the microscopic evaluation of protozoa, rumen fluid 
was placed in a counting chamber (Fuchs-Rosenthal, Paul Marienfeld GmbH & Co.KG, 
Lauda-Königshofen, Germany). All findings were documented on a worksheet and ex-
ported to an Excel file (version 16.0.5; MS Excel 2016, Microsoft Cooperation, Redmond, 
USA).

Statistical analyses
Data were imported into the SPSS statistical software package (SPSS version 27.0.0.0, 
IBM corporation SPSS Statistics, Armonk, NY) for analysis. Intra-observer agreement 
was calculated by the Spearman correlation coefficient (rs). To investigate potential 
differences in rumen fluid parameters between ALRT and NALRT, the Mann–Whitney 
U-test was used. For the detection of changes in rumen fluid parameters within each 
group during the extraction period, the related-samples Wilcoxon signed-rank test was 
used. A P-value of ≤0.05 was considered as significant.

Results
During the study period, rumen fluid was collected from 60 pairs of animals. Of these, 
nine pairs were excluded from statistical analysis because the rumination alert was 
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less than 12 h (n = 4), no possibility of a second rumen fluid collection (n = 4) and onset 
of a rumination alert in the associated control (i.e., NALRT) animal (n = 1). For each 
animal, rumen fluid samples were collected and examined twice (n = 204 samples in 
total). Based on 20 samples, the inter-rater agreement for rumen fluid parameter was 
calculated and ranged between rs = 0.89 and 0.98.

Acute rumination alerts lasted on average 29 ± 21 h (n = 40), while an acute rumination 
alert followed by a long-time rumination alert showed a mean duration of 121 ± 52 h 
(n = 11).

The rumen parameters pH, redox potential, methylene blue reduction time and sed-
imentation/flotation time differed significantly between ALRT cows and their NALRT 
counterparts at Ex1 (P < 0.01), but not at Ex2. The mean and median values of the ru-
men fluid parameters for ALRT and NALRT cows at both extraction times, as well as the 
differences between the groups and within the extraction periods are presented in Ta-
ble 1 and Table 2. The number of protozoa per mL presented in Figure 1 showed signifi-
cant differences between groups at Ex1 and Ex2 (P ≤ 0.01). No differences were apparent 
for the other parameters at Ex2. The rumen fluid parameters of ALRT cows reached 
alignment with the values of their NALRT partners during the extraction period, except 
for the number of protozoa. ALRT animals differed in all their rumen fluid parameters 
within the extraction period (P < 0.01) while those of NALRT cows remained constant.

Table 1: Rumen fluid parameters of cows with rumination alert (ALRT) and their healthy counterparts 
(NALRT) at the first extraction (Ex1) within 12 h of start of rumination alert and second extraction 
(Ex2) within 24 h of the end of rumination alert

Ex1 Ex2

Parameter n Status of 
Animal Mean ± SD Median IQR Mean ± SD Median IQR

Rumen pH 51 ALRT 6.87 ± 0.32 6.91 0.36 6.61 ± 0.29 6.56 0.38

51 NALRT 6.57 ± 0.26 6.54 0.37 6.61 ± 0.23 6.61 0.38

Redox potential (mV) 51 ALRT –352 ± 32 –349 38 –333 ± 39 –321 39

51 NALRT –336 ± 37 –326 32 –332 ± 35 –325 39

Methylene blue 
reduction 51 ALRT 104 ± 44 98 65 71 ± 28 65 47

time (s) 51 NALRT 73 ± 27 71 35 68 ± 29 63 22

Sedimentation/
flotation 51 ALRT 487 ± 234 416 250 306 ± 83 285 139

time (s) 51 NALRT 310 ± 80 294 74 306 ± 107 286 117

Number of protozoa 51 ALRT 99 ± 36 96 54 118 ± 42 117 64

(×10³ mL–1) 51 NALRT 136 ± 37 136 42 138 ± 34 141 40
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Table 2: Differences in rumen fluid parameters (Mean ± SEM) between cows with rumination alert 
(ALRT) and their healthy counterparts (NALRT) at the first and second extractions (Ex1, Ex2) and 
within the extraction period in each group (ALRT, NALRT)

ALRT vs. NALRT Extraction period 1 vs. 2

Ex1 ALRT
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Rumen pH 51 0.38 ± 0.0 <0.01 0.25 ± 0.0 0.84 0.36 ± 0.0 <0.01 0.23 ± 0.0 0.30

Redox potential (mV) 51 25 ± 2.5 <0.01 21 ± 3.7 0.79 28 ± 3.2 <0.01 22 ± 2.7 0.66

Methylene blue 
reduction time (s) 51 44 ± 6 <0.01 28 ± 4 0.54 45 ± 5 <0.01 29 ± 4 0.12

Sedimentation/ 
flotation time (s) 51 214 ± 30 <0.01 79 ± 13 0.75 209 ± 31 <0.01 90 ± 14 0.64

Number of protozoa 
(×10³ mL–1) 51 51 ± 46 <0.01 40 ± 4 0.01 32 ± 4 <0.01 27 ± 3 0.79

Figure 1: Total numbers (n) of protozoa per mL rumen fluid of cows with rumination alert (ALRT) 
and their matched partners without rumination alert (NALRT) at the first (Ex1) and second (Ex2) 
extraction times. Significant differences are presented by the letters a,a and a,b

Discussion
Health alerts are considered useful in supporting farmers in disease detection (Eck-
elkamp, 2019). The aim of this study was to investigate the relationship between ru-
mination alerts in dairy cows triggered by a decrease in rumination time of SB and 
selected parameters of rumen physiology.
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The physiological range of protozoa in rumen fluid is given as n = 10³–10⁶ per mL (Rings 
& Rings, 1993; Dehority, 2003). In this study the numbers of protozoa seen were within 
the reported range, but significantly lower number of protozoa were found for ALRT 
animals at Ex1 compared to their NALRT counterparts. A difference between groups 
remained after the end of alert at Ex2. Considering the regeneration of protozoa to be 
a continuous process, the protozoa in our study were not able to fully replicate them-
selves until Ex2, which justifies the difference existing between ALRT and NALRT ani-
mals at Ex2.

Although the rumen fluid parameters were within the physiological ranges for ALRT 
and NALRT cows at both extraction times, a higher variation for ALRT cows at Ex1 
was found. Higher variations in rumen fluid parameter of cows with rumination alert 
could indicate a higher vulnerability to rumen health disorders. It should be considered 
that the collection of rumen fluid shows snapshots of rumen physiology in matched 
cows during and after rumination alert. Further research might focus on continuous 
measurement options for detecting rumen fluid parameters of cows at different health 
levels.

Conclusion
Cows with sensor-based rumination alert differed significantly from their healthy 
counterparts in all investigated rumen fluid parameters. These differences, however, 
were within physiological limits but showed greater variations for cows with rumina-
tion alert. Further research should consider continuous measurement options for re-
cording rumen fluid parameters in order to correlate these variations to health events.
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Abstract
Ketosis and subclinical ketosis in early lactation are common production diseases in 
dairy cows. They negatively affect animal welfare, decrease milk performance and in-
crease culling risk. Precision livestock farming as a rapidly emerging field can be useful 
for identifying cows at risk of developing ketosis. Thus, we were interested in inves-
tigating how activity and rumination time measured by a sensor system during 21 
days prior until 16 days after calving are associated with subclinical ketosis in early 
lactation. 1,083 Fleckvieh dairy cows from 14 farms were equipped with collar-mount-
ed sensors by Lely recording activity and rumination and data were recorded between 
October 2020 and August 2021. Data on subclinical and clinical ketosis were collected 
based on levels of β-hydroxybutyrate (BHB) in blood samples taken on day 7 and day 
14 after calving. Predictions using the C5.0 decision tree algorithm yielded sensitivities 
between 0-14.3 %, specificities between 73.2-100 % and accuracies between 34.5-92.2 %. 
Based on these results further studies using larger data sets and additionally account-
ing for variations of cows within one herd should be conducted. 

Keywords: ketosis; disease detection; precision dairy farming; activity and rumination 
sensor 

Introduction
Ketosis and subclinical ketosis present a common production disorder in dairy cows 
in early lactation. Clinical ketosis manifests in symptoms such as loss of appetite and 
weight followed by a reduced milk production (Baird, 1982). Biochemical reactions to 
the negative energy balance are, amongst others, elevated concentrations of ketone 
bodies such as β-hydroxybutyrate (BHB). However, clinical signs of ketosis present one 
end of the spectrum whereas cows may suffer from a negative energy balance without 
showing clinical symptoms, commonly referred to as subclinical ketosis (Baird, 1982). 
Besides impaired animal welfare clinical and subclinical ketosis may lead to higher 
susceptibility to other diseases such as displaced abomasum, a reduced conception 
rate at first service, decreased milk yield and finally increase the risk of the cow being 
culled (McArt et al., 2012). Sensor systems measuring cow behaviour (e.g. activity and 
rumination) are increasingly used on dairy farms aiming to improve herd manage-
ment. Some studies investigated how these sensor measurements may be used for 
detection of ketosis or other postpartal health disorders. Stangaferro et al. (2016) for 
example showed that an automatic health-monitoring system combining rumination 
and activity was helpful in identifying cows with metabolic disorders in early lactation. 
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Other studies, which included data from up to three weeks before calving, found that 
cows with shorter rumination times are more likely to develop metabolic or other dis-
eases postpartum (p.p. Calamari et al., 2014; Kaufman et al., 2016; Schirmann et al., 2016; 
Soriani et al., 2012). Besides using data from various time points before or after the 
detection of a disease, the informative value of sensor variables may vary depending 
on the aggregation method (Van Hertem et al., 2013). The aim of this study was to asses 
if rumination and activity data provided by a sensor system for herd management are 
able to predict cows developing subclinical ketosis during 16 days after calving. For this 
purpose, approaches from other studies were combined using different aggregations of 
activity and rumination values or changes therein over varying periods. By application 
of a decision tree algorithm it was assessed, if the addition of sensor variables to a ref-
erence model improves predictions for subclinical ketosis events in dairy cows. 

Animals, material and methods
The study was part of the D4Dairy project, which aims at integrating data from differ-
ent sources such as national performance recordings, farm records, veterinary records, 
claw trimmings and different kinds of milking and sensor systems for dairy health 
herd management. Further information is provided under www.d4dairy.com.

Farms, animals and sensor system 
Data used for the present analysis included 1,083 Fleckvieh dairy cows from 14 farms 
between January 2020 and August 2021, which were equipped with collar-mounted sen-
sors by Lely International N.V. measuring activity and rumination. Sensor data were 
available at two-hour intervals with activity values for these two hours and the time 
(in minutes) spent ruminating during the last 24 hours. All farms were using automatic 
milking systems. Data on ketosis status were collected by farmers using the WellionVet 
BELUA device to measure BHB-concentration in the blood 7 and 14 days postpartum 
(p.p.). This test was validated by Khol et al. (2019), showing that more than 98% of the 
samples were correctly classified for subclinical or non-subclinical ketosis in capillary 
blood. Depending on the BHB-concentration, cows in this study were classified as ei-
ther healthy (BHB ≤ 1.2 mmol L-1), showing subclinical ketosis (BHB between 1.3 and 
2.9 mmol L-1) or clinical ketosis (BHB ≥ 3 mmol L-1) for each test result (Benedet et al., 
2019). Additionally, cow specific data such as date of birth, parity, diagnoses and further 
health related information were available via the Austrian central cattle database (RDV). 

Data preparation and sensor variables
Sensor data were checked for outliers and implausible observations such as rumina-
tion time exceeding 24 hours. Furthermore, cows showing retained placenta, milk fe-
ver, mastitis or lameness around calving were excluded to avoid confounded signals in 
sensor data due to other peripartal health issues. Data cleaning and merging left 421 
animals from nine farms for further analysis. This was due to missing data on keto-
sis status (two farms) or the absence of any subclinical or clinical ketosis during the 
observation period (three farms). The number of cows per farm involved in the study 
ranged from 18 to 74. The following sensor variables were defined as potential predictor 
variables for ketosis:
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 — Mean daily rumination and activity as well as their standard deviation (s.d.) for the 
period consisting of three weeks before calving (rumw, rum_sdw, actw, act_sdw)

 — Weekly mean daily rumination and activity and their s.d. for each of the three weeks 
before calving (rumw3, rum_sdw3, rumw2, rum_sdw2, rumw1, rum_sdw1, actw3, act_sdw3, actw2, 
act_sdw2, actw1, act_sdw1)

 — Rumination time and mean activity and its s.d. on the day of BHB-measurement 
(rumd0, actd0, act_sdd0)

 — Mean daily rumination time and activity and their s.d. between day 4 and day 2 pri-
or to the BHB-measurement (rumd4-d2, rum_sd d4-d2, act d4-d2, act_sd d4-d2)

 — The change in these variables from day 4 to day 2 before compared to the day of the 
BHB-measurement (rumdelta, rum_sddelta, actdelta, act_sddelta)

 — An index for this change defined as rumindex  =  (rumd0  -  rumd4-d2) / rumd4-d2 and actin-

dex = (actd0 - actd4-d2) / actd4-d2 similar to the Cow-Index for change in rumination time 
proposed by Paudyal et al. (2018) 

Only cows with a BHB-measurement later than 6 days in milk were included to calcu-
late sensor derived variables from four days before BHB-measurement to avoid bias 
due to the physiological decline in rumination around parturition. This time span was 
based on the findings of Schirmann et al. (2013) that lower rumination levels due to 
parturition go back to baseline 24-48 hours p.p. 

Data analysis
Data were prepared and analysed using the statistical software R (R Core Team, 2019). 
Predictions if a cow was healthy (0) or if BHB-levels in the blood suggested subclinical 
ketosis (1) were made applying the C5.0 decision tree algorithm using the C50 package 
in R (Kuhn & Quinlan, 2018). Cases of clinical ketosis were not included in the data anal-
ysis because they were only present in two out of nine farms. For analysis of the weekly 
variables antepartum (a.p.) rumw, rum_sdw, actw, act_sdw, rumw3, rum_sdw3, rumw2, rum_sdw2, 
rumw1, rum_sdw1, actw3, act_sdw3, actw2, act_sdw2, actw1 and act_sdw1 cows were classified af-
ffected (1) if at least one of the two postpartal blood test results indicated subclinical 
ketosis. The remaining sensor variables were related to one specific BHB-measurement 
and thus the respective result was used for ketosis classification. To mimic a potential 
application with early detection of ketosis via sensor data, the last five calvings and 
the last ten BHB-measurements of each farm were used as validation for the week-
ly variables and the BHB-measurement related variables, respectively. All remaining 
data trained the decision tree models. For both groups of sensor variables (weekly and 
BHB-measurement related) different models were built to assess if the addition of sen-
sor information improves predictive abilities of the model for subclinical ketosis. The 
reference model without sensor data included the variables farm, age class, calving 
year and calving season and days in milk in case of the BHB-measurement related 
sensor variables. Age class was derived from a combination of parity and age at calving 
for the first two parities. For cows in their first and second lactation, three classes were 
created, respectively: < 26, 26 - 28 and > 28 months for the first, and < 39.5, 39.5 - 42 
and > 42 months for the second lactation. Further three age classes corresponded to 
animals in parity three, four and five or older, respectively. Calving years ranged from 
2019 to 2021 and four seasons were defined according to quarters of the year. Adaptive 
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boosting was applied limiting the number of separate decision trees to 10 (trials = 10). 
Furthermore, the ‘cost’ of missing a cow with subclinical ketosis (type 2 error) was set 
at four times the costs for classifying a healthy cow as sick (type 1 error). Sensitivity, 
specificity and accuracy were calculated based on predictions using validation data 
to assess whether adding sensor information improves predictions compared to the 
reference model. Corresponding sensor variables were added as features and four dif-
ferent classifiers were applied for the weekly variables a.p.: 

1. Reference model including the features farm, age class, calving year, calving season
2. Full model I including the features from the reference model plus sensor varia-

bles rumw, rum_sdw, actw, act_sdw

3. Full model II including the features from the reference model plus sensor var-
iables weekly means and standard deviations rumw3, rum_sdw3, rumw2, rum_sdw2, 
rumw1, rum_sdw1, actw3, act_sdw3, actw2, act_sdw2, actw1, act_sdw1 

4. Full model III including all features listed above 

Five different classifiers were applied for the variables prior to BHB-measurement: 

1. Reference model including the features farm, age class, calving year, calving season, 
days in milk (DIM) at BHB-measurement

2. Full model I including the features from the reference model plus sensor varia-
bles rum0, act0, act0, sd0 and rumd4-d2, rum_sd d4-d2, act d4-d2, act_sd d4-d2

3. Full model II including the features from the reference model plus sensor varia-
bles rumdelta, rum_sddelta, actdelta, act_sddelta 

4. Full model III including the features from the reference model plus the sensor 
index variables rumindex, actindex

5. Full model IV including all features listed above 

Results and discussion

Weekly sensor variables prior to calving
The data set contained 429 ketosis data for 406 animals including 369 healthy (86.0 %), 
55 (12.8 %) observations for subclinical ketosis and 5 (1.2 %) observations for clinical 
ketosis. Figure 1 shows how sensor variables vary at different weeks a.p. and within the 
later ketosis status. Training data for the decision tree included 379 observations from 
361 animals from all 9 farms and validation data comprised 45 observations from 45 
animals from all 9 farms. Proportions for healthy cows and cows with subclinical ke-
tosis were 86.5 % (0) and 13.5 % (1) for training and 91.1 % (0) and 8.9 % (1) for test data. 
Results for sensitivity, specificity and accuracy for all four models are listed in Table 1. 

Sensitivities were 0.0 % for all four models indicating that the model was not able to 
detect any cow with subclinical ketosis irrespective of addition of sensor information. 
However, ketosis was characterised by low frequencies in the current data set and thus 
the amount of training data in this study is clearly insufficient. The participating farms 
were well managed which may be the reason for the low frequencies of ketosis in this 
study. Furthermore, boxplots in Figure 1 indicate a potential negative association be-
tween rumination time one week prior to calving and clinical ketosis, which was also 
found in previous studies (Kaufman et al., 2016; Schirmann et al., 2016). With respect 
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to herd management, these prepartal variables would be of particular interest because 
they could enable early identification of cows needing special attention during and 
shortly after calving by inclusion in predictive models. However, it was not possible to 
verify this association in the present study due to data limitations.

Figure 1: Mean daily activity value (top left), mean daily standard deviation for activity value (top 
right), mean hours per day spent ruminating (bottom left) and the standard deviation of rumination 
time per week in minutes (bottom right) in the third, second and one week before calving for healthy 
cows (01), cows developing subclinical (02) or clinical ketosis (03) during 16 days after calving. 

Table 1: Sensitivity, specificity and accuracy using four different classifiers applied to weekly sensor 
variables antepartum (a.p.). RM = reference model, FM = full model, s.d. = standard deviation

Models Features Sensitivity Specificity Accuracy

RM Farm, age class, calving year, calving season 0.0 % 73.2 % 66.7 %

FM I RM + mean rumination and activity and 
activity s.d. over 3 weeks a.p. 0.0 % 75.6 % 28.2 %

FM II RM + mean rumination and activity and their 
s.d. for weeks 3, 2 and 1 a.p. 0.0 % 73.2 % 27.3 %

FM III FM I + FM II 0.0 % 92. 7% 34.5 %
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Sensor variables prior to BHB-measurements
The data set contained 766 ketosis observations for 402 animals including 691 (90.2 %) 
healthy, 69 (9.1 %) observations for subclinical ketosis and 6 (0.7 %) observations for 
clinical ketosis. Figure 2 shows how sensor variables vary within ketosis status for dif-
ferent days prior to BHB-measurement. Training data for the decision tree included 670 
observations from 359 animals from all nine farms and test data comprised 90 obser-
vations from 55 animals from all nine farms. Proportions for healthy cows and cows 
with subclinical ketosis were 90.7 % and 9.3 % for training data and 92.2 % and 7.8 % for 
validation data.

Figure 2: Mean daily activity value (left), mean daily standard deviation for activity value (middle) 
and mean hours spent ruminating per day (right) during 4-2 days prior to and on the day of BHB-
measurement for healthy cows (01), cows developing subclinical (02) or clinical ketosis (03).

Table 2: Sensitivity, specificity and accuracy for predictions on the test data for the five classifiers 
built for the weekly sensor variables antepartum (a.p.). RM = reference model, FM  = full model, 
s.d. = standard deviation

Models Features Sensitivity Specificity Accuracy

RM Farm, age class, calving year, calving season, 
DIM BHB-measurement 0.0 % 86.7 % 80.0 %

FM I RM + mean rumination and activity and its 
s.d. at BHB-measurement and 4-2 days before 14.3 % 94.0 % 87.8 %

FM II
RM + change in mean rumination and 
acitivity and its s.d. between day of BHB-
measurement and 4-2 days before

14.3 % 84.3 % 78.9 %

FM III RM + index for change in rumination and 
activity as in Paudyal et al. (2018) 0.0 % 100 % 92.2 %

FM IV FM I + FM II + FM III + FM IV 0.0 % 100 % 92.2 %

Similar to the weekly sensor variables a.p. the sensitivities for the BHB-measurement 
related sensor variables did not perform well at predicting animals developing subclin-
ical ketosis. This again may on the one hand be a result of limited data and low ketosis 
frequencies. On the other hand, within-cow variation alone may not provide enough 
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information for disease prediction and thus additional comparisons to herd mates may 
improve results (Paudyal et al., 2018). However, these comparisons require a clear defi-
nition of healthy herd-mates or herd averages to serve as reference value.

Conclusions
The current study investigated the potential of various variables derived from sensor 
data on rumination and activity to predict cows developing subclinical ketosis. The 
limited data and low frequency of cows with subclinical ketosis may explain why this 
study failed to detect predictive abilities of sensor information. Currently, work is be-
ing done on data validation of further farms to repeat the study on a larger data set. 
In addition, alternative sensor variables with the aim to assess between-cow variation 
will be investigated.
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Abstract
The teat of a dairy cow is exposed to a large load during milking because it is the in-
terface between the udder and the milking technique. A milking system that works 
improperly can damage the teat, resulting in the formation of teat end hyperkeratosis 
(HK). Currently, the severity of HK can only be assessed visually, and there is no way to 
detect the severity of hyperkeratosis on the bovine teat automatically. Thus, the aim of 
the present study was to test and evaluate the measurement of the dielectric constant 
of the teat skin as a method of automatic detection of hyperkeratosis. The study fo-
cused on surveying the occurrence of hyperkeratosis in a total of 241 teats of lactating 
dairy cows. A visual scoring system consisting of four categories was used to macro-
scopically assess the severity of HK using a four-level evaluation system. Additionally, 
the dielectric constant (DC) of all milkable teats was measured in a double iteration 
before the teat was prepared for milking. The Spearman rank correlation coefficient 
revealed a negative correlation between the DC value and HK score (rs = -0.55 to -0.36). 
The results of the regression analysis showed that the DC values differed significant-
ly between healthy teat ends (score ≤ 2) and teat ends with HK (score ≥ 3). Thus, the 
non-invasive measurement of DC provides a promising method of objectively assess-
ing the occurrence and severity of HK. However, further studies using more animals 
and repeated measurements are required to validate this method.

Keywords: dielectric constant, teat end hyperkeratosis, water content, dairy cow, 
udder health

Introduction
Teat end hyperkeratosis (HK) is defined as a thickened smooth keratin ring or as ex-
tending fronds of keratin around the teat canal orifice (Gleeson et al., 2003). The occur-
rence of HK greatly impacts milk production. The severity of HK is an issue of impor-
tance because teat condition is connected with the capability to defend against mastitis 
pathogens (Sordillo & Streicher, 2002). Furthermore, serious HK as well as a relatively 
higher roughness of the teat end both increase the risk of udder diseases (Neijenhuis et 
al., 2000; Neijenhuis et al., 2001; Singh et al., 2014). Milk from non-disinfected teats with 
an HK score higher than one had a larger content of somatic cells (Gleeson et al., 2004). 
The prevalence of HK has been associated with many factors, such as season (Rudovsky 
et al., 2011; Sandrucci et al., 2014) and teat morphology (Graff, 2006; Rudovsky et al., 2011) 
as well as milking traits such as milk flow (Rudovsky et al., 2011), parity (Graff, 2006; 
Rudovsky et al., 2011), and days in milk (Sandrucci et al., 2014). Milking technique may 
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also play a role in HK formation (Ryšánek et al., 2001; Neijenhuis et al., 2005; Haeusser-
mann et al., 2016). 

Although HK is of substantial economic and animal health concern, there is currently 
no appropriate sensor-based method to objectively quantify the severity of HK. Until 
now the scoring systems of Mein et al. (2001) and those of Neijenhuis et al. (2001) were 
mostly used to evaluate the influence of biological or technical factors on HK.

This study was conducted to assess the use of the dielectric constant (DC) of the teat 
ends as a possible sensor-based method for monitoring HK. With the help of DC meas-
urements, local changes in water content in the skin and subcutaneous fat could be 
measured for the early diagnosis of diseases that involve changes in tissue water con-
tent. The measurement of the DC provides an instantaneous and non-invasive meas-
urement (Nuutinen et al., 2004; Miettinen et al., 2006).

Measuring the DC is often used to investigate lymphedema (Ferguson et al., 2013; Birk-
balle et al., 2014; Mayrovitz et al., 2016), cutaneous edema, tissue fluid status (Palma et 
al., 2015; Greenhowe et al., 2017; Mayrovitz et al., 2017), radiotherapy (Nuutinen et al., 
1998), burns, thermal injury (Papp et al., 2006), wound healing (Forcheron et al., 2012; 
Guihan et al., 2012), and weight loss (Laaksonen et al., 2003). The measurement of DC 
has been used in the field of agriculture as well. For instance, Hoffmann et al. (2013) 
used the measurement of DC to monitor the prevalence and severity of foot pad der-
matitis in broiler chickens. 

The aim of the present study was to validate the potential of measuring the DC of teat 
ends to evaluate the severity of HK in dairy cows. Therefore, the relationship between 
the measured values of the DC and the corresponding HK scores of the visual teat in-
spection was investigated.

Material and methods

Study design and data collection
The study was conducted within four weeks on a commercial dairy farm in Germany. 
On four non-consecutive measurement days, 241 teats of lactating Holstein cows were 
first assessed by visual observations to determine the HK score of each teat. After-
wards, the DC of the teat orifice was measured. The teats were scored once because it 
was assumed that no new HK would develop during the experimental period. At the 
time of this investigation, 52, 110, 66, and 13 of the examined teats had an HK score of 
1, 2, 3, and 4, respectively.

Teat end condition was evaluated during the evening milking period using criteria es-
tablished by Mein et al. (2001) as described in Table 1. 

To measure the DC of the teat orifice the MoistureMeterD (Delfin Technologies, Kupio, 
Finland) with a probe (model XS5) of 10 mm in diameter and en effective measurement 
depth of 0.5 mm was used. The control unit of the device generates a high-frequen-
cy electromagnetic wave of 300 MHz, which is transmitted via an open-ended coaxial 
probe into the skin and subcutaneous tissues, where the majority of the electromag-
netic wave energy is absorbed by water, while the rest is reflected (Figure 1). The DC is 



 Precision Livestock Farming ’22 367

calculated from the information of the reflected wave, which is directly proportional to 
the tissue water content (Nuutinen et al., 2004). The higher the DC value, the higher the 
water content of the tissue.

Table 1: Four-level evaluation score of teat end hyperkeratosis according to Mein et al. (2001) 

Score 1 Score 2 Score 3 Score 4

healthy teat without 
a ring at the teat end

slightly white ring at 
the teat end; no old 
keratin visible

raised and roughened 
keratin ring, extending 
up to 3 mm with 
visible old keratin

severely roughened 
keratin ring, extending 
more than 4 mm with 
clearly observable old 
keratin

Figure 1: Magnified view of the measuring probe (a) and the measuring principle of the MoistureMeterD 
(b) according to Nuutinen et al. (2004)

Figure 2: Schematic illustration of the measuring point on the teat orifice
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During data collection, the circular probe was manually placed in contact with the skin 
of the teat orifice (Figure 2). Measuring was automatically started upon skin contact 
and lasted on average two seconds. Contact between the sensor probe and the skin 
was regulated by the person who was conducting the measurements, who produced 
so little pressure that the animals showed no painful reactions. The measurement was 
repeated two times per teat, except in cases of failed measurements, for which a third 
measurement was performed. Afterward, the probe was cleaned with a dry cloth. Be-
fore pre-milking teat preparation, the same person took all the measurements with the 
MoistureMeterD to ensure standardized conditions.

Statistical analysis
Data were analysed using the SAS 9.4 software package (SAS Institute Inc. Cary, NC, 
USA), and the Spearman rank coefficient (rs) was used to estimate the correlation be-
tween the DC value and the HK score. For the statistical analysis, the possible inference 
of the DC on the HK score was tested with a generalized linear model approach that 
assumed a binomial distribution with a logit link function. For this purpose, the medi-
an DC of the measurements on each teat was used. Therefore, a sequential logit model 
was used. Given the observed score yijkms for the ijkm-th teat with scores ranging from 
1 to s, with s=4, binary responses were created as follows: (a) score = 1 versus score ≥ 2; 
(b) score ≤ 2 versus score ≥ 3; (c) score ≤ 3 versus score = 4. Models (a) through (c) exam-
ined the ratio between the probability of observing score r or lower and the probability 
of observing scores higher than r with logit Lr for a maximum r of s-1:

 (1)

where θr is the threshold value for score r and ηr is a linear predictor. The linear predic-
tor ηr is calculated as follows:

 (2)

where μ is the general mean; a is the regression coefficient for DC value x; bi is the ran-
dom effect for cow i; Ԑij is the independent logistically distributed residual.

The GLIMMIX procedure was used to fit the model. The null hypothesis was that the DC 
would have no significant influence on the HK score, and all tests were carried out at 
a significance level of α = 0.05.

Results and Discussion
The measured DC values ranged from 10.5 to 52.4. The values of DC decreased mono-
tonically with increasing HK score. The Spearman rank correlation between the two 
traits was rs = -0.43 (P = 0.005), rs = -0.55 (P < 0.001), rs = -0.36 (P = 0.001) and rs = -0.39 
(P = 0.02) on measurement day A, B, C, and D, respectively. Therefore, during all the 
measurement days, high HK scores were more likely to occur when the DC values were 
relatively lower, while low HK scores were more frequent when the DC values were high.

The results of the three models within the generalized linear model approach (Table 2) 
showed a significant influence of the DC value (P < 0.0001) on the HK score when the 
HK score ≤ 2. No significant influence of the DC value on the HK score was found when 

Lr = ln�
P(Y ≤ r)
P(Y > r)� = ln�

P(Y ≤ r)
1 − P(Y ≤ r)� = θr + ηr 

η𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Lr = ln�
P(Y ≤ r)
P(Y > r)� = ln�

P(Y ≤ r)
1 − P(Y ≤ r)� = θr + ηr 

η𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
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the HK score = 1 and when the HK score ≤ 3. The measured DC values showed overlaps 
among the investigated HK scores.

Table 2: Results of the three models within the generalized linear model approach for the tested 
effects

Model Effect Estimate Standard Error DF1 t-Value P-Value

1 vs. ≥ 2 Intercept 7.64 1.97 97 3.88 0.0002

DC2 value 0.01 0.07 138 0.17 0.8638

≤ 2 vs. ≥ 3 Intercept -3.47 1.16 97 -3.00 0.0035

DC2 value 0.19 0.05 138 4.16 < 0.0001

≤ 3vs. 4 Intercept 5.74 2.92 97 1.97 0.0520

DC2 value 0.17 0.11 138 1.53 0.1277

1 Degree of freedom
2 Dielectric constant

The comparison of DC values and HK scores of the investigated teat orifices indicat-
ed that the DC was higher in teat ends with lower scores and vice versa. This finding 
agrees with the results of Hoffmann et al. (2013), who found a negative correlation be-
tween DC values and the severity of foot pad dermatitis (FPD) in broiler chickens; spe-
cifically, the DC values were higher in foot pads with lower FPD scores and were lower 
in foot pads with higher FPD scores. Hashmi et al. (2015) found lower levels of hydration 
in hyperkeratotic than in normal foot skin. Alanen et al. (1999) reported that there was 
always some air between the probe and the skin due to the roughness of the skin. 
This result might be a reason for the association of lower DCs with severe HK scores, 
in which crusts covered the teat orifices of the cows. However, the DCs of the four HK 
scores demonstrated overlap. The results of the regression analysis revealed that DC 
values differed significantly between healthy teat ends (≤  2) and teat ends with HK 
(≥ 3). This could be explained by the fact that the visual observation, which is the most 
commonly used method to assess HK, was used as a gold standard to find correlations 
between the HK scores and the DC values. The problem with this method is that it is 
very subjective and sometimes subtleties determine the assignment of the HK score. 
In an attempt to reduce the disadvantages of this method, the visual observation was 
always done by the same person. The different distribution of the HK scores in the ex-
amined herd may possibly explain this result.

In the present investigation, the measured DC values were on average 26.4 ± 7.0. The 
values for subcutaneous fat of human skin were approximately 36.0 ± 2.0 (Nuutinen 
et al., 2004). The anatomical and physiological differences between human and bovine 
teat skin (e.g., thickness, tissue water content) could explain the different DC values. 
Another reason for this result could be the measurement depths. While the sensor 
probe used in the present investigation had an effective measurement depth of 0.5 mm, 
Nuutinen et al. (2004) used a probe with an effective measurement depth of 2.5 mm. 
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However, the diameter of this probe (23 mm) was too large to be used for measuring the 
DC on the teat orifice.

The DC values measured in the present investigation showed a high variability. There 
could be several reasons for this variability. First, the manipulation of the teat during 
the measurements could have resulted in a stimulation of the teat and milk flow could 
have started in some cows. The fact that not all teats may have been evenly dry as well 
as the different water content of the teat tissue of individual cows could result in a high 
variability of the DC values as well. Although the same pressure was attempted to be 
applied in each measurement, a slight change in this pressure could have changed the 
measuring depth of the probe and thus led to the high variation in the measured values.

Further studies are needed to validate the DC measurement to objectively assess the 
occurrence and severity of HK.

Conclusions
It can be concluded that measuring the DC of the teat orifice is a suitable and objective 
method for assessing the occurrence and severity of HK in dairy cows. This method is 
particularly suitable to distinguish between healthy teat ends (scores 1 and 2) and teat 
ends with HK (scores 3 and 4). Measuring the DC may be a helpful tool for detecting 
early teat end irritations; ultimately, this tool may help to improve the teat end condi-
tion of dairy cows. However, further studies are needed to validate this method and to 
define exact DC value ranges for the different HK scores. 
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Abstract
Routine fresh cow monitoring procedures are considered beneficial for animal health, 
welfare and productivity. However, they are time-consuming and require the animals’ 
fixation, which restricts their natural behaviour and, thus, might have a negative im-
pact on herd health and performance. Automated monitoring by the use of ‘precision 
livestock farming’ (PLF) technologies is progressively used on farms to identify animals 
at risk of disease at an early stage and to reduce routine examination times. 

In this study on a German dairy farm with approximately 1,900 Holstein Friesian cows, 
different methods of fresh cow monitoring procedures were compared against each 
other. These included, on the one hand, different routine examinations of fresh cows, 
on the other hand, three different workflows (systems) which differ in the order of ex-
aminations and treatments to evaluate in future whether management strategies can 
be improved with the help of PLF technologies.

Standard operating procedures were defined in advance for various examination steps, 
in particular the start and end points. To determine the individual examinations of the 
3 veterinarians involved in the study as well as the fixation time of each animal, sixteen 
video cameras were installed in the fresh cow pen and video footage was analysed. 

The different examinations lasted on average between 1 and 115 seconds. The animals 
were fixed in headlocks between 1 and 106 minutes. The resulting fixation time differed 
significantly between the three different fresh cow management systems (P < 0.05). 

The study recorded the examination times for individual steps in fresh cow monitoring 
under practical conditions. Results should be used to optimize management strategies 
and to evaluate what contribution Precision Livestock Farming technologies can make 
to reduce fixation times and stuff working hours. 

Keywords: dairy cow, health monitoring, transition period, accelerometer, fresh cow

Introduction
Intensive and well-structured monitoring of fresh cows is considered beneficial for the 
health and well-being of the cows and is an important factor for the success of the 
cows’ further lactation (Guterbock, 2004; LeBlanc, 2010; Espadamala et al., 2016). Due to 
the various metabolic and infectious diseases caused by a negative energy balance at 
the time of calving, fresh cow monitoring can become a very time-consuming task (LeB-
lanc, 2010; Silva et al., 2021). However, currently it is necessary to lock up the animals 
for examinations and treatments, which restricts their natural behaviour and thus has 
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a negative impact on the health and performance of the herd (Guterbock, 2004; Grant, 
2007; Gomez & Cook, 2010). However, performing this important but time-consuming 
examination during the fresh cow period without excessively affecting the animals’ 
natural behaviour is often a challenge. 

The use of Precision Livestock Farming (PLF) technologies can further support animal 
monitoring. Among other parameters, automated and continuous monitoring of ru-
mination activity can be achieved in real time. The use of sensors and animal-specific 
rumination alerts have the potential to detect animals at risk of disease at an earlier 
stage. By this, decision making is substantially supported (Silva et al., 2021), allowing 
cost and time to be used in an efficient way. To our knowledge, there are hardly any 
studies on the duration of examination and treatment times that have been system-
atically recorded in practice. Many survey-based publications are based on farmers’ 
perception of time (Couto Serrenho et al., 2022; Espadamala et al., 2016). For instance, 
Espadamala et al. (2016) described generalised examination and treatment times for 
animals between 1 to 46 seconds per animal. Determining the exact times that cows 
are fixed in headlocks for examinations and treatments under practical conditions can 
be used to evaluate existing and develop new management strategies. This is particu-
larly important for practitioners that want to develop time- and cost-efficient man-
agement strategies while minimising the impact on the dairy cow’s time budget. PLF 
technologies could be a support here to reduce the fixation times of cows in headlocks 
and stuff working hours.

In this study, a systematic analysis of video footage, recorded in the fresh cow pen 
of a commercial farm, was performed to determine (1) the duration of different ani-
mal-specific examination and treatment times and (2) the total duration of fixation 
time of cows in the headlocks.

Material and methods
All study procedures were approved by the State Office of Agriculture, Food Safety and 
Fisheries Mecklenburg-Vorpommern, Germany (7221.3-2-013/21) and noted by the Eth-
ics Committee of the University of Veterinary Medicine, Vienna. 

Animals, housing, feeding 
The study was conducted from June 2021 to August 2021 on a commercial dairy farm 
in Mecklenburg-Vorpommern, Germany. The farm housed approximately 1,900 Hol-
stein-Friesian dairy cows in free-stall barns. The average energy-corrected milk yield 
(ECM; based on 4 % butterfat and 3.4 % protein) was 10,301 kg per cow in 2021.

After calving, the cows were milked for colostrum harvesting and afterwards moved 
to the fresh cow pen. Cows were milked twice a day (at 05:30 and 17:30) in a 12 side-
by-side parlour. Fresh cows remained in the fresh cow pen until approximately day 10 
of lactation. The fresh cow pen was equipped with headlocks (Twist&Lock Headlocks, 
GEA Farm Technologies GmbH, Bönen, Germany), full concrete floors and cubicles with 
horse manure and chopped straw as bedding material. The headlocks had an addi-
tional feature allowing the fixation of individual animals by a ‘twist and lock’ system 
(TL) while releasing the other cows. Cows had ad libitum access to water and were fed 
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a total mixed ration consisting of grass silage, corn silage, potato pulp, soya- and rape-
seed extraction meal, wheat straw, soya hulls and minerals. 

Accelerometer – based monitoring system
All animals were equipped with an ear-attached accelerometer SMARTBOW (SB; 
Smartbow/Zoetis LLC, Weibern, Austria) to monitor the animals’ rumination activity. 
Data were sent in real-time to receivers and processed on the farm server. Based on 
individual data, the SB system generated rumination alerts (e.g., by urgent rumination 
decline), which were presented in the management software. At the beginning of the 
daily examination routine in the morning, all SB alerts were sighted, and the conspic-
uous animals were examined.

Video observation
The fresh cow pen was equipped with 16 digital observation cameras [network cam-
era HYU-405, HYUNDAI Corporation, Korea] at a height of approximately 3.5 m. Man-
gold-Interact (version 17.1.0.0, Mangold International, Arnstorf, Germany), a special-
ized software for the visual evaluation of video footage, was used to analyse the time 
required for specific fresh cow management procedures. For this, the start and end 
times of each examination step (Table.1) as well as headlock time per cow were defined. 
The video footage was visually observed by one person in Mangold Interact (i.e., the 
principal author F.K.). Using a predefined and corresponding shortcut, the respective 
examination steps were assigned a start and end time, respectively, which was taken 
analogously from the video. 

Examination and treatment procedures
The study was based on the herd health management strategy that was already imple-
mented on the farm. Here, three veterinarians carried out health management in the 
fresh cow barn, two of whom were present on site at any one time. Accordingly, the 
animals were fixed daily in headlocks, for examination and treatment (between 7:00 
and 9:00 am). The criteria for a more detailed examination after an initial check (taking 
rectal temperature, touching ears and skin) were as follows: existing SB rumination 
alert, signs of hypocalcaemia (cold surface temperature and -cold ears), rectal temper-
ature ≥ 39.5°, retained foetal membranes or decreases in daily milk yield. One examiner 
was in the feed alley to manually check the temperature at the ear and to record the 
clinical findings, while a second investigator was in the cow alley measuring the rec-
tal temperature and checking for retained foetal membranes. For ketosis prophylaxis, 
cows received 300 ml propylene glycol (1,2-Propandiol, Spezialfutter Neuruppin GmbH 
& Co. KG, Neuruppin, Germany) on days 1 and 2 of lactation. 

Based on the criteria above, detailed examinations included: (1) rumen fill estimation 
and faecal examination (described by Zaaijer et al. (2001)) (3) percussion- and succes-
sion-auscultation (if a displaced abomasum (DA) was suspected), (5) rumen-ausculta-
tion, (6) rectal examination, (7) udder-examination. Examinations were described by 
Radostits et al. (2007).

Before the animals were examined and treated, all fresh cows were fixed in headlocks 
as quickly as possible. To compare the time budget of different examination strategies, 
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three systems (S1–S3) were established. S1: one investigator measured the rectal tem-
perature in the entire group in a row, while the second investigator in the feed alley 
permanently fixed all animals that had to be examined by use of the TL-System. After 
the measurement of all temperatures, only animals for prophylactic treatments and 
examination remained in the headlock. The remaining animals were examined and 
treated by both examiners; S2: one investigator examined and treated the animals one 
after the other from the cow alley. The second investigator at the feed alley document-
ed all findings, handed over all treatment and examination utensils and immediately 
released the animals after the end of examination or treatment; S3: one investigator 
measured the rectal temperature in the whole group in a row, while a second investiga-
tor checked the animals from the feed alley at the same time. Then, both veterinarians 
examined and treated the animals. All animals remained in the headlock until the last 
treatment was completed.

Table 1: Standard operating procedures for various examination steps divided into start- and end 
points

Examination step
Definition

Start End

Rectal 
temperature the thermometer is inserted rectally the animal is marked with a red/

yellow marker

Rumen fill the paralumbar fossa is palpated, 
cranial to the last rib the hand is taken back 

Percussion-
auscultation

fingers touch the abdomen to 
perform the percussion

the succession starts by formation 
of a fist

Succession-
auscultation

the succession starts by formation 
of a fist a functional stethoscope is taken off 

Faeces 
examination

the rectal glove is put on (shoulder 
protection over the head)

the rectal glove is removed (pull the 
shoulder protector over the head 
again)

Udder 
examination Examiner squats down Examiner stands again

Rumen 
auscultation a functional stethoscope is put on the examiner starts with percussion

Rectal 
examination

the rectal glove is put on (shoulder 
protection over the head)

the rectal glove is removed (pull the 
shoulder protector over the head 
again)

Statistical analysis
The results of the video analyses performed with Mangold Interact were exported into 
an Excel spreadsheet (version 16.0.5; MS Excel 2016, Microsoft Cooperation, Redmond, 
USA) for further statistical analyses with SPSS (version 27.0.0.0, IBM corporation SPSS 
Statistics, Armonk, NY). Data were tested for normal distribution using the Kolmog-
orov-Smirnov test. For comparison of the three different systems (S1–S3) as well as 
the examination steps, performed by the investigators, the Kruskal-Wallis test and, 
analysis of variance (ANOVA), respectively, were used. Intra- and inter-rater reliability 
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was calculated by the use of Cohen (1960) Kappa (ҡ); the level of significance was set at 
p = 0.05. Results are presented as mean ± SD. 

Results 

Table 2: Duration of examination steps presented for each of the three investigators (Inv 1 – Inv 3) 
and differences among the investigators (Mean ± SEM).

Examination-step Inv1
Duration (s) Differences among Inv1 (s)

n Mean SD2 1 vs 2 2 vs 3 1 vs 3

Temperature

1 831 16 3
<0.1 ± 0.2 
(P = 1.00)

0.6 ± 0.2 
(P < 0.01)

0.5 ± 0.2 
(P = 0.02)2 847 16 3

3 561 15 3

Rumen fill

1 84 1 0
0.2 ± 0.2 
(P = 1.00)

0.9 ± 0.2 
(P < 0.01)

1.2 ± 1.2 
(P < 0.01)2 79 1 1

3 75 2 1

Percussion 
auscultation

1 103 9 3
4.3 ± 0.5 
(P < 0.01)

1.4 ± 0.5 
(P = 0.02)

2.9 ± 0.5 
(P < 0.01)2 136 4 3

3 90 6 4

Succession 
auscultation

1 103 2 0
0.6 ± 0.1 
(P < 0.01)

0.4 ± 0.2 
(P = 0.03)

1.2 ± 0.2 
(P = 0.96)2 127 1 1

3 95 2 1

Faecal examination

1 38 22 7
8.3 ± 3.0 
(P = 0.03)

6.8 ± 3.2 
(P = 0.11)

15.1 ± 2.8 
(P<0.01)2 22 31 14

3 27 37 12

Udder examination

1 62 15 5
1.0 ± 2.0 
(P = 1.00)

7.8 ± 2.0 
(P < 0.01)

8.9 ± 2.1 
(P < 0.01)2 75 16 12

3 67 24 15

Rumen auscultation

1 42 115 38
4.2 ± 5.9 
(P = 1.00)

31.7 ± 5.8 
(P < 0.01)

35.9 ± 6.3 
(P = 0.05)2 61 111 26

3 45 79 24

Rectal examination

1 42 30 7
9.7 ± 2.3 
(P < 0.01)

6.8 ± 2.3 
(P = 0.01)

16.5 ± 2.5
(P < 0.01)2 62 39 12

3 44 46 13

1 Investigator 
2Standard deviation

To test the accuracy, an intra- and inter-rater reliability was performed. The princi-
pal investigator (F.K, Inv.1) analysed the video sequences of one observation day twice 
(101 events). Here, a high level of agreement with ҡ > 0.89 was calculated for the in-
tra-rater reliability. To compare the recorded parameters among the three different 
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investigators, a joint but independent assessment of the animals was made at the be-
ginning of the study (n=117). A high inter-rater agreement with ҡ from 0.89 to > 0.99 
was detected. Examination procedures of 58 observation days and headlock times of 
44 observations days were evaluated in the study. In total, 3,973 examination steps and 
1,848 headlock times per cow were eligible for statistical analyses. Significant differ-
ences in the time needed to perform specific examinations were identified among the 
examiners (Table 2). The most frequent examination steps were as follows: (1)  tem-
perature measurement (n  =  2,239, 56%), (2)  percussion-auscultation (n  =  329, 8.2%), 
(3) succession-auscultation (n = 325, 8.1%). Temperature measurement took on average 
of 16 ± 3 seconds and differed significantly among the three investigators in maximum 
0.6 seconds (P < 0.01). 

The succession- and percussion-auscultation took, on average 2 ± 1 and 6 ± 4 seconds, 
respectively. The maximum differences among the investigators were 1.2 s (P = 0.96) 
and 4.3 s (P < 0.01), respectively. The longest examination step was the rumen auscul-
tation, which lasted 101 ± 40 seconds and differed most significantly among the inves-
tigators, with 35.9 s (P = 0.05).

Overall, 1848 headlock were used for statistical analyses (S1 (n = 562) vs S2 (n = 674) vs 
S3 (n = 612)).

Figure 1 shows the differences among the systems. Fifty percent of the animals left 
the headlocks after 11 minutes in S1, after 16 minutes in S2 and after 45 minutes in S3. 
Significant differences were found between all three systems (S1 – S3).

Figure 1: Distribution of headlock times per cow [min] for the different fresh cow management 
systems (S1–S3). Significant differences are presented by a and b.
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Discussion
The objective of this study was twofold. First, the duration of individual examinations 
was determined. Second, three different fresh cow monitoring systems were compared.

One of the most commonly performed examinations is the measurement of rectal 
temperature in the first 10 days of lactation (Smith & Risco, 2005). Espadamala et al. 
(2016) and Heuwieser et al. (2010) reported that 36%, respectively 34% of the surveyed 
farms checked the temperatures in fresh cows. In this experiment, the measurement 
of the temperature was the most frequent (56 %) of all examination steps. It lasted on 
average 16 ± 3 seconds with a maximum difference of 0.6 seconds (P < 0.01). However, 
this difference among investigators can be neglected from a practical point of view. Gu-
terbock (2004) assumed that it takes four times as much, namely 60 seconds per cow, to 
take and document the temperature. It should be noted that in our study, only the use 
of the thermometer, without documentation time was analysed. 

Furthermore, fresh cows are frequently checked for DAs. Guterbock (2004) suggests 
that rumen motility should be determined with a stethoscope or by hand in the para-
lumbar fossa. In this study, succession- and percussion-auscultation took, on average, 
2  ±  1 seconds and 6  ±  4 seconds respectively. Therefore, succession in combination 
with percussion-auscultation took only 8 seconds on average and are thus even short-
er than measuring the temperature. Espadamala et al. (2016) described that 67% of the 
surveyed farms had functioning stethoscopes for rumen diagnostics. However, only 
20% of them used a stethoscope when DA was suspected. In this context, it should be 
noted that the time-benefit ratio for auscultation is favourable, but it requires trained 
personnel who can diagnose a DA.

Furthermore, different fresh cow monitoring systems were compared. Here the man-
agement strategy S1 (by the use of the TL-system, only animals for prophylactic treat-
ments and examinations remained in headlocks) with a median headlock time of 
10.7 ± 9.0 minutes shows that this is the most effective one compared to S2 and S3. 
However, as a structural requirement, a TL system (or something comparable) must be 
in place to separate the animals. Aalseth (2005) described a fresh cow monitoring pro-
cedure where one person is in the feed alley and another person is behind the animals 
during the examinations one after the other. In our study, only a small difference be-
tween the mean fixation times between S1 and S2 was found. In S2, the animals stood 
in the headlock for an average of 5 minutes longer, but there was a significantly greater 
variation compared to S1. System 3 was performed according to the farm’s procedure, 
with the animals staying in the headlocks the longest, i.e., 44.95 ± 17.00 minutes in me-
dian. It was thus shown that depending on the order of examinations and treatments, 
the headlock time per cow can be significantly reduced. In all systems, 50% of the cows 
left the headlocks within 1 hour. These systems must always be carried out by two in-
vestigators. However, for farms keeping more than 2,000 cows Espadamala et al. (2016) 
reported, that fresh cow checks are usually carried out by two or more employees. 

Follow-up studies should evaluate to what extent different standing times of cows in 
the headlocks influence their time budget and restrict their natural behaviour. Based on 
this, optimal management strategies for fresh cows should be developed for different 
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herd sizes, considering not only the cows’ needs but also the number of available em-
ployees and economic aspects. PLF technologies could be a support to identify ani-
mals at risk of disease at an early stage, support decision-making and thus optimise 
workflows.

Conclusions
Although significant differences in the examination times of different investigators 
were identified, these can be neglected from a practical point of view. Significant dif-
ferences in the fixation time of the animals in the headlocks were determined for the 
different fresh cow monitoring strategies. The results of this study can be used in the 
future to develop optimal management strategies that take into account cow needs, 
available labour and other economic factors. In this context, it will also be evaluated 
what contribution PLF technologies can make to reduce fixation times of cows in head-
locks and stuff working hours.
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Abstract
The automated activity monitoring (AAM) system for heat detection is an example of 
how animal sensor technologies and machine learning can improve heat detection 
while reducing labour costs. Nevertheless, customizing a heat detection algorithm 
to fit different management conditions is challenging. A new machine learning tech-
nique based on neural networks developed by Datamars SA seems to solve this issue. 
To develop this algorithm, a training dataset and heat labels were extracted from cat-
tle managed in indoor and grazing conditions. Milk pro gesterone was used as a gold 
standard for developing the heat detection algorithm. The trained algorithm achieved 
an F1 score of 83%. The evaluation and commercial validation of the trained algorithm 
were performed across different farms in Europe, South America, and Oceania using 
a combination of farmer visual observation and a commercial AMM system as ref-
erences. Finally, the proposed system was compared to a known commercial system 
(HerdInsight). The results showed that the final Datamars system outperformed the 
existing AMM system in both indoor and grazing conditions and achieved F1 scores 
greater than 90%. The results confirmed that the developed system is well suited to 
automatically detect heat (oestrus) events.

Keywords: heat detection, dairy, neural networks, AAM

Introduction
Optimal heat detection improves the reproductive life, productive life and welfare 
of dairy cattle (Rutten et al., 2014). Visual observation of standing heat is not only 
time-consuming but also suboptimal on most farms, which leads to low submission 
rates, extended calving intervals and a lower productive life of dairy cattle (Rutten et 
al., 2014). Research has shown that AAM systems can decrease days to pregnancy by 10 
days compared with timed artificial insemination (AI) of cows and reduce labour costs 
(Stevenson et al., 2014).

Automatic heat detection by accelerometers has become mainstream in many parts of 
the world (Crowe et al., 2018; Lee & Seo, 2021). These systems outperform visual heat 
detection by 15 to 35% (Mayo et al., 2019; Nelson et al., 2017). Current leading commer-
cial systems reach F1 scores of 65 to 87% depending on farm management conditions 
and other biological, environmental, and technical factors (Mayo et al., 2019; Brassel 
et al., 2018). For instance, the AMM sensitivity is higher during winter than in summer 
for indoor systems, 90 vs. 75%, and for grazing cows, 80 vs. 50% (Minegishi et al., 2019). 
Other AMM systems have lower sensitivity indoors than grazing systems, 78 vs. 82% 
(Roelofs et al., 2017). New knowledge on heat events and algorithm techniques can 
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improve heat detection performance by using better gold standards and a larger num-
ber of subjects for the algorithm validation process (Homer et al., 2013; Wang et al., 
2020). Moreover, neural networks should provide better performance than statistical 
algorithms, as they better account for the impacts of farm size, system, and manage-
ment practices on heat expression.

The benefits of using machine learning for improving heat detection were highlighted 
in another study that combined different sensors to recognize behavioural changes 
associated with heat events, which achieved an 82% F1 score (Benaissal et al., 2020). 
Considering that the optimal time window for AI is 9 to 16 h after the alert is generated 
(Stevenson et al., 2014), any machine learning algorithm should have a short window 
to provide optimal AI in detected cattle (Benaissal et al., 2020).

In this document, a neural network algorithm conception, evaluation and validation are 
described in different farm management conditions. The modelling started with the in-
itial descriptive and statistical analyses of heat events, continued with the comparison 
of the developed algorithm against a gold standard, and ended with the deployment of 
the commercial Datamars system on several farms worldwide. The commercial algo-
rithm validation was performed against one leading AMM system. As a highlight, the 
proposed Datamars system outperformed the existing AMM system across different 
management conditions.

Material and Methods

Farms and animals
The data were collected on 5 different farms over more than a 3-year period. Except 
for farm C, all farms were commercial farms. The first two farms (A, B) were used for 
algorithm development, the third (C) farm was used for model evaluation, and the last 
2 farms (D, E) were used for final model validation and for comparison against a leading 
AMM system (Table 1).

The observational study was conducted by the same team of researchers throughout 
all farms. The mounting of the sensors was not invasive and was usually conducted at 
the beginning of the trial. The numbers of animals and tags that were mounted for each 
farm are summarized in Table 2.

Farm A was a grazing seasonal farm in New Zealand. It had 146 cows in total. The trial 
lasted from October 2020 to January 2021.

Farm B was an indoor production farm with year-round calving. Cows were managed in 
three groups, and the voluntary waiting period was 6 weeks after calving. Two separate 
5-month trials were run on this farm from July to November 2019 and January to June 
2020. Both collar and ear tags were mounted in all cattle to compare data from both 
devices. Hormonal synchronization was used only on anoestrus cows.

Experimental Farm C has been managed by the Loire-Atlantique Chamber of Agricul-
ture and the Institut de l’ELevage since its creation in 1973. The herd had 85 Holstein 
cows and 75 heifers. The monitoring period covered cows in all reproduction stages.
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Farm D was in England and had year-round calving. The High group had a maximum of 
123 cows, and the Fresh group had a maximum of 90 cows. Cows were mounted with 
Datamars collars and ear tags and HerdInsight collars.

Farm E was a grazing seasonal farm in New Zealand. There were 600 cows in total, 
mainly Friesians, split into 2 groups. Two hundred animals were mounted with both 
Datamars and HerdInsight devices and monitored for 4 months.

Table 1: Numbers of animals and heat events per farm and tag type

Farm Tag Farm 
type Breeding

No. of 
Animals 
Tagged

No. of 
Heats

No. of 
Hours

No. of Heat 
Hours

Duration 
(months)

A Collar Grazing Seasonal 13 212 245751 2922 3

B Collar Indoor All year 101 119 269705 1515 5 + 5

C Collar Mixed All year 58 162 131213 2441 5

D Collar Indoor All year 131 224 393799 / 5

E Collar Grazing Seasonal 200 458 590400 / 4

A Ear Grazing Seasonal 30 36 46350 383 3

B Ear Indoor All year 103 128 281948 1672 5

C Ear Mixed All year 61 149 122950 2181 5

D Ear Indoor Seasonal 141 229 412188 3333 4

Description of the heat detection system
The Datamars system consists of an accelerometer tag, with a gateway that collects the 
data and forwards it to the cloud where data are processed and alerts are generated. It 
was developed with two configurations: an ear tag and a collar tag with the estimated 
battery life of more than 3 and 5 years respectively (Figure 1). The tag records acceler-
ometer data and derives different behaviours or activities, including feeding, ruminat-
ing, resting, and standing time, within one-hour intervals.

The system includes a gateway that will actively search for tagged cattle. Once the 
cattle are in range, all information stored will be sent from the tag to the gateway. The 
system can support several integrated gateways to ensure optimal data transmission. 
Most of the activities are processed internally, and the predictions are made on the 
cloud. The data from all cattle are saved and then processed, and the results are shown 
via a mobile or web application.

Before the development of the algorithm, all information was checked for data integri-
ty and consistency (Table 1), and any data considered incomplete were removed from 
the analysis and the algorithm training process.

The machine learning (ML) algorithm was implemented as a multilayer perceptron 
with a web API so that the model could be called. The heat detection algorithm receives 
activity data from the cloud, looks at the historical values, calculates the averages for 
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individual animals and the group behaviour, integrates information from other sys-
tems (if available), and creates additional features that are fed to the algorithm. The 
hourly probability of cows being in heat is produced and postprocessed to find the start 
and the end of the heat event. The best insemination time is estimated, and finally, an 
alert and other insights are produced to help farmers manage the herd.

Figure 1: Collar and ear tag design

System evaluation and validation
We focused our heat event analysis on nonpregnant cows with greater than 10 days in 
milk (DIM) (Chanvallon et al., 2014; Brassel et al., 2018; Minegishi et al., 2019). Only com-
plete datasets were used for analysis and evaluation (Table 2). Furthermore, cows with 
unknown behavior, associated health issues or anestrus were removed from the trials.  
An event was considered true positive (TP) if the system produced an alert during the 
reference heat period. The reference heat period was set as a heat ± 12 h from a) visual-
ly observed heat (expert/farmer), b) heat detected by other AMMs (reference), c) heat es-
timated by milk progesterone (gold standard) or d) ovarian ultrasonography scan. The 
algorithm performance was evaluated by calculating and comparing the precision (PR), 
sensitivity (SE) and F1 score of the Datamars system in each trial and against another 
commercial AAM system (Table 2).

Farm C was used for an independent evaluation of the initial model. The researchers 
from Institut de l’ELevage cross-referenced the heat detection results from the training 
model with several systems running in parallel on the farm. The systems used were 
Herd Navigator (milk progesterone), DeLaval activity alarm – AAM collar device, Heat 
time SCR system – AAM collar device, Datamars ActiveTag – AAM collar and ear tag 
devices.

For the other selected farms, the heat reference was obtained by combining at least 2 
different independent sources, usually visual observation and AAM systems. Each heat 
event on those farms was examined for activity patterns and cyclicity, and it was cross 
referenced against positive pregnancy scanning. Table 2 summarizes all heat events, 
devices, and farm management conditions.
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Results and Discussion

Statistical analysis of the activities
Comprehensive knowledge of oestrus-related behaviours is fundamental to achieve 
optimal oestrus detection rates. During oestrus, cows are between 2.3 and 6 times more 
active; this change in behaviour lasts between 3 and 24 hours (16-hour average) and is 
detected by accelerometers (Valenza et al., 2012; Aungier et al., 2015; Silper et al., 2015; 
Roelofs et al., 2017). Cows in heat can also be identified by the decline in rumination 
time, and combining more behavioural activities can improve heat detection (Reith, 
2018; Benaissa et al., 2020). Furthermore, the length and strength of visual heat de-
pends on several external factors, such as housing type, flooring surface, ambient tem-
perature and humidity, stock density, time of the day, nutritional factors or individual 
hormonal patterns, i.e., silent oestrus with little or no change in activity behaviour 
(Valenza et al., 2012; Aungier et al., 2015; Silper et al., 2015; Roelofs et al., 2017).

The acquisition of heat events used as a reference
To overcome the challenges of obtaining optimal references, the appropriate gold 
standard must be chosen. The gold standards for heat detection are milk progester-
one, transrectal ovarian ultrasonography, and confirmed pregnancy (Nelson et al., 2017; 
LeRoy et al., 2018). However, these methods are expensive and difficult to implement 
on a large scale. Furthermore, ultrasonography might cause stress and delayed ovula-
tion (Nelson et al., 2017; Roelofs et al., 2004). The use of AAM systems based on accel-
erometers, video recordings, and nosebands as gold standards to train the machine 
learning algorithms introduces the intrinsic bias already embedded in the solution. No 
algorithm can be better than the gold standard on which it is trained. Heat detection by 
visual observation is on average 50-60% accurate (Chanvallon et al., 2014). Furthermore, 
the event is not fully described, making it difficult to understand if the observation was 
made at the beginning, the peak or at the end of the heat period (Nelson et al., 2017). 
Defining the complete heat event is a prerequisite for developing machine learning 
models. Therefore, the proposed algorithm incorporates the idea of “expert advice” to 
cross-check the reference heat events from the AAM systems, visual observation, and 
pregnancy scans and to analyse the heat behaviour measured by the tags, as well as 
oestrus cyclicity. The goal of the cross-check was to produce a list with estimated be-
ginning, peak and end times for all reference heat events. In cases where heat was only 
visually observed, the heat behaviour was examined to decide on the beginning and 
the end of a heat event.

One downside was that heat events with no clear behavioural signs (silent) could not 
be detected, except on farm C, where milk progesterone was used as the gold standard. 
Another downside was that some heat events were missed. Nevertheless, the chance 
of missing heat was low considering that all refence heat events were confirmed by at 
least 2 or more independent systems and verified that the activity patterns as well as 
cyclicity matched the known biological pattern (i.e., activity patterns 21 days before 
and after each heat event).
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Methodological considerations
Animal and group behaviours were used to standardize the data recorded under differ-
ent management and environmental conditions. This enabled the model to be resilient 
to different management conditions and unexpected group events. Data normalization 
significantly decreased the impact of this “group effect” on heat alert generation.

A wide range of factors influences the evaluation of heat detection systems, including 
methodological, environmental, technical, and biological factors. In some cases, activ-
ity data for the same brand of sensors under similar management conditions provide 
different results (Lee & Seo, 2021). Sadly, many experiments do not report the exact 
evaluation criteria, which makes it impossible to compare or ascertain which factor 
caused differences in performance. For instance, SCR Heatime scored from 95% (Nel-
son et al., 2017) to 71-72% in the F1 score (Holman et al., 2011; Chanvallon et al., 2014). 
Therefore, care was taken when using similar evaluation criteria for each experiment 
and AMM systems used as a reference. For instance, evaluating the F1 score was useful 
and less impacted by technical factors, while the precision and sensitivity were highly 
impacted by those factors, which was expected considering that there is a trade-off be-
tween the two. Therefore, to improve the consistency and reproducibility of the results, 
all trials were evaluated under the same technical conditions and using the F1 score as 
the benchmark.

The evaluation of AAM systems only on cows postpartum or after the voluntary wait-
ing period (VWP) is used to exclude the first heat postpartum, as many are likely to be 
silent (Ranasinghe et al., 2010). For instance, Holman et al. (2011) considered only cows 
20 days postpartum, Chanvallon et al. (2014) considered cows from calving to 90 days 
after calving, while Nelson et al. (2017) discarded all pregnant cows, as well as cows that 
had undergone any hormonal treatment. We decided to evaluate the systems on cows 
that were 10 or more days in milk.

Model evaluation
The 10-fold cross validation method was used to evaluate performance on each of the 
trials involved in the model training. The F1 score for the indoor farms was approxi-
mately 85%, while the F1 score for the outdoor grazing farms was approximately 90%. 
The performances for both the ear tag and the collar tag were similar (Table 2). The dif-
ference in performance between the farms can be explained by heat synchronization 
used in the indoor farm, which reduced the number of true events.

The trained model was evaluated on the blind data from farm C. The F1 scores were 
approximately 83% for both tag types (Table 2). It is important to note that the evalua-
tion in this case included silent heat events, and the removed cases included a period 
where milk progesterone (gold standard) could not be recorded due to system mal-
functioning. Nevertheless, for the Nedap AAM system, Roelofs et al. (2017) reported 
F1 scores of 82% and 85% for indoor and grazing farms, respectively, when compared 
against progesterone measurements. These results agree with the Datamars evalua-
tion on farm C (Table 2).
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Table 2: Model evaluation results. For farms A and B, 10-fold cross validation was used, as the model 
was trained on the data recorded on these farms.

Trial Tag Algorithm TP FP FN PR (%) SE (%) F1 (%) Removed Note

B collar DM 108 31 9 77.7 92.3 84.4 2 10-fold

B ear tag DM 103 16 22 86.5 82.4 84.4 3 10-fold

A collar DM 188 15 24 92.6 88.7 90.6 0 10-fold

A ear tag DM 32 4 4 88.9 88.9 88.9 0 10-fold

C collar DM 116 29 20 80.0 85.3 82.6 26 PG

C ear tag DM 113 25 20 81.9 85.0 83.4 16 PG

TP = True Positive, FP = false positive, FN= false negative, PR = precision, SE = sensitivity, F1 = F1 
Score, removed= heat events removed, Note: 10-fold = 10-fold validation and PG = Milk progesterone 
(gold standard).

Validation against a commercial system
The model was retrained to include farm C data and then integrated into the Data-
mars final commercial system. Compared to previous farms where data were first 
gathered and then processed later, during validation on farms D and E, both Datamars 
and HerdInsight systems ran in parallel. On farm E, collar tags for both systems were 
mounted on the same animals. Due to a logistical problem, there was a delay in equip-
ping all the tags on the same cows on farm D. Some cows had only Datamars tags, while 
others had only HerdInsight collar tags or had all three. As a result, the total numbers of 
heat events for collar and ear tags are slightly different. Additionally, some events were 
removed from the analysis, as the data for these events were not recorded (Removed, 
Table 3), or we could not determine if they were actual heat events (Unknown, Table 3).

The F1 scores for the Datamars system were 92% for collar tags on both farms. The 
performance of the Datamars ear tag was slightly lower, with an F1 score of 89%. The 
HerdInsight system had an F1 score of 84% on the grazing farm, while it underper-
formed on the indoor farm, with an F1 score of 70%. Our findings agree with a previous 
validation of the HerdInsight AAM system, which found an F1 score of 81.4 on grazing 
farms (Brassel et al., 2018). Nelson et al. (2017) assumed that different management 
conditions would impact the performance of standard heat detection algorithms. Our 
results with HerdInsight seem to confirm that assumption (Table 3). The use of the 
machine learning algorithms seems to reduce that effect, as in both management con-
ditions, the Datamars algorithm performed similarly (Table 3).

The difference in the Datamars system performance during evaluation on farm C (83%) 
and validation on farms D and E (collar 92% ear 89%) could be explained by silent heat 
events that were included in the evaluation on farm C. Similarly, the initial model was 
trained on events from farms A and B only, while the final model that was validated on 
farms D and E also included events from farm C (Tables 2 and 4). The slight difference 
between collar and ear tag F1 performance (92% vs. 89%) of the Datamars system could 
also be explained by the number of heat events on which the model was trained: 412 
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events for the collar against 248 events for the ear tag (Table 2). It is worth exploring 
whether training on more events would improve the system performance and what 
would be the limit of such improvement.

Table 3: Model validation results. DM – Datamars, HI - HerdInsight

Trial Tag System TP FP FN PR (%) SE (%) F1 (%) Removed Unknown

D collar HI 167 105 35 61.4 82.7 70.5 14 10

D collar DM 180 20 12 90.0 93.8 91.8 32 14

D ear HI 167 114 41 59.4 80.3 68.3 13 10

D ear DM 165 13 27 92.7 85.9 89.2 37 11

E collar HI 397 92 58 81.2 87.2 84.1 10 8

E collar DM 421 28 37 93.8 91.9 92.8 7 8

TP = True Positive, FP = false positive, FN= false negative, PR = precision, SE = sensitivity, F1 = F1 
Score, Removed= heat events removed and Unknown =unknown heat events.

Conclusion
The validation of the presented algorithm that is integrated into the Datamars system 
suggests that different farm management conditions can be overcome by a machine 
learning-based approach to heat detection. The results of our 3-year development and 
evaluation suggest that the Datamars system improved the performance of heat de-
tection throughout different management conditions, outperforming the current com-
mercial AAM system. Moreover, it provided optimal heat detection capabilities com-
pared to visual observation by farmers. Using the Datamars system to automate heat 
detection on dairy farms will free up labour and reduce costs while improving the re-
productive and productive performance of dairy cattle worldwide.
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Abstract
Sow productive lifetime or sow longevity is a complex trait, and is determined by many 
genetic and environmental factors. A previous study found that feet and leg sound-
ness, lameness, or leg problems represent the second most identifiable reason that 
sows leave commercial breeding herds. Gait status is often visually assessed by an ex-
perienced gilt manager, which requires significant amount of human labor and is in-
herently subjective. Therefore, automating this assessment is important for improving 
sow productive longevity. In this study, a total of 155 gilts were captured by a side-view 
camera as they passed through the alley and individual gait scores were visually esti-
mated. To capture the gait pattern, the YOLOv3 object detection model was applied to 
isolate gilts from the background. Then, a pose estimator which stacks a Convolution 
Neural Network with three deconvolution layers was used to extract the locations of 
19 body landmarks with a mAP (Mean Average Precision) of 99.1%. Guided by empirical 
metrics in manual assessment, static features (Stride Length, Leg Angle) and dynamic 
features (Lagging Indicator, Skeleton Energy Image) were extracted and evaluated. The 
result shows that the combination of Leg Angle and Lagging Indicator provide the best 
performance, by which the worst and best gait animals are linear separable. 

Keywords: Gilt lameness, gait analysis, pose estimation, computer vision

Introduction
Sow productive lifetime or sow longevity is a complex trait and is determined by many 
genetic and environmental factors. A previous study found that sow feet and leg sound-
ness, lameness, or other leg problems represent the second most identifiable reason for 
sows leaving commercial breeding herds (Stalder et al., 2004). Therefore, identifying 
and (if possible) rectifying such issues can help the producer to achieve better efficien-
cies with his breeding herd. However, in current commercial practice determining the 
gait status often involves a subjective assessment made by the gilt manager. 

In human  applications, computer vision based pose estimation is done by predicting 
the location of specific keypoints like hands, head, elbows, etc. With rapid development 
of computer vision technology, such advanced pose estimation algorithms are now 
able to provide new inspirations for monitoring gilt gait (Fang et al., 2017; Cao et al., 
2018). 

The objective of this study is to apply the-state-of-the-art pose estimation model to 
gilt gait assessment so that gait pattern features can be related to leg robustness of the 
gilts in future data analysis.



 Precision Livestock Farming ’22 395

Material and methods

Experimental data
A total of 155 gilts were filmed from a side view perspective while they were passing 
through an alley (length of 5m and width of 1.8m). To accurately capture the motion of 
the walking gilts, the action camera GoPro HERO 9 (https://gopro.com/) was used, as its 
properties of faster shutter speed, larger aperture, and higher ISO speeds allowed for 
video capture with minimal motion blur. The raw video was captured at the resolution 
of 2704 * 1520 pixels with 120FPS as shown in Figure 1. The front and rear leg of each gilt 
was scored by experts at PIC according to the criteria associated with structure, quality 
of movement, and physical defects (Stalder et al., 2004). A histogram summary of the 
gilt leg scores is shown in Figure 2, where it can be seen that the score ranged from 4.0 
(poor leg) to 8.0 (strong leg). In a well-managed gilt farm, gilts outside this range are 
very rare. 

        Figure 1: An example of raw data                    Figure 2: Front and Rear leg score histogram

Image annotations

Figure 3: Pre-defined 19 body landmarks in PigPoints dataset

To isolate gilts from the background (object detection task) and locate body landmarks 
(keypoints detection task) using deep learning techniques, two datasets were created 
for training and evaluation - PigDet and PigPoints, respectively. PigDet consisted of 1448 
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images, in which a bounding box is assigned for each gilt. PigPoints consisted of 1100 
images, in which a total of 19 body landmarks were pre-defined as shown in Figure 3. 
Both PigDet and PigPoints were labelled by COCO annotator tool (https://github.com/
jsbroks/coco-annotator) and divided into a training set and a validation set with a ratio 
of 4:1 to evaluate the model performance.

Development of the pose estimation model
Existing pose estimation methods can be categorized into top-down and bottom-up 
approaches. Our study aimed to build a robust top-down approach that incorporated 
a bounding box detector followed by estimating the parts and calculating the posture 
of each pig. 

For the object detection model, YOLO v3 was employed for isolating gilts from the back-
ground by a bounding box (Redmon et al., 2018). As a one-stage object detector, YOLO v3 
is famous for its fast-inferencing speed and flexible architecture, which can be adapted 
for, e.g. YOLO NANO or precision, e.g. YOLO Large. 

For the pose estimation model, we propose a simple architecture that stacks a Convolu-
tion Neural Network (CNN) with three deconvolution layers, as shown in Figure 4. Such 
architecture provides most flexibility to replace the backbone (CNN part) with either 
a deeper backbone to pursue higher accuracy or a lighted-weighted backbone to im-
prove inferencing speed. We tested the performance of two different CNN backbones: 
ResNet-50, ResNet-101 and ResNet-153. 

Figure 4: Architecture of the pose estimation model

Since the model predicts 19 body landmarks (Figure 3), the last deconvolution 
layer has 19 channels. Each channel outputs a heatmap that considers only one 
key point. To train the pose estimation model, 19 heatmaps should be generated 
as ground truth, as shown in Figure 5. L2 loss was used to minimize the error, 
which was the sum of the all the squared differences between the ground truth 
heatmap and the prediction heatmap. The pose estimation network is trained by 
the following hyper-parameters:

 — Stochastic gradient descent with a momentum of 0.9, a weight decay of 0.0005.
 — The network is trained for 150 epochs with a batch size of 64.
 — The learning rate schedule follows the cosine annealing from 0.0001 to 0.0005.
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Figure 5: Generated ground truth heatmap for body landmarks

Gait features exploration
Static gait feature – Leg angle as stride length indicator. Guided by empirical metrics 
in manual assessment, Stride Length is a generally accepted metric. However, distance 
measurement by image processing is significantly affected by geometric distortion 
and perspective effect. Therefore, we used the angle of two front legs to approximate 
the stride length (as shown in Figure 6). Angle features also has the property of scale 
invariance. 

Figure 6: Static gait feature – front leg angle

Dynamic gait feature - Lagging Indicator is designed to quantify the walking coher-
ence, based on the observations: 1) For stronger front legs, gilts can support their body 
weight on single front leg, so they usually lift the rear leg before landing on both front 
legs; 2) Conversely, for weaker front legs, gilts only dare to lift their rear leg when en-
sure that both front legs are firmly on the ground. Periodic changes in the angle of front 
legs and rear legs when gilts pass through the alley are shown in Figure 7, the Lagging 
Indicator is calculated by formula (1), where  and  are illustrated in Figure 7(b), which 
actually measures the offset of blue curve and green curve. 

 (1)

Dynamic gait feature – Skeleton Energy Image (SEI) is a data driven method which was 
proposed for representing different types of pathological gait (Loureiro et al., 2020). The 
way humans walk can also be used for identification purpose and is usually known as 
gait recognition. Given its success in human gait study, we also tested its performance 
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on representing different leg scores. The SEI for a gait cycle corresponding to a set of N  
images, It (x, y), can be computed by averaging the skeleton of those images:

 (2)

Where, St (x, y) is the skeleton by linking the key points. In this study, we evenly sample 
15 images in a stride cycle. Some examples of generated front leg SEI and rear leg SEI is 
shown in Figure 8. In total, we generated 176 SEIs per gait score and employed a CNN 
(ResNet-50) as image classifier.

Figure 7: Periodic changes in the angle of front legs and rear legs when gilts pass through the alley

Figure 8: Generated Skeleton Energy Images. (a) SEI of front leg is generated by fix the Mid-shoulder 
point; (b) SEI of rear legs is generated by fix the Femur-Pelvis point

Results and Discussion
The performance of YOLO v3 is summarized in Table 1. We finalized YOLO v3 small 
as the object detector whose inferencing speed is around 150 frames/s with NIVIDIA 
GTX3090 GPU device. 
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Table 1: Performance comparison of different YOLO v3

Model mAP
@0.5:0.95 Params(M) FLOPs

@640*640

YOLOv3 small 0.954 7.2 16.5

YOLOv3 medium
0.973 21.2 49.0

YOLOv3 large 0.975 46.5 109.1

YOLOv3 xlarge 0.988 86.7 205.7

The performance of proposed pose estimation model is summarized in Table 2. Balanc-
ing the speed and mAP, ResNet-50 was finalized as CNN backbone in this study. 

Table 2: Comparison of pose estimation model with different CNN backbone

Keypoints
Average Precision

ResNet-50 ResNet-101 ResNet-153

Snout 0.94 0.95 0.97

Shoulder 0.89 0.88 0.91

Mid-Shoulder 0.87 0.92 0.91

Mid-Back 0.94 0.96 0.96

Hip-Top 0.91 0.95 0.98

Tail 0.95 0.94 0.97

Femur Pelvis 0.89 0.92 0.97

Rear Knees 0.97 0.99 0.98

Rear Pasterns 0.98 0.95 0.95

Rear Hoofs 0.96 0.97 0.97

Front Pasterns 0.97 0.98 0.97

Front Hoofs 0.96 0.96 0.96

Front Knees 0.96 0.95 0.98

mAP 0.95 0.96 0.96

Figure 9 visualizes the gait pattern by plotting the distribution of the extracted gait fea-
ture and training recordings of Skeleton Energy Image (SEI). The results show that the 
stronger legs (with higher leg scores) had larger leg angles (or larger stride lengths). The 
trend was evident even if their distributions overlapped heavily (as shown in Figure 9a). 
The Lagging indicator is more distinctive (Figure 9b). The combination of Leg Angle and 
Lagging Indicator provided the best performance, by which the worst and best gait ani-
mals are linear separable (Figure 9c). However, the SEI is not as useful as was expected. 
There are two possible reasons, one is overfitting problem since the limited dataset, 
another one is the collected data is not optimal due to the difficulty of controlling gilts 
passing through the alley in a consistent way.
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Figure 9: Gait pattern visualization and analysis. (a) Leg Angle as the stride length indicator; (b) 
Lagging indicator; (c) Join distribution of Leg Angle and Lagging indicator; (d) Skeleton Energy Image 
classification

Conclusions
This paper proposed a method to analysis gilts’ gait pattern by a pose estimation mod-
el. We proposed three different graphic features to quantify/measure the leg quality. 
A preliminary result showed that the combination of Leg Angle and Lagging Indicator 
provide the best performance, by which the worst and best gait animals are linear sep-
arable. More gait analysis will be performed in the future, expecting to distinguish gilts 
with different level of leg quality.
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Abstract
A major decision of a sow operation lies in the identification of which gilts to retain 
given the importance of sow longevity. Automatic computer vision allows producers to 
classify animals without human interference of natural behaviors. This investigation 
studied overall activity of replacement gilts and the use of these activities to aid in gilt 
retention. Beginning around 20 weeks of age, video on gilts (n = 2,374) was collected 
for nine consecutive d and processed using the NUtrack System, which tracks distance 
travelled (m), average speed (m/s), angle rotated (degrees), and time standing (s), sitting 
(s), eating (s), and laying (s). NUtrack is a deep learning-based multi-object tracking 
system that has been shown to achieve >92.5% precision and recall when tracking the 
long-term location and identity of individual pigs in group-housed settings. Gilts (n = 
1,049) were culled based on structural unsoundness as determined by an experienced 
herdsman. Data were analyzed using logistic regression (RStudio V1.2.5033) with far-
rowing group, pen, and on-test date included in the model. Angle (P < 0.01), avg speed 
(P < 0.001) and standing (P < 0.001) were significantly associated with gilt retention. 
Heritabilities were estimated in ASReml 4.1 using an animal model with a two-gen-
eration pedigree. Heritabilities are 0.32 ± 0.048, 0.32 ± 0.049, 0.23 ± 0.044, 0.34 ± 0.051, 
0.26 ± 0.046, 0.31 ± 0.049, and 0.21 ± 0.044 for average speed, distance, stand, sit, eat, 
angle, and laying respectively. These data suggest that animal activity and movement, 
as measured by NUtrack, can enhance herdsman efforts in making culling decisions of 
breeding animals.

Keywords: Computer-supported measurement, PLF, sow longevity

Introduction
Sow lameness and conformation is the number two reason for sow culling and death 
(Boyle et al., 1998; Lucia et al., 2000). Previous literature has noted that an increase in 
the average parity of the U.S. sow herd by a tenth of a parity would result in an annu-
al revenue increase of $15 million in the United States alone (Mote et. al., 2009). The 
high economic and animal welfare importance of the issue has drawn attention to 
sow longevity. Manual observations are commonly used in commercial settings; how-
ever, it has been shown that manual observations can be inaccurate due to subjectiv-
ity, fatigue, and animals responding to a foreign object in their environment (Martin 
& Bateson, 1993). This leads workers to only see the obvious and/or significant signs 
when they walk through the barn and that is only if the pig is showing them at that 
moment. Schlooser (2001) reported that, on average, there is one nursery caretaker per 
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4,000 pigs in the nursery, meaning that certain injuries or lameness may be overlooked 
if an individual pig is not actively moving in that moment. It is also important to note 
that an animal may respond to a foreign object in the environment in a fearful man-
ner via ‘fight’, ‘flight’, or ‘freeze’ (Weimer et al., 2014). This leads animals to mask or 
hide things from caretakers, meaning that the observation will be missed. This poses 
a question for producers on how to observe the animals most accurately to obtain their 
true phenotype in order to catch lameness and other symptoms sooner to treat, care 
for, and select individuals most effectively. The two main subjective scoring systems 
used in assessing lameness of livestock are visual analog scores (VAS) and numerical 
rating scores (NRS). A VAS is composed of either a 100 mm or 150 mm line that is de-
fined by two extreme definitions of sensation, either extremely painful sensation or 
no sensation at all, located at the two endpoints (Chaput et al., 2010). Observers place 
a mark on the area of the line that corresponds to their perception of the severity of 
that sensation, which is then quantified by evaluating its distance from both ends of 
the line. NRS systems have been designed for many species to evaluate lameness by 
using broad groups or scores with descriptive scales and definitions that apply varying 
clinical signs of pain and/or lameness (Quinn et al., 2007). Groenevelt et al. (2014) de-
scribed the four- point NRS scale developed by Zinpro that defines sound as 0, mildly 
lame as 1, moderately lame as 2, and severely lame as 3. It has been used in swine 
herds as a tool to quantify and evaluate lameness prevalence on a herd level. Both VAS 
and NRS are difficult to implement on farm as agreement within subjective scoring is 
low unless lameness is severe (Quinn et al., 2007). Precision livestock farming (PLF) pro-
vides an avenue for individuals to observe and monitor livestock through nonobjective 
measures more accurately. For these reasons and in order to best select for lameness 
and longevity, it is in the producer’s best interest to identify the precision livestock 
farming technology that would work best for their operation (Benjamin & Yik, 2019). 
A noninvasive technology that accurately and precisely monitors animals over long 
periods of time is ideal for the swine industry. This will allow producers to know the 
true state of the animal as they cannot hide anything from a system that is monitoring 
them constantly.

With precision livestock farming, remote sensors such as cameras, microphones, ther-
mometers, and accelerometers are utilized to monitor and/or capture various forms of 
information that can include images, sounds, heat, and motion all in real time (Benja-
min & Yik, 2019). This data is then either stored in an external drive or sent directly to 
a processing node and processed by specialized algorithms composed of formulas used 
to solve a desired problem. More specifically, a computer algorithm tells the computer 
exactly how to perform specific operations to solve a desired problem (Benjamin & Yik, 
2019). While researchers have introduced a variety of methods and technologies that 
fall under precision livestock farming, there has yet to be a system truly fit for modern, 
commercial livestock operations.

Our group at the University of Nebraska-Lincoln began addressing this gap by present-
ing a system through the Mittek et al. paper (2018) that utilizes depth images to contin-
uously track individual nursery pigs in a group-housed setting. More specifically, the 
tracking method takes an assumed set of targets that all have a known shape and fits 
a fixed number of ellipsoids to three-dimensional points obtained from depth images 
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using expectation maximization. This does require an initial one-time user annotation 
to identify the corner points of the pen, the feeder, and the waterer. Lancaster (2018) 
evaluated the system of Mittek et al. utilizing 28 newly weaned pigs over the course of 
42 days. Based upon 10,311 data points, overall accuracy was determined to be 96.2%, 
with accuracy classification of the activity of walking and lying at a rate of 99.3% and 
99.1%, respectively, and close proximity to the feeder and in close proximity to the 
waterer at a rate of 86.4% and 73.6%, respectively (Lancaster, 2018). These accuracies 
and specifics on activity data show that a PLF system can be effectively used to further 
study group-housed pigs. This led us to the hypothesis that the NUtrack system (Psota 
et al., 2020), an advanced PLF method that utilizes 2D cameras and deep learning, can 
be used to identify and track various activity traits. This investigation aims to estimate 
NUtrack’s ability to aid in selection decisions by analyzing the various activity traits of 
selection eligible gilts in a group-housed setting.

Materials and Methods

Animals:
All procedures involving animals were approved by the University of Nebraska Insti-
tutional Animal Care and Use Committee protocol number 2089. The group-housed 
replacement gilts (n = 2,374) used in this study were housed at the United States Meat 
Animal Research Center in Clay Center, NE. The gilts are York by Landrace maternal 
females. The USMARC swine resource population is managed as a rotational cross-
breeding herd alternating between Landrace and Yorkshire semen, sourced from four 
different commercial genetics suppliers. All replacement gilts are produced on site and 
animals are managed in facilities similar to commercial production with newly con-
structed breeding, gestation (group-housed) and farrowing barns. Gilts are penned in 
groups of 12-16. The pens in the finishing barns are 2.438x7.01m. Gilts were observed 
and either kept for use as a replacement female or culled to market by an experienced 
herdsman primarily based on conformation.

NUtrack:
FLIR/Lorex NVR Systems (Lorex Corporation, Linthicum, Maryland) utilizing 4K (8MP) 
IP cameras (IP67 rated to better withstand the harsh environments in swine facilities) 
with added infrared capability for nighttime recording were used to collect video at 5 
frames per second. Given the resolution of the video and the frame capture rate, data 
storage requirements are approximately 1 terabyte per six cameras for a week’s worth 
of video. Researchers installed a single camera in each pen where it was placed on the 
ceiling as close to the center of each pen as possible while avoiding feed lines and any 
water piping that may obscure the image of the gilts in the pen. The captured video was 
sent to the Network Video Recorder (NVR) and then pushed to a Dell Alienware desktop 
computer with NVIVIA Graphics Processing Unit (GPU) running NUtrack. Researchers at 
the University of Nebraska-Lincoln (UNL) procured, installed, managed, and analyzed 
video output on an individual animal basis from group-housed pigs in finishing. Utiliz-
ing the proprietary data capture and analysis system developed at UNL, data collected 
on individual pigs included the time/day associated with walking, standing, at feeder, 
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at water, and lying down; distance walked/day; and coordinates of head and tail of each 
pig within pen associated with activity.

NUtrack is a deep learning-based multi-object tracking system that has been shown to 
achieve >92.5% precision and recall when tracking the long-term location and identity 
of individual pigs in group-housed settings (Psota et al., 2020). NUtrack uses Bayesian 
multi-object tracking where the points of reference on each individual gilt are the ear, 
point of shoulders, and rump as seen in Figure 1. To correctly identify the individuals 
in each pen, 16 individual Allflex ear tags per pen were used in this study. The specific 
color and alpha-numeric tags were specifically generated to maximize tag identifica-
tion in research barns. The ear tags are non-barcoded and non-RFID. The system iden-
tifies individual animal identification probabilities with a deep classification network. 
This allows the tags to be obscured from view while still allowing the system to cor-
rectly identify the location and orientation of individual pigs within a group-housed 
environment.  This system has shown an accuracy to automatically maintain individ-
ual pig identity in pen settings at greater than 97% when pigs are standing and can au-
tomatically annotate the pig’s current activity to greater than 95% accuracy (Lancaster, 
2018).This study focused on the activity traits of distance travelled (m), avg speed (m/s), 
angle rotated (degrees), and time standing (s), sitting (s), eating (s), and laying total(s). 
Angle is the circular rotations that an individual makes while it is in motion. These ac-
tivity traits can be indicators of an animal’s ability to move about freely without pain. 
An example is that an animal that is in pain while standing will limit its mobility when 
compared to its contemporaries.  

Figure 1: This is a screen capture of the NUtrack system used to validate the animal identification 
and activity. The activity is denoted as standing (ST), lying lateral (LL) lying sternal (LS), or sitting 
(SI) being displayed in the yellow circle on the posterior of the pig. The identification that NUtrack 
assigns to each pig is noted in the colored blocks shown in the center of each individual pig along 
with the probability that it is the correct identification. The classification of a pig engaged (E) at the 
feeder or not engaged (N) at the feeder is noted in the blue circle at the anterior of the pig.  
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Data Management
Beginning at 20 weeks of age, video recorded data of approximately 75 gilts per week 
for a total of 2,374 gilts was collected for nine consecutive days, with the first partial 
day and ninth partial day removed from analysis as they are not complete 24-hour 
time segments. The twentieth week of age was chosen as it represents the time at 
which most gilts are identified as either replacement females in a breeding operation 
or sold as market females. A complete seven day analysis period captured of an animal 
represents a truer status of the animal when compared to the single snap-shot in time 
which is what the on-site selectors would see during the normal selection process. 
Animals that did not make the full test period were dropped from analysis. The final 
values used for analysis were the average daily values for each individual trait on each 
individual gilt.

Statistical analysis: 
Heritability analysis was done using an animal model with a two-generation pedigree 
in ASReml 4.1. (Gilmour et al., 2014). For association with gilt retentions, data were ana-
lyzed using mixed models in RStudio (V 1.2.5033) including fixed effects of birth farrow-
ing group, pen and on-test date combination, and random effects of the activity traits 
distance travelled (m), avg speed (m/s), angle rotated (degrees), and time standing (s) 
and laying (s). The model used was:

 (1) 

where yijk is equal to gilt retention or removal for gilt l, μ is equal to the intercept, Anl is 
equal to the angle observation for gilt l, Avl is equal to the average speed observation 
for gilt l, Dl is equal to the distance travelled observation for gilt l, Sl is equal to the 
time standing observation for gilt l, Ll is equal to the time laying observation for gilt  
l, fgl is equal to the fixed effect of birth farrowing group with i = 1–54 levels, pj is equal 
to the fixed effect of pen with j = 1-23, dk is equal to the fixed effect of on-test date with 
k = 1-30, and eijkl is the random residual.  

Results and Discussions

Heritability
Listed in Table 1.1 are the variance components and heritability estimates calculated 
in ASReml 4.1 using a two-generation pedigree and the average daily standardized val-
ues for the activity traits. Genetic variance is the result of the varying genotypes of the 
individuals in a population, residual variance is the non-genetic variation between the 
individuals observed, and phenotypic variance is the total variation observed, which 
is the summation of the genetic and residual variances. These components are then 
used to calculate the heritability, which is found by taking the genetic variance divid-
ed by the phenotypic variance. The heritabilities for the activity traits range from 0.23 
to 0.34 and can be seen in Table 1.1.  Angle had an estimate of 0.31 and is of intrigue 
as it is a more novel trait with a strong behavior component going beyond the basic 
necessities of life such as resting and moving to feed and water. Further research on 
the eating measurement needs to be elucidated to more precisely identify when the 
individual is actively eating or simply just standing at the feeder. While the importance 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
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of actively eating at the feeder is obvious, time standing at the feeder is also of impor-
tance as the animal may be exhibiting dominance behavior precluding additional pen 
mates from eating. Taken as a whole, these nine activity traits identify as moderately 
heritable, which means that they can be used to aid in selection decisions. Knauer et. al. 
(2011) measured growth and composition traits on gilts at puberty and again at 114 kg  
(n = 1,225). Locomotion was found to have a heritability estimate of 0.36, which aligns 
with the moderate heritability estimates of the seven activity traits in the current study. 
To our knowledge, this is the first time these specific traits have been analyzed in this 
capacity as well as the first time the heritabilities of these activity traits have been cal-
culated on pigs, especially in a group-housed environment. Additionally, these activity 
trait heritabilities are calculated utilizing a multi-hole feeder that allows competition 
versus a single-hole electronic feed recorder. 

Table 1: Genetic variances, residual variances, phenotypic variances, and heritability estimates of 
the seven activity traits. 

Activity Trait
Genetic

Variance
(σ2

g)

Residual Variance
(σ2

e)

Phenotypic 
Variance

(σ2
p)

Heritability 
Estimate

(h2)

Angle 0.19 ± 0.033 0.42 ± 0.27 0.61 ± 0.020 0.31 ± 0.049 

Average Speed 0.17 ± 0.029 0.37 ± 0.023 0.54 ± 0.018 0.32 ± 0.048 

Distance 0.19 ± 0.034 0.41 ± 0.027 0.60 ± 0.020 0.32 ± 0.049 

Eat 0.12 ± 0.023 0.35 ± 0.020 0.47 ± 0.015 0.26 ± 0.046

Lie Total 0.11 ± 0.024 0.41 ± 0.022 0.52 ± 0.016 0.21 ± 0.044

Sit 0.20 ± 0.034 0.39 ± 0.026 0.59 ± 0.020 0.34 ± 0.051

Stand 0.12 ± 0.025 0.42 ± 0.023 0.54 ± 0.017 0.23 ± 0.044 

Gilt Retention
Investigation into these activity traits and their association with gilt retention was 
warranted given the phenotypic variation observed. After analysis, angle (P<0.01), av-
erage speed (P<0.001) and time standing (P<0.001) were significantly associated with 
gilt retention. These results align with a study reported by Stock et al. (2018) where 
the feet and legs of replacement females (n=319 females) were evaluated at the in-
dustry standard time when replacement females are selected (approximately 150 d) 
and again post first parity (n=277 females). The Stock et al. (2018) investigation meas-
ured joint angles obtained via image analysis of still images of the carpal joint (knee), 
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metacarpophalangeal joint (front pastern), metatarsophalangeal joint (rear pastern), 
tarsal joint (hock), and rear stance. Significant differences were observed for all joints 
between selection and first parity (P < 0.05) while heritability estimates were low to 
moderate (0.04-0.35) for all traits measured across time points. This observation showed 
that conformation is directly related to sow longevity. The traits analyzed by Stock et al. 
(2018) are singular and rely on images taken at a single time point but make sense as 
animals that are more correct in their conformation tend to not be lame or hindered in 
their locomotion. However, the traits we analyzed are not singular given the wide range 
of reasons beyond simply conformation that can affect an animal’s desire and ability 
to stand and move. 

Further research is warranted to truly understand what angle is telling us as it can be 
considered a composite trait combining both the animal’s ability and comfort when 
moving but also a behavioral trait that has the animal moving in less of a straight line 
than its pen mates.  The distance an animal travels per day was found to not be signifi-
cantly associated with gilt retention. While an animal is assumed to be sound that trav-
els a greater distance each day, the underlying behavior that motivates an animal to 
move about also is a contributing factor in its phenotype. Further analysis of distance 
traveled per day as well as time sitting and standing, should consider models beyond 
a simply linear model as the trait could have more of an intermediate optimum. 

Conclusions
These data suggest that animal activity and movement, as measured by NUtrack, can 
enhance herdsman efforts in making retention decisions of breeding animals. The 
moderate heritability estimates of the activity traits provides an opportunity for them 
to be utilized in multiple tiers within the swine industry. The swine industry is a three-
tiered structure denoted as a breeding pyramid (Bichard, 1971) with the most elite nu-
cleus animals at the top of the pyramid and working our way down the pyramid with 
the commercial animals. While genetic resources flow from top to bottom, economic 
signals flow from the bottom to the top (Nikkilä et al., 2013). The nucleus level drives ge-
netic change where the activity traits analyzed herein may be utilized as indicator traits 
for longevity in a selection index, however, genetic progress is not going to be seen in 
full at this level. The multiplier and commercial levels are set up better to benefit from 
increased longevity as sows are typically retained longer at these two levels and can be 
enhanced with the ability of NUtrack to be utilized in direct phenotypic selection. The 
data reported herein only considers data through gilt selection for breeding. A continu-
ation of this study will be following these females past parity three, the point at which 
females recover their investment costs.  Further advancements in the NUtrack system 
aim to improve selection of replacement females and decrease economic and welfare 
concerns associated with current industry standards.  
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Abstract 
Structural assessment is essential to select robust sows for welfare and production 
efficiency. Structural problems, such as abnormal knee and pastern angles, are the 2nd 
most common reason for early culling. Incorrect knee and pastern angles are detri-
mental to locomotion and longevity, whereas intermediate values are considered ideal. 
Currently, sow structural scoring relies on subjective classification and is time-con-
suming, inconsistent, and prone to error. This study aims to develop an image process-
ing model to extract representative sow body structural traits from RGB images and 
identify body structural traits contributing to sow longevity using principal compo-
nent analysis and supervised machine learning approaches. Ten body structural traits 
(length, height, depth, angles) from 480 sows at parity 1 mid-gestation were measured 
from side profile images. For these sows, front knee angles (n = 478) ranged from 138.0 
to 163.7 degrees (148.4 ± 6.7°) with a heritability (h2) of 0.35 ± 0.099, indicating potential 
to respond to selection. A non-linear principal component analysis demonstrated that 
sow body length increased with shoulder and flank dimensions, whereas hock angles 
negatively associated with flank measurements. A feature importance score analysis 
performed with a light-weight machine learning model demonstrated that sow body 
depth at the flank was the greatest contributing variable to sow longevity, and all leg 
angle-based traits contributed more to sow longevity than other length-based body 
structural traits. This approach demonstrated that PLF tools are of merit to provide 
efficient datasets and can be utilized in analyzing genetic correlations between body 
structural traits and sow longevity. 

Keywords: structural traits, pig, swine, longevity, conformation

Introduction
The longevity of a sow (productive lifetime) is of high economic and well-being impor-
tance to the swine industry. Over the last two decades, sow mortality and early culling 
rates have increased, resulting in a shorter average lifespan in commercial farms (Su-
pakorn et al., 2019). To cover the gilt development and maintenance costs, a sow must 
produce at least three parities to become profitable (Stalder et al., 2003; Mote et al., 
2008). In addition, reproductive throughput (e.g., litter size at birth) is not maximized 
until parities 3 to 6 (English et al., 1978, as cited by Friendship et al., 1986). Therefore, 
culling or mortalities prior to this instance result in lower farm efficiency and produc-
tivity. Consequently, there has been a recent push for the development of methodology 
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to select for increased sow longevity directly and/or utilizing genetically correlated 
traits. 

Suboptimal structural conditions (e.g., abnormal knee and/or pastern angles) are the 
2nd most common reason for culling prior to parity 4, the time point where develop-
ment costs are covered. Lameness associated with these structural issues accounted 
for 22% of all early removals (culling for any other reason than age) in three commercial 
farms in the United States (Mote et al., 2008) and 16% in three commercial farms in 
Mexico (Segura-Correa et al., 2011). Conformation assessment is essential when se-
lecting robust gilts as breeding herd replacements. As an example, larger knee (KA) 
and front pastern (FP) angles are associated with inferior locomotion and consequently 
longevity, whereas intermediate values are considered ideal. At present, sow structural 
scoring relies on subjective assessment of breeding herd replacement gilts carried out 
by trained workers. This scoring method has been reported to be inconsistent, labor 
intensive, and prone to error. 

This study aims to develop light-weight machine learning models to 1) develop an 
image processing model to quantify sow body structural traits from RGB images and 2) 
identify important body structural traits contributing to sow longevity using machine 
learning approaches.

Material and methods
This research was conducted at the Eastern Nebraska Research and Extension Center 
(ENREC) swine farm located near Mead, NE, USA. All following procedures were ap-
proved by the UNL Institution of Animal Care and Use Committee protocol 1859. 

Data Collection
A portable action camera (SJ4000, SJCAM, Shenzhen, China) was used to collect side 
profile images for this study. The camera has a wide angle of view (170°) and an effec-
tive resolution of 3.15 megapixels. An open-top customized enclosure (measured 50.8 
cm wide and 254 cm long) was built to temporarily halt the animals for imaging. A feed-
er was placed at the front of the enclosure to ensure sows would stand in a consistent 
position directly aligned with the cameras. The left side profile images of 480 first pari-
ty sows were taken at mid-gestation (day 57) and were processed to quantify structural 
trait measurements. Ten structural traits that could be objectively measured from the 
side profile of a sow were selected for this analysis, including body length (BL), body 
depth at the shoulder (BDS), body depth at the flank (BDF), height at the shoulder (HS), 
height at the flank (HF), front knee angle (KA), front pastern angle (FP), hock angle (HA), 
rear pastern angle (BP), and rump slope (RS). An example of a side profile image and the 
depictions of these ten structural trait measurements can be found below in Figure 1. 
The life on test (number of days between entry into gilt development and removal) for 
each sow was recorded and used as the predicting variable. 
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Figure 1: An example of a sow’s side profile image and the ten structural trait measurements 
quantified for analysis. Each measurement and its corresponding description are annotated in the 
figure. 

Image processing for sow profile extraction
Twenty representative sow images from various first parity mid-gestation cohorts were 
randomly selected to classify color groups and train the designed software to extract 
sow profiles. The image processing utilizes Mahalanobis distance method (Md) to ex-
tract sow from the image. Because of the unique surface color of the sows (light pink) 
and its obvious contrast to the surrounding backgrounds, the Mahalanobis distance 
(Devroye et al. 1996), a classification method for analyzing colors, can be used to extract 
sow profiles from RGB images. The Mahalanobis distance method (Eqn. 1) measures 
the similarity between an unknown sample group and a known sample group and has 
been used to determine canopy cover (Liang et al., 2018; Liang et al., 2021) and separate 
grape and vine (Diago et al., 2012).

 (1)

where X is a three-dimensional vector (R, G, B), which represents pixels from the image 
to be processed. Y is a three-dimensional vector (R–, G–, B–) that represents the average of 
reference pixels (reference group) for each class to be identified. 

The Mahalanobis color distance (S) standardizes the influence of the distribution of 
each feature considering the correlation between each pair of terms. In the case of RGB 
color images, S is computed as (Eqn. 2):

 (2)

and as an example, the elements of S are calculated as:

 (3)
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where σ is covariance of R, G, B reference group colors, Ri, Gi, Bi are the values of the 
ith match (i=1, 2, 3, …, n), and R–, G–, B– are the mean color values for R, G, B in the given 
image, respectively.

In the proposed methodology of this work, six reference groups of pixels were selected 
to generate the classification, in which every group represented relevant characteris-
tics of sow body classes and background classes. The six groups identified were: sows 
(white, pink) and background (shadow, feeder, floor, and panels). If any of these classes 
were not present, or a new class appeared on the image, the number and/or the group 
labels were automatically modified in the program.

Each reference group was randomly selected from a set of 20 sow images and a set of 
20-30 colors in each reference group was chosen. The 20 sow images were used to train 
software to determine the color group that each pixel belongs to. After training, Md was 
computed over a set of 480 images in our software and each pixel was assigned to the 
class with the lowest distance to calibrate and test the accuracy in the determination 
of sow image. To implement the classification and provide a graphical interface to the 
user, the software was developed using Visual Basic 2017. Details of the identified pig 
were shown as pink color and background were shown as black color in the output 
figures. 

From the processed images, five length-based structural trait measurements (BL, BDS, 
BDF, HS, and HF) were estimated from RGB images using pixel conversion to length, 
while the other five angle-based traits (KA, HA, FP, BP, and RS) were measured using 
ImageJ. A generic conversion equation (Eqn. 4) was used to convert pixels to meters. 

 (4)

where lm = dimension (in metric unit), FOV = camera field-of-view (in degrees), 
lpx = measured dimension (in pixels) and Res = image resolution (in pixels).

Data and statistical analysis
Principal component analysis (PCA) and nonlinear PCA were conducted to study the re-
lationship between numerical data (BL, BDS, BDF, HS, HF, RS, HA, KA, FP, BP, life on test) 
and categorical data (last parity achieved). The PCA approach was used to simplify the 
structure of a set of variables by replacing those with a smaller number of linear com-
binations from the original variables (Wold et al., 1987). The linear combinations are 
expected to explain above 70 or 80% variability in the dataset modeled by the variables. 
Linear combinations with eigenvalues greater than 1 will be selected (Dunteman et al., 
1989), and correlations greater than |0.6| indicate significant correlations between the 
variable and the extracted linear combinations (Dunteman et al., 1989). This approach 
allows the linear combinations to effectively explain the variability associated with the 
numerical data. In this study, PCA and non-linear PCA were used to examine the rela-
tionship of key numerical variables with numerical and categorical data. The last parity 
achieved was grouped as categorical variables (0, 1, 2, 3, 4); thus, nonlinear PCA was 
used to incorporate those nominal and ordinal variables and to discover nonlinear re-
lationships between numerical and categorical variables. PROC PRINQUAL procedure in 
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SAS (v9.4) was used to fit a principal component model with nonlinear transformation 
of the variables and plot the results, where all sow body structural measurements were 
taken as input variables, and sow longevity was the categorical variable for the nonlin-
ear PCA. All numeric variables were specified with a MONOTONE transformation using 
SAS, so their original values were optimally rescored to maximize fit of a two-compo-
nent model. 

To further explore the contributing features on sow longevity, robust regression models 
leveraged the open-access Python-based machine learning library, Scikit-learn (Pedre-
gosa et al., 2011), to conduct a feature importance score analysis for the proposed mul-
tiple-feature regression to predict sow longevity based on body structural trait input 
variables. The feature importance scoring is an impurity-based method and critical 
for reducing unnecessary or redundant features (Nembrini et al., 2018). A light-weight 
machine learning model, XGBoost Regressor (Chen and Guestrin, 2016), was selected 
as the best model to perform the feature importance score analysis. All ten structur-
al traits were ranked and plotted based on the calculated feature importance scores. 
A feature with a greater score plays a more significant role in predicting sow longevity, 
and lower scores indicate little importance of that input feature on the prediction.

Results and Discussion
Depending on actual computer hardware capacity (e.g., CPU and GPU), it takes 1-2 sec-
onds to process one image using designed software. An example of processed sow im-
age by Md method is shown in Figure 2. Most shadow pixels, floor pixels, and feeder 
pixels were properly filtered. The proposed classifiers for 6 reference groups performed 
well without requiring any additional adjustments of contrast, brightness, or color.

Figure 2: An example of an original (left) and a processed (right) sow image using designed software.

Table 1 lists the summary statistics of the ten measured body structural traits for 480 
sows. At parity 1 mid-gestation, KA (n = 478) ranged from 138.0 to 163.7 degrees 
(148.4 ± 6.7°) with a heritability (h2) of 0.35 ± 0.099, indicating potential to respond to 
selection (Trenhaile-Grannemann, 2021). Trenhaile-Grannemann (2021) summarized 
heritability analysis of additional pertinent structural traits.
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Table 1: Summary statistics for ten body structural traits from 480 sows first parity, mid-gestation 
females.

Summary 
Statistics

Sow Body Structural Trait Measurements

BL 
(cm)

BDS
(cm)

BDF
(cm)

HS
(cm)

HF
(cm)

RS
(deg)

KA
(deg)

HA
(deg)

FP
(deg)

BP
(deg)

Minimum 84.6 33.7 27.8 56.7 64.4 104.3 138.0 124.5 40.0 35.8

Maximum 116.8 48.8 43.1 80.7 83.9 131.3 163.7 163.7 90.0 84.3

Average 98.6 41.0 35.6 68.3 74.1 116.9 148.4 148.4 61.5 60.7

Standard deviation 5.98 2.83 2.69 3.58 3.75 6.68 6.68 6.78 9.16 7.30

Principal component 1 (PCA1) explains 30.4% variance, principal component 2 (PCA2) 
explains 29% variance and principal component 3 (PCA3) explains 17% variance. In total, 
the three components explain 76% variance. Total variance explained how much of the 
data variability was modelled by the extracted factors. PCA1 demonstrated that sow body 
length increased with depth (BDS, BDF) and height (HS and HF) measurements. PCA2 was 
associated with high values of RS, whereas HA negatively associated with BDF and HF. 
PCA3 distinguished that for 17% of the variables, sow longevity increased with KA and 
decreased with FP and BP angles. However, since PCA3 can only explain a small portion 
of the dataset, the results generated from PCA3 should not be extensively generalized. 

Fig. 3 shows the transformed numerical variables projected into the two-dimensional 
plane. The green line is perpendicular to sow longevity. The last parity achieved (right 
panel) with 0 values tend to have less longevity achieved.

Figure 3: Biplot image displaying the linear and nonlinear variable transformations (PRINQUAL 
procedure in SAS) for last parity achieved. 

The results of feature importance scores are depicted in Fig.4. The sorted features for the 
most important input variables were BDF (0.1602), FP (0.1283), HA (0.1066), BP (0.1012), 
and KA (0.0858). Although not statistically significant, Fig. 4 demonstrates an interesting 
fact that the BDF was the most featured contributing variable, and all leg angle-based 
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body structural traits contributed more to sow’s longevity than other length-based body 
structural traits. This suggests that leg angle-based body structural traits can be used as 
weighted input variables for future machine learning model training. 

Figure 4: Feature importance score performed by the best-selected machine learning model 
XGBRegressor for multiple input variables to predict sow longevity (expressed as days on test). 

Conclusions
Image processing utilized the Mahalanobis distance method to extract the sow from 
the RGB images in the current study. Ten sow structural traits were estimated from 
these images. Principal component analysis demonstrated that sow body length in-
creased alongside shoulder and flank dimensions, whereas hock angles were negative-
ly associated with flank measurements. A feature importance score analysis leveraged 
a light-weight machine learning model and demonstrated that sow body depth at the 
flank was the most featured contributing variable, and all leg angle-based structural 
traits contributed more to sow’s longevity than other length-based structural traits. 
This suggests that leg angle-based structural traits can be used as weighted input vari-
ables for future machine learning model training. Refined image analysis and PLF tools 
should be developed for optimizing routine genetic evaluations and selection indices 
as well as selection of commercial replacement females.
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Abstract
Computer vision based methods for tracking animals such as pigs have recently been 
studied. However, most studies focus on algorithm development and not on its applica-
tion for behaviour analysis. The current study explores how a developed tracking algo-
rithm could be applied in the monitoring of short-lasting event behaviours in weaners, 
including locomotor play and aggression, wherein the need to retain identity of the per-
forming pig for the full duration of the behaviour is a key contsraint. The involved videos 
were collected from weaners housed in two-climate pens, which include a cover to pro-
vide a resting place with higher temperature. This type of housing presents a challenge 
when developing tracking algorithms due to pigs disappearing and reappearing from the 
cover, which typically happens when they perform locomotor play and aggression. To deal 
with such a senario it is necessary to engineer features beyond Intersection over Union 
(IoU) to achieve sufficient re-ID information for tracking the pigs. This study focused on 
extracting features for short-time animal tracking of pig agression and playing by design-
ing re-ID features and utilizing these in combination with IoU to improve the tracking. 
Twenty video clips including locomotor play and aggression behaviours were selected to 
test the tracking algorithm. The tracking percentage per individual was 75.15% and 54.62% 
and the ID switching frequency per individual was 0.23 and 0.41 for locomotor play and 
aggression respectively. The results indicate that the algorithm is more applicable to one 
involving short-lasting behaviour rather than multiple pigs with the case of reappearance.

Keywords: tracking, animal behaviour, animal welfare, locomotor play, aggression, 
two-climate pens

Introduction
Due to the increasing demand for animal products, commercial pig production is 
continuously intensifying towards larger industrialized farming units, which results 
in critical challenges for continuous monitoring of animal health within big groups 
(Berckmans, 2017). On the other side, the development of computer-vision-based algo-
rithms brings lots of new opportunities to animal research (Redmon et al., 2016; Wo-
jke et al., 2017).  As such, the development of state-of-the-art approaches for tracking 
group-housed farm animals is becoming a more widely studied topic. However, most 
of the studies thus far focus on the development of detection and tracking algorithms 
(Cowton et al., 2019; Psota et al., 2019), while little work has been devoted to learning 
the requirements for these tracking algorithm to be accurately in welfare-related be-
haviour analysis (Wutke et al., 2021). Play behaviour has been suggested as a potential 
indicator of an animal’s welfare (Held & Špinka, 2011) and it is most often observed in 
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young animals that have their primary needs satisfied (Newberry et al., 1988). For pigs 
in the age of 2 to 6 weeks, locomotor play is considered the most dominant play type 
(Newberry et al., 1988). Another important welfare indicator for young pigs is aggres-
sion behaviour, which usually occurs when piglets are mixed/regrouped at weaning 
and this is a harmful and costly behaviour, impacting both welfare and feed efficien-
cy (Peden et al., 2018). Thus, a contactless video-based system that can automatically 
track pigs have the potential to transform pig monitoring into addressing issues in 
welfare for farming system.   

Young weaner pigs are often housed in two-climate pens, in which a roof is provided 
for covering part of the pen to obtain a thermal comfort zone for resting (Pedersen, 
2018). As pigs will go under the cover and thereby disappear from the field of view 
of the camera, the challenge of tracking a specific behaviour in such a system is to 
re-identify the pig reappearing from the cover. 

The aim of this study is to investigate the capability of computer vision based a track-
ing algorithm  to accurately and continuously monitor the pigs during playing and ag-
gressive behaviours in two-climate pens, with a specific aim of minimizing occurrence 
of track drop-out and maximizing pig re-identification when it re-appears in a scene 
(e.g. after emerging from the covered area). To our knowledge, this is the first attempt 
to track pigs performing specific behaviours (locomotor play and aggression) in the 
scenario of partly covered pens. 

Material and methods

Data collection and selection
The included data were obtained from an experimental study conducted at the pig 
research facilities at the Department of Animal Science, Aarhus University, Denmark. 
The study was conducted in accordance with the Ministry of Food, Agriculture and 
Fisheries, The Danish Veterinary and Food Administration under act 474 of 15 May 2014 
and executive order 2028 of 14 December 2020, and under consideration of the Arrive 
Guidelines (Du Sert et al., 2020).

The videos involved in the study were collected on weaners who were weaned on aver-
age at 26 days of age (range: 22-30 days old).  The pigs were from the Danbred sow hy-
brid and a total number of 22 were included in the experiment. At the date of weaning, 
the pigs were moved into the conventional weaner pen (5.4 × 2.45 m), where approxi-
mate 1/3 of the floor was slatted, 1/3 drained (wider slats) and 1/3 solid. The solid floor 
was covered with a manually adjustable fiber panel (Jyden A/S, Denmark) which was 
positioned 87 cm above floor level, providing a warmer and darker resting area under 
the cover (two-climate pen). There were two feeders (Rotecna, type: TR4) placed next to 
each other (56 × 18 × 2 cm openings), and one pig water trough (Aqua-Level system with 
hinged trough, Jyden Denmark, 31 × 17 × cm) in the pen. Chopped wheat straw (approx. 
260 g) and sawdust (approx. 800 g) were provided on the drained and solid floor daily, 
respectively. Pigs were fed ad libitum post-weaning with a pelleted standardized weaner 
diet (Prime Midi Piller, DLG, Fredericia, Danmark, 14.8 MJ ME/KG, 19.3 % crude protein). 
Artificial light was provided from 0700-2300 h.
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A 2D camera (HIKVISION, model DS-2CD2145FWD-I, 2.8 mm lens) was placed 2.8m 
above the pen to provide a top-down view for the entire pen area. The collected video 
recordings had a frame dimension of 1270 × 720 pixels with 15 fps. Twenty test videos 
(Mean ± SD: 82.50s ± 53.96s) containing locomotor play and aggression were selected for 
the study. Besides, another 1605 frames were labeled for training the tracking model, 
with each pig being labelled by a bounding box and the ID of each pig being annotated.

Tracking model
The tracking model followed the common architecture of multi object tracking, which has 
a detection branch followed by a tracking module. The detection branch was built based on 
FairMOT (Zhang et al., 2021) due to its state-of-the-art performance for pedestrian tracking. 
The model was composed of a backbone network and four parallel heads. The backbone 
network extracted the features for each object and then four parallel heads were added on 
top of the backbone network, estimating the heatmap, object center offsets, the size of the 
bounding box, and extracting re-identification (re-ID) features. Each head was comprised 
of a 3×3 convolution followed by a 1×1 convolutional layer, generating the final features for 
tracking. The overview of the training architecture is illustrated in Figure 1. 

Figure 1: Graphical overview of the training architecture

Figure 2: Workflow of tracking

The tracking module used Kalman filter and Hungarian for matching the ID for pigs. The 
tracks were first initialized by the detections in the first frame, then three associations 
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were adopted to match the existing tracks with the detections in subsequent frames. Spe-
cifically, the first association was based on re-ID features and the second one was made by 
IoU. The third association was presented to address the special case where pigs disappear 
from the field of view. In that case, the pig is very likely to be assigned a new ID when it 
reappears from the cover. Thus, to deal with that, the third association based on re-ID 
features was added to enhance matching the correct ID for the pigs. Additionally, the 
total number of pigs were set as a constraint parameter to avoid introducing too many ID 
numbers. Note that the third association is only made when the ID of the newly generated 
track is over the number of pigs. The workflow of tracking is illustrated in Figure 2.

Model evaluation
The study focuses on tracking of specific behaviour (locomotor play and aggression) 
in pigs. The performance of the tracking model was evaluated on 20 videos (82.50s ± 
53.96s) by the following metrics: Detection Percentage per Performing Individual (DPPI), 
Tracking Percentage per Performing Individual (TPPI), ID Switching per Performing Indi-
vidual (IDSPI), which are defined in below.

 (1)

 (2)

 (3)

Where Nd is the number of detected performing pigs per frame, Nt is the number of 
tracked performing pigs with the right ID per frame, N is the number of performing 
pigs in ground truth per frame, IDS is the number of switched ID per frame, and f is the 
number of frames in one video.  

Results and Discussion

Tracking results on test videos 
Twenty videos (Mean ± SD: 82.50s ± 53.96s) were included in the test, so the results 
showed in Table 1 were averaged over all videos. About three quarters of pigs in loco-
motor play can be tracked, and for aggression the tracking percentage for the individ-
ual pig is about one half. Locomotor play and aggression are both behaviours involving 
fast motion. For pigs housed in two-climate pens, locomotor play is more involved with 
pig reappearance as pigs need more space to perform this forward moving behaviour. 
The test results (Table 1) show that the overall tracking performance for locomotor play 
is better than aggression, including DPPI, TPPI and IDSPI. This indicates that the track-
ing algorithm performed better in re-identifying single pigs reappearing from the cov-
er, but on the other hand, it performed worse when two or more pigs were involved in 
an aggressive interaction. Particularly, the IDSPI showed the ID switching frequency for 
aggression is almost twice as that of locomotor play, meaning that the tracking model 
has a good performance in matching the right ID based on re-ID features, as the asso-
ciation for reappearing pigs mainly relies on re-ID features rather than IoU. While for 
aggression, the association mostly relies on IoU. When pigs are involved in aggressive 
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interactions, they are close to each other and move fast. Thus, IoU may match the 
bounding box with another pig’s if the position of the bounding box changes a lot. 

Table 1: Tracking performance for specific behaviour (↑ denotes the higher the better, while ↓ denotes 
the lower the better)

Specific behaviour Locomotor play Aggression

Number of specific behaviours 1.60 1.90

Number performing pigs 2.45 4.25

Number of reappearances 2.30 0.55

DPPI (%) ↑ 98.71 96.29

TPPI (%) ↑ 75.15 54.62

IDSPI (%) ↓ 0.23 0.41

Compared with DPPI, evaluators (TPPI and IDSPI) related to tracking are much worse. If 
a pig is not detected, it cannot be tracked neither. However, it is obvious that the unsat-
isfactory performance in TPPI and IDSPI is more related to the mistakes in association, 
i.e., ID switching problem. As mentioned earlier, both locomotor play and aggression 
are fast movements, which can sometimes make it difficult to recognize the pattern on 
the back of the pig. Figure 2 (a) shows when a pig goes under the cover and reappears 
along with another pig within a short period, re-ID features extracted from the blurred 
patterns cannot match the correct ID. Another ID switching example (Figure 2 (b)) is 
from an aggressive interaction: one pig was pushed in the corner and not detected, 
while the pattern of another one was not very clear. In this case, the IoU-based asso-
ciation matched it with the ID of the undetected pig. In most cases, the ID switching 
problem is caused by blurred patterns, and essentially by fast movements. Due to the 
limitation of neural network models in image/video analysis, adopting other technol-
ogies, e.g., sensors and transmitters, could help increase the performance in tracking.

Figure 3: Examples of ID switching: (a) ID Switching because of motion blur; (b) ID Switching because 
of missed detection. (t is in frames)

Conclusions
This paper investigated and tested a tracking algorithm on weaner pigs performing 
locomotor play and aggression while housed in two-climate pens. The algorithm was 
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developed specifically with consideration for the reappearance case. For locomotor 
play where pigs are likely to reappear from the cover, the tracking percentage reached 
about three quarters.For aggression where two or more pigs turn and move fast but are 
not frequently involved in the reappearance case, the tracking percentage is about one 
half. The results showed that the algorithm could be applicable to track and analyze 
the behaviour of single pig reappearing from the field of view. Regarding fast movement 
behaviours involving multiple pigs, e.g., recognizing  pigs in aggression by tracking, 
integrating with other technologies (e.g., sensors and transmitters) could be helpful. 
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Abstract
Unobstructed access to the feeder is important for animal welfare and to avoid behav-
ioural problems such as tail biting in pigs. The current study aimed to monitor access 
to the feeder by exploiting commercially available data and using methods requiring 
low computational power to monitor floor space available around the feeder. This pa-
per presents the concepts and potentials of the methodology on a small sample of the 
data. Data included depth images, pig bounding boxes and pig weights. The feeder ac-
cess area was defined as a half circle around the feeder with a radius corresponding to 
the average pig length for the average pig weight on the previous day. Within the feeder 
access area, the number of pixels representing standing pigs, lying pigs and flooring 
were counted based on depth value thresholds. This was calculated for one pen of pigs, 
with depth images captured every 10 s across two production rounds (99 days of data). 
With increasing weight, the available floor space in the feeder area decreased, while 
the proportion of lying pixels increased. The diurnal pattern also changed: at first the 
floor space available varied across the day depending on the activity in the area, while 
later, the floor space available were at a lower and more constant level with proportion 
of lying and standing pig pixels interchanging. The growth trends and changes in diur-
nal pattern indicate that pigs were filling up the pen and had no choice but to use the 
feeder area for resting.

Keywords: animal behaviour, animal welfare, camera, technology, segmentation,

Introduction
In modern commercial pig production, growing pigs are housed on limited space and 
often with limited access to the feeder, not allowing the pigs to eat in synchrony. As 
pigs are motivated to synchronise their behaviour (Špinka, 2009), limited space at the 
feeder can create frustration and competition among the pigs. The space allowance per 
pig in a pen will become lower as the pigs grow, which may also limit the pigs’ access 
to eat as pigs performing other behaviours may take up more and more of the space 
necessary to access the feeder. Frustration and competition for resources may lead 
to abnormal and damaging behaviour such as tail biting and lesions due to aggres-
sion, lowering the welfare of the pigs (Botermans et al., 2000; 2016; Kobek-Kjeldager 
et al., 2022; Valros et al., 2016). To be able to limit the effect of eating restrictions on 
the welfare and health of the pigs and their production parameters, the pig’s access to 
the feeder should be monitored across the production period to define thresholds for 
when to act on such restrictions e.g. by increasing the space allowance or feeder space 
per pig in a pen. The current study aimed to monitor access to the feeder by exploiting 
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commercially available data and using methods requiring low computational power 
making it possible to implement the algorithms in a commercial farm environment. 
This paper presents the concepts of the methodology on a small sample of the data 
and presents preliminary results to indicate the potential of the methodology.

Material and methods

Data and concept
Data of the current study were collected by dol-sensors A/S as part of the validation of 
their pig weighing technology (iDOL 65, www.dol-sensors.com/products/idol-65-cam-
era). The pig weighing technology uses 3D camera technology and produces depth im-
ages and pig bounding boxes to estimate the weight of the pig; all three data sources 
were made available to the authors for the current methodological study. 

The subsample of data used in this paper includes one pen of growing pigs moni-
tored during two production rounds (see Table 1). This pen had an open feed trough 
with room for two pigs eating at a time and access to the trough from all sides except 
against the pen wall. The pig weighing technology were placed above the feed trough 
providing a top-view depth image above a limited area around the feed trough (see Fig-
ure 1). Approximately every 10 sec throughout the day, a depth image was taken. The 
pigs in the image were first identified by a bounding box and those identified as stand-
ing were weighed. Thus, the methodology developed in the current study resembles 
behavioural observations made by 10-sec instantaneous sampling. 

Figure 1: Depth images illustrating the two scenarios causing obstruction of feeder access: (A) no 
available floor space around the feeder due to the pigs lying in the feeder area, (B) crowding at the 
feeder.

Access to the feeder can be obstructed in two ways: (1) no available floor space around 
the feeder due to the pigs lying in the feeder area, (2) crowding at the feeder. The two 
scenarios are illustrated in Figure 1. The current methodological study will focus on 
the first scenario and will take advantage of the obvious depth difference between the 
flooring, lying pigs and standing pigs to calculate the proportion of available floor space 
in the feeder area. The second scenario will be investigated in the future in a second 
methodological study including the same data sources. 
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Table 1: Number of days in each production round, number of days with data and the weight range 
within each production round for the included pen.

Round Days Days with data Weight range (kg)

1 65 49 41-106

2 60 50 33-94

Feeder access area

To define the feeder access area in the depth image, three masks were created: (1) 
inventory mask, (2) feed trough mask, (3) feeder access mask. These masks will differ 
from pen to pen and from herd to herd, depending on the setup of the sensor and the 
type of feeder. In the current case, the sensor was angled so pen walls were in the field 
of view; these parts were removed with the inventory mask. The feed trough mask 
removed the feed trough from the depth image as the feed trough does not count as 
floor space. The feeder access mask removed the part of the field of view not needed to 
gain access to the feed trough. In the current case, the pigs could get access to the feed 
trough from all sides except for the side of the pen wall. Thus, the feeder access area 
was defined as a half circle with the feed trough in the centre. The radius of this half 
circle was defined based on the average length of the pig bounding box calculated from 
the average weight of the pigs in the pen on the day before by the following 2nd degree 
relationship (equation 1):

 (1)

Thus, the radius and area of the feeder access area will increase as the pigs grow larger. 
Illustrations of the three masks applied to the depth image can be seen in Figure 2.

Figure 2: Illustration of the masks applied to the depth images: (A) inventory mask, (B) feed trough 
mask on top, (C) inverse feeder access mask on top. The masks are represented by black. 

Available floor space around the feeder
To evaluate the floor space available around the feeder in each depth image, the masked 
image was segmented based on depth values and the following rules:

Standing pig: 0 < depth ≤ 1900

Lying pig:      1900 < depth ≤ 2200

Flooring:    2200 < depth ≤

 Radius =  −0.0137 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡2 + 4.374 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡 + 271.955 
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After segmentation into the three classes, the number of pixels representing standing 
pigs, lying pigs and flooring were counted and the proportion of pixels representing 
each class was calculated. An example can be seen in Figure 3. 

The above described method of depth image masking and segmentation and calcu-
lation of proportion of pixels representing standing pigs, lying pigs and flooring were 
applied to all depth images of all days of the two production rounds for the included 
pen. Finally, the average proportion of each class per hour and per day was calculated.

Results and Discussion
The described method took on average 4.54 min (range: 3.32-6.51 min) to run per day 
of data on an 11th Gen Intel i5, 8-core 2.40GHz processor (CPU) with a 64-bit operating 
system and 16 GB RAM, indicating that the developed method requires low computa-
tional power to run.

Figure 3: Illustration of (A) the segmentation of the depth image into standing pigs, lying pigs and 
flooring, (B) the calculation of the proportion (percentage) of pixels within the feeder access area 
representing standing pigs, lying pigs and flooring. 

Figure 4 presents the daily average of the proportion of pixels in the feeder access area 
representing flooring, lying pigs and standing pigs within the feeder access area across 
the days of the two production rounds. The two rounds show a similar growth trend in 
the three parameters with the proportion of flooring pixels decreasing, the proportion 
of lying pig pixels increasing and the proportion of standing pig pixels being relatively 
stable across the round. At some point in each round, the proportion of flooring pixels 
and lying pig pixels cross each other indicating that from this point in time, on average 
the feeder access area has less available floor space than lying pigs in the area. Around 
day 55 in both rounds, a change in pattern is seen with an increase in the proportion 
of flooring pixels and a decrease in proportion of lying pig pixels. While the authors 
do not have evidence on the reason for this change in pattern, a possible explanation 
could be removal of the larger pigs of the pen, which is supported by the fact that 
a slight decrease in average pen weight is seen on the day of the change. If this is the 
reason, this change in pattern could indicate that pigs prefer to lie in another location 
of the pen than the feeder access area if given a choice, thereby indicating overcrowd-
ing in the pen when pigs lie in the feeder access area.
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Figure 4: Daily average proportion of pixels in the feeder access area representing flooring, lying pigs 
and standing pigs across the days of round 1 (A; pigs from 40-106 kg) and round 2 (B; pigs from 33-94 
kg). Light grey areas represent days with missing data.

Figure 5 presents the diurnal pattern in average proportion of pixels in the feeder ac-
cess area representing flooring, lying pigs and standing pigs for each production round 
on one of the first days of the round, a day close to the change in pattern and a day 
shortly after the change in pattern. It is seen that in the beginning of the round where 
the pigs are relatively small, the amount of available floor space seems most to depend 
on the pigs being active in the feeder access area (e.g. eating). Towards the end of the 
round where the pigs are relatively large, the amount of available floor space in the 
feeder access area seems stable and at a lower level across the day, while the amount of 
pigs standing and lying in the feeder access area seems to be interchanging. This could 
indicate that the pigs may be disturbed in their resting by pigs eating or opposite that 
pigs may be limited in their access to the feeder by pigs lying in the area, again indicat-
ing overcrowding in the pen. Therefore, identifying when this correlation between lying 
and standing occurs could be used when indicating an increased risk of compromised 
welfare to the farmer. 
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Figure 5: Diurnal pattern in average proportion of pixels in the feeder access area representing 
flooring, lying pigs and standing pigs in round 1 (A, C, E) and round 2 (B, D, F) at day 2 (A-B), day 55 
(C-D) and day 60 (E-F). 

The above explanations of trends seen in the data are only speculations and should be 
investigated further in future studies. However, the current methodology study high-
lights the potential of how to use already commercially available data to extract even 
more information with relatively simple methods. The current methodology will in 
the near future be applied to multiple farms with different feeding systems, while the 
same data will be used to also develop a method for describing the second mean to 
feeder access obstruction: crowding at the feeder.

Conclusions
This paper presents the concept and potential of a methodology to monitor access to 
the feeder by exploiting commercially available data and using methods requiring low 
computational power. The methodology monitors the amount of available floor space 
around the feeder and how much of this area is taken up by lying and standing pigs. 
Data include depth images taken every 10 sec and the method developed could process 



a full day of data in less than 5 minutes. When applied to one pen in two production 
rounds, the growth trends and changes in diurnal patterns found followed the expec-
tation of pigs filling up the pen as they get larger and thus, having no choice but to rest 
in the feeder area. 
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Abstract
On 25 September 2015, the 193 Member States of the United Nations adopted the 2030 
UN Agenda for Sustainable Development. The agenda has generated 17 aspirational 
objectives, the Sustainable Development Goals (SDGs). About half of them are related 
to livestock. 

Livestock is positioned at the interface of the world’s human and natural systems, 
which has been at the basis of the Global Agenda’s understanding of sustainability. In 
agriculture we use natural resources (land, water, biodiversity, forests, fish, nutrients, 
and energy) and environmental services and transform them into agricultural products 
(food, feed, fiber, fuel). Agriculture does not only serve immediate needs, but also pro-
vides economic and social services (food security, economic growth, poverty reduction, 
health, and social and cultural value). Because of the increasing population growth and 
welfare, the conventional meat industry cannot follow consumer-increasing demands 
worldwide. In Europe, we see a trend that makes choices and realization of European 
policy in relation to livestock, animal welfare and environmental impact even more 
challenging. 

This paper aims to think about how PLF can help the livestock sector to fulfill the 
worldwide increasing demand of animal products, and at the same time become more 
sustainable. This by explaining the concept of continuous monitoring of the metabolic 
energy balance of animals. It shows that PLF offers the technology to monitor each 
component of the most fundamental biological process in the livestock sector. This ap-
proach is about monitoring and managing an improved efficiency of the different com-
ponents of the metabolic energy balance when transforming feed into animal products.

Keywords: Precision livestock farming, sustainability, metabolic energy balance.

Introduction
On 25 September 2015, the 193 Member States of the United Nations adopted the 2030 
UN Agenda for Sustainable Development. The 17 aspirational objectives, the Sustain-
able Development Goals (SDGs), which will serve governments, international organi-
zations, the private sector, and civil society to shape the path of human advancement 
over the next 15 years.1 Five out of 17 SDGs received significantly higher priority from 
all perspectives: SDG 1 (no poverty), SDG 2 (zero hunger), SDG 13 (climate action), SDG 
15 (life on land) and SDG 17 (partnership for the goals). When asked as individuals, 
partners also prioritized SDG 12 (responsible consumption and production).Livestock 
is positioned at the interface of the world’s human and natural systems, which has 
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been at the basis of the Global Agenda’s understanding of sustainability). 5 out of the 17 
SDGs are strongly connected to livestock production and received significantly higher 
priority from all perspectives in relation to livestock: SDG 1 (no poverty), SDG 2 (zero 
hunger), SDG 13 (climate action), SDG 15 (life on land) and SDG 17 (partnership for the 
goals) (UN, 2022 Keeling et al., 2019).

In agriculture we use natural resources (land, water, biodiversity, forests, fish, nutrients, 
and energy) and environmental services and transform them into agricultural products 
(food, feed, fiber, fuel). Agriculture serves not only immediate needs but also provides 
economic and social services (food security, economic growth and poverty reduction, 
health, and cultural value). Approaches to sustainability must therefore address the 
interactions and trade-offs occurring within and between the human and natural sys-
tems because of farm production and decide how best to reduce their impact. Because 
of the increasing population growth and welfare, the conventional meat industry can-
not follow consumer-increasing demands worldwide. Expectations show an increase 
of over 60 % by 2050 in the worldwide demand for animal products. In Europe we see 
another trend which makes choices and realization of European policy in relation to 
meat and livestock even more challenging (EU, 2019).

Problems to be solved 
Domestication of animals by human started over 13.000 years ago and can only be con-
sidered as a revolutionary step in the evolvement of mankind (McHugo et al., 2019, Childe, 
1928). Today, the position of livestock within a worldwide efficient and economic means 
of food production is challenged. Concerns are expressed on several issues, notably: Lack 
of increasing efficiency in animal production, especially beef; criticism on the guarantee of animal 
welfare for several reasons; environmental pollution by intensive animal production, absence of 
and so far no successful identification of appropriate technologies to improve this; Risk for disease 
transfer from livestock to humans. More questions are raised by the society such as: Are lab-meat 
and plant-based protein a threat for livestock producers? Can we reduce food loss and create food 
waste recovery as animal feed?  Do livestock of the rich eat the grain of the poor?

Moreover, excessive consumption of animal protein is considered to exert pressure on 
the global food system. Consequently, in the EU, consumption trends indicate increase 
in alternative plant-based diets, which could change the future balance of protein con-
sumption. A gradual shift towards alternatives, including novel plant-based meat alter-
native products, and in the future lab-grown meat, could have a significant impact on 
agricultural production in the EU, over the next 10-20 years (EU, 2019). The worldwide 
COVID19 pandemic does not help to improve people’s perception regarding the contribu-
tion of the livestock sector in the food chain due to the risk for pandemics. Health issues 
and diseases can decrease production efficiency of livestock by up to 33% (McHugo et al., 
2019). The trend towards more and more intensification of livestock farming systems in-
creases productivity but can also have adverse effects on animal health and welfare and 
increases the risk of rapid and far-reaching disease outbreaks. It is not realistic to think 
that, with an increasing demand for animal products of around 60 %, we can solve this by 
getting 60 % more animals. When considering the efficiency of producing animal protein 
in relation to environmental impact, then namely beef is under criticism.
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It is obvious that the livestock sector and related stakeholders must come up with 
solutions and answers to create a more sustainable protein production by livestock. 
The objective of this paper is to show that we must act now on implementing the appro-
priate technology in the field in a realistic way to fulfil the huge increasing worldwide 
demand for animal products in a sustainable way. We believe that, although yet a lot of 
work needs to be done, the science behind a very useful technology is available: “PLF”.

What is Precision Livestock Farming (PLF)?  
Precision livestock farming (PLF) aims to create a tool for farmers to help them manag-
ing their animals based on continuous automatic real-time monitoring and control of 
production/reproduction, animal health and welfare, and the environmental impact of 
livestock production. The automated monitoring is realized by using cameras, micro-
phones, sensors etc. PLF assumes that continuous monitoring of animals will enable 
farmers to detect and control the health and welfare status of their animals at any 
given time during the production process. Ultimately, an animal enjoying good health 
and welfare might provide a better guarantee of product quality in the long term. Now-
adays, the farmer can use modern technologies to measure different parameters on 
the farm, such as ventilation rate, feed supply and heating/cooling inputs, but few of 
the tools available up to now have directly focused on monitoring the most important 
part: the animal.

How can the use of PLF create a more sustainable livestock production?
Most of the increase in animal products in the last decades has come from an increase 
in animal numbers rather than from an increase in individual-animal productivity. 
When considering what we are doing for many decades in the livestock sector, the 
whole biological process in the animals can be rationally summarized in it’s essential 
components as follows:

Total Energyintake = Energybasal metabolism (including Energyimmune system) + Energymovement + 
Energythermal + Energymental + Energyproduction (1)

It is all about managing and supporting the animal to help it transfer the energy, deliv-
ered from feed intake, in the most efficiency in the Energy production term (meat, eggs, 
milk and fibre). It is not a matter of focusing on a specific term of this equation 1. It is 
not a matter of optimizing OR this term OR another term in the energy equation. It is 
about working on AND this term AND all other terms to maximize the Energy produc-
tion with minimal Total Energy intake. In other words, we need “more with less”: more 
animal products from less feed intake and consequently with less manure production, 
less emissions, less infections, and less losses.

PLF has already developed several techniques and offers many more possibilities to 
work on each of the terms of the energy equation-1.  

Total Energyintake: There are several opportunities to improve feeding management. There 
is a difference between the amount of feed fed to animals and the real feed intake. In re-
search stations feed delivery or feed intake are measured since many years but the used 
technology is too expensive for large scale applications in livestock houses in the field 
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and for sure for small family farms. PLF has shown techniques for very accurate meas-
urements of feed intake by broilers using sound analysis with a simple microphone in-
tegrated in the feeder pan. The algorithm detects the number of peckings where feed is 
taken in. The average feed intake per pecking was found as 0.025 g. The amount of feed 
intake and the pecking frequency were highly correlated (R2  0.985) (Aydin et al., 2016). 
The amount of feed consumed was measured with mean absolute and square errors 
(MAE and MSE) of 0.127 kg, and 0.034 kg respectively (Ran Bezena et al., 2020). For grazing 
cattle an initial pasture intake algorithm was established for time spent grazing: pasture 
DMI (kg day(-1)) = -4.13 + 2.325 x hours spent grazing (P = 0.010, r(2) = 0.53, RSD = 1.65 
kg DM day (Greenwood et al., 2017). There are several unused opportunities to improve 
feed management such as feeding in meal packages, adapt the composition of the feed, 
appetite regulation, post-ruminal nutrient absorption, and cellular energetics and me-
tabolism to the efficiency of feed utilization in cattle (Kenny et al., 2018).

Energy basal metabolism: The basal metabolism is the absolute minimal amount of energy that 
an individual body needs to keep all organs functioning. This is a totally individual 
characteristic depending on species, age, weight, health condition, production phase, 
etc. So far, the individual feeding strategy is depending on the Energy production term in 
milking cow but the real estimation of the basal metabolism term is not yet realized, 
although feasible as we see later. Genetic selection has accomplished huge advantage 
in working on this Energy basal metabolism and has consequently played a huge role 
in producing more animal product. More efficiency in terms of feed conversion, growth 
rate, less infections will result in less manure, less emissions. 

Today, PLF technologies can offer the advantage of collecting data from animals to study 
the efficiency of phenotypes in the field at very large scale. If one is for example interest-
ed in analyzing the aggressive behavior of a specific species and want to collect data from 
e.g. 500.000 animals, PLF can make it happen. Knowing this, new breeding opportunities 
can be defined for the potential of livestock species to acquire plasticity for adaptation to 
for example current climate changing conditions or improved emission results.

Energyimmune system: Animal health is of course crucial in realizing a more efficient energy 
equation-1. PLF offers many possibilities for real-time health monitoring from which 
most of them are yet not implemented in operational field systems. It is now possible to 
monitor animals using normal cameras with an image speed of up to 25 images per sec-
ond. Moreover, we can have many different monitoring algorithms that are easy to imple-
ment using top-view cameras placed in operating livestock houses. In broiler chickens, for 
example, the eYeNamic system has been developed for continuous automatic monitoring 
of the behavior of housed birds (Aydin et al., 2010). The EU specifies that a broiler farmer 
must carry out a visual inspection of the birds at least twice a day, the eYeNamic system 
does this continuously in a fully automated way. Lameness problems often are related 
with inflammation and infections. An abundance on lameness literature exist that shows 
the different risk factors related with lameness for milking cow and other species.

Continuous health monitoring by image systems
Such example of PLF technology is an automated camera analysis to detect lameness 
in milking cow (Viazzi et al., 2013). Lameness is a major health and welfare problem in 
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modern dairy cows, where up to 25% may be badly affected. In literature over 200 pos-
sible causes are described. It is a matter of detecting as soon as possible when the first 
sign of lameness can be noticed to start treatment immediately.  A camera is filming the 
individual cow each time she leaves the milking robot. By an algorithm that does a gait 
analysis based upon the video a gait score is given. By carrying out image analysis and 
calculating model parameters from the image information, it was possible to develop 
an algorithm for automatic detection of lameness problems in dairy cows (Viazzi et al., 
2013). Such techniques provide frequent and fully automatic monitoring of each individ-
ual cow (Figure 1), a process that the farmer can no longer carry out easily. As soon as the 
calculated individual gait parameters change, a warning alerts the farmer. The objective 
was to detect the first sign of upcoming lameness problems by focusing on the variation 
in gate analysis when a come transfers from a sound gait to a first score  of lameness in 
a scale of 5 as scored by experts. It was shown that the individualizing of the algorithm is 
an important asset to make the monitor up to 10 % more accurate in detection animals 
with problems (Viazzi et al., 2013). To make the principle applicable in the field, a simpli-
fied prototype of the lameness monitor was developed based upon only a top view image 
in which the main feature variable is the back arch of the cow. When a cow has pain in 
one of the feet or legs, it will use the back muscles to reduce the weight on that leg which 
is seen in the back arch of the animal (Figure 2). The prototype tested in field conditions 
measures the back arch by using a top view image (Figure 3). But so far also this technol-
ogy did not turn yet into a commercial product for large scale implementation.

Continuous health monitoring by sound analysis
Respiratory pathologies are widespread in intensive livestock farms like pig farms (Fer-
rari et al., 2010) their incidence and prevalence are high, and their principal clinical 
sign is coughing. The importance of these diseases must be viewed from an economic 
as well as a hygiene perspective; veterinary intervention can be expensive and farmers 
can experience substantial profit losses due to high mortality rates in growing/fatten-
ing pigs (which can be as high as 15%) (Islam et al., 2013) or to a drop in production 
as a result of reduced feed conversion and a lower growth rate. It is very unlikely that 
a pig will reach the slaughter weight without having respiratory problem (Baumann 
and Bilkei, 2022). With the Covid-19 pandemic the importance of continuous health 
monitoring is demonstrated once more. Over 60 % of the diseases that humans get are 
zoonoses: transferred from animal to human.  It is also known that detecting illness 
in individual animals and providing individual care or group-by-group mass treatment 
in response to illness are not very effective and are also costly. It is therefore ben-
eficial to investigate animal sounds with the aim of both understanding respiratory 
diseases and using bioacoustics for real-time monitoring purposes. The importance of 
coughing as a predictor of respiratory disease applies to animals as well as to humans. 
It has been shown that pig vocalization is directly related to pain and classification 
of these sounds has been attempted (Marx et al., 2003, Chedad et al., 2001). It is also 
common practice among veterinarians to assess cough sounds in livestock houses for 
diagnostic purposes. In this regard, there have been attempts to identify the character-
istics of coughing in animals like bovine and pigs and to automate the identification 
of cough sounds from field recordings for e.g. detection of bovine respiratory disease 
(Figure 4) (Vandermeulen et al., 2016). The detection of infection by sound analysis and 
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related production loss due to reduced feed intake is visible from Figure 5 (EU-PLF, 
2016). Also, for calves it is possible discriminate cough sounds from other sounds and 
that cough sound can be used as a non-invasively diagnostic tool for respiratory dis-
eases in youngstock groups (Aydin et al., 2010).

Energymovement: All physical or mental performances of animals or humans take metabolic 
energy. So far, we are not yet taking into account the effect of the movement of animals 
in the management of the energy equation. Many solutions are described in the sci-
entific literature to monitor movement continuously mainly for cows, pigs, and bigger 
animals by using 3D accelerometers and gyroscope technology. The wearable technology 
is making fast progress in terms of accuracy, dimensions, weight, price, and energy use. 
For lameness detection several solutions have been proposed for several species and po-
sition and gait analysis become standard techniques for milking cow (Aydin et al., 2010).

The potential of technology for active management of the Energymovement component 
however is not yet explored. When combining such technology with heart rate moni-
toring, interesting opportunities become available for active management of this com-
ponent. Do we get more happy animals when they move more like has been shown for 
humans when doing sports? What is the effect on body composition, meat quality, feed 
conversion, etc.? For large animals like cow, beef cattle, horses, etc. the metabolic ener-
gy for moving the body is not neglectable which does not mean that active movement 
management would not be a good option for health management or animal welfare.

Another example of using movement information is the automated continuous mon-
itoring of cows to detect problems during delivery. When farmers with cow and sheep 
are in the period of deliveries the follow up takes a lot of man hours. In collaboration 
with the Teagasc research institute in Ireland we developed a system that reduces the 
complex animal to 10 dots (Figure 6). The real-time monitoring of the position of the 
simplified model allows to detect when the delivery does not proceed as can be expect-
ed and the algorithm can give an alert to the farmer that human help is needed. 

Energythermal: What we do for many decades is to work on the Energythermal term by housing 
livestock in structures to protect them from the varying outside weather conditions. 
With climate change there are new problems to be solved. With genetic engineering 
many possibilities are still unexploited in relation to phenotypes of livestock where PLF 
can collect many data. There are several candidate genes that are associated with ad-
aptation of ruminants, monogastric and poultry to heat stress (Rovelli et al., 2020). Also, 
the use of new technologies and materials in climate control of livestock houses has 
many unexploited opportunities when combining with let animals more decide for 
themselves by using PLF technologies with camera’s, microphones, sensors etc.

Energymental: Energymental includes animal welfare as a central element for several reasons. 
It is important to note that animal welfare is not only required for ethical reasons but 
also for reasons of efficiency of the animal production process. As said higher it is 
a challenge to work on each term of the energy equation-1. Animal welfare or the En-
ergy mental term is the term that is related to most other terms in equation-1. Animal 
welfare is also the part that is related to many SDG’s (Sustainable Development Goals) 
(Keeling et al., 2019).
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A first way to improve the efficiency in animal production is to reduce the number of 
health issues since these always generate production losses. Animal welfare is closely 
connected to animal health since stressed animals are using the feed energy for men-
tal stress instead of bringing this amount of energy into production (meat, milk, eggs, 
fiber). Moreover, stressed animals depress the immune system with increasing risk for 
infections. How many of the 70 billion livestock animals, slaughtered this year for the 
worldwide demand, are not stressed? All the energy, used for the mental component 
when stressed, is not available for the basal component, the immune system, the ther-
mal or the production term in the equation.

What we expect to become a real disruptive technology for the livestock sector is the 
continuous real-time monitoring of the Mental energy term or animal welfare based 
upon physiological variables. The technology is available for humans (Viazzi et al., 
2013) and will become available for animals as soon as the appropriate sensor is real-
ized (Joosen et al., 2019, Luwei et al., 2020).

In the past, Darwin has already shown that there is a dynamic relationship between 
the central nervous system and the expression of emotions and that physiological var-
iables offer potential for monitoring stress (Darwin, 1872, Porges, 1995). When an ani-
mal produces metabolic energy within the aerobic zone, the inhaled air is brought into 
the blood in the lungs. Then the heart is pumping the blood to the cell level where the 
metabolic energy is produced. This means that the level of heart rate is a measure for 
the possible total production of metabolic energy. This means that equation-1 can be 
written in the form of a heart rate equation. 

HRTOTAL = HRBASAL  + HRMOV + HRTHERM + HRMENTAL + HRPROD (2) 

The decomposition of heart rate components in mental and physical components 
remains a challenge on moving subjects, which leads to the consequence that most 
methods for stress monitoring based on heart rate are limited to non-moving subjects, 
like heart rate variability.

The mental component in the energy equation can be monitored based upon physiolog-
ical measurements (heart rate and movement) in combination with individualized algo-
rithms that adapt to each individual animal. It has been shown on pigs that it is possible 
to monitor the response of animals in real-time by measuring heart rate and movement 
in real-time in a synchronized way. We stressed pigs 6 times with a sound-signal to in-
duce a negative mental response, and we gave them 6 times a toy to induce a positive 
mental response. The algorithm picked up both types of responses in real-time (Figure 
7). We could also show the agreement between the output of the real-time algorithm 
with the blood hormone response of noradrenaline (Figure 8) (Joosen et al., 2019).

To introduce this technology in the field we need a sensor that can accurately meas-
ure heart rate and movement for example in an ear tag. A candidate technology to 
monitor heart rate in livestock is the meanwhile well know ppg technology standing 
for photoplethysmography (Luwei et al., 2020). It can be expected that such an ear tag, 
monitoring heart rate and movement, will come soon and it seems obvious that the 
first species will be the more expensive individual animal such as milking cow, beef 
cattle, racehorses etc. We can expect that miniaturization with soon also bring it to 
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pigs. Such objective and continuous monitoring of animal welfare based upon objective 
physiological measurements will be a huge step in creating a more efficient production 
process. It finally will create the possibility to give animals in the production system 
a life worth living (Wathes, 2010,  Yeates, 2011).

The PLF solutions are mostly built upon the combination of one or more sensors (e.g. 
3D accelerometer, temperature sensor,…) or sensing systems (sound, image, …) in 
combination with an algorithm to calculate the so called target variable aimed for e.g. 
like lameness detection.

Conclusions
While the worldwide demand for animal products is increasing, the livestock sector is 
challenged to answers several questions from the society Today there is an inadequate 
demonstration of how livestock can play a key role in the development of sustainable 
agriculture in different agri-ecosystems, and a failure to transfer appropriate technol-
ogies to the field. 

To come up with solutions an important step is to improve the efficiency in animal pro-
duction rather than once again increasing the number of animals to fulfil the demand. 
From the few examples, we can see that PLF has a high potential to play a role in the 
more efficient management of producing animal products.  

And yet there are some other issues to be looked at: Lab-meat, food losses and grain 
use by livestock. Europe aims for eating less meat and dairy products and looks for al-
ternative protein solutions. This might make livestock producers nervous. The possibil-
ities of lab-meat and plant-based protein should not be considered as a treat since the 
worldwide demand for animal protein is expected to increase with over 60 % by 2050 
(Gerhardt et al., 2019, Deloitte 2017). Less feed must generate more animal products. 
Alternative solutions are welcome to contribute to the increasing demand. The use of 
insects as food for humans and animals is an alternative for the increasing demand 
for heat and has environmental and social advantages over intensive production of 
livestock. However, an issue that might compromise the success of insect rearing is the 
outbreak of insect diseases and virus transmission. More understanding is required of 
the different factors that interact in insect mass rearing. 

At the same time, we struggle with several serious food loss and food waste. We must 
consider whether we can use food wastes as animal feed to collaborate with waste 
management processes and food security challenges. Animals also consume food that 
could potentially be eaten by people. FAO has published that 86% of livestock feed is 
not suitable for human consumption. If not consumed by livestock, crop residues and 
by-products could quickly become an environmental burden as the human popula-
tions grows and consumes more and more processed food. Grains account for 13% of 
the global livestock dry matter intake.

PLF research has started in the 90’s with experimental laboratory work (Wouters et al., 
2018) but so far, 30 years later not many systems have been successfully implement-
ed in the field at large scale. There is a lack of successful identifications of appropri-
ate technologies that proven to work in the field at large scale. It is now time to start 
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implementing PLF technologies, developed at lab-scale to bring them to commercial 
livestock applications. Although the high number of animals per farm, we need to bring 
the animals closer to the farmer (Norton et al., 2019).

We must wonder whether the need today is to develop more new systems, rather than 
finally putting focus on implementing developing systems in real field applications. 
To come up with real solutions, a collaboration between different research disciplines 
(animal scientists, veterinarians, engineers, etc.) is needed as well as a strong collabo-
ration between researchers and industry.
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Abstract
Every year over seventy billion animals are slaughtered to fulfil the worldwide demand 
for animal products (meat, eggs, milk) and a further increase is expected by 2050. The 
livestock sector, like other sectors, has a high environmental impact and we must find 
solutions to reduce it. Normally an evaluation by experimental work in field conditions 
becomes very expensive in monitoring techniques and in labour. 

This paper shows a method to evaluate the effect of PLF technology on the environ-
mental impact by using simulations of Life Cycle Assessment (LCA). We use an example 
on dairy cows by evaluating the use of pedometers for the detection of oestrus events. 
The results show that the application of LCA can work as a feasible approach to get 
insight in the significance of the environmental benefit of applying PLF tools on farms. 

Keywords: environmental sustainability, dairy cows, monitoring, efficient 
management

Introduction
It is widely known and recognized that the livestock sector has both positive and nega-
tive impacts on the environment. These latter are especially related to emissions caused 
by animals such as methane from enteric fermentation of dairy cows and to emissions 
from slurry storage and field application practices (Opio et al., 2011). Considering the 
big growth of the sector of the last decades and that it is continuing to expand to re-
spond to the growing demand for animal products, the livestock sector needs a critical 
reflection (Pelletier & Tyedmers, 2010; Steinfeld & Gerber, 2010; Bellarby et al., 2013). 
A possible trade-off between the positive and negative effects of livestock production 
can be identified with an enhanced holistic efficiency and performance, partially made 
possible by technology (Opio et al., 2011; Steinfeld & Gerber, 2010). Measures to reduce 
emissions have been widely studied and proposed, and often mitigation strategies in-
troduced on farms (Herrero et al., 2016). Realizing accurate measurements on field is 
very expensive in equipment, time required for several seasons and manpower when 
we want to evaluate technologies to reduce the environmental impact. For some cases 
like emissions from naturally ventilated buildings there are even no accurate monitor-
ing techniques. The error might be bigger than the positive effect of technology.

In this context, the Life Cycle Assessment (LCA) approach might be helpful, because it 
allows to have a holistic view on the system and evaluate possible side effects on the 
environmental perspective of different mitigation strategies (Kiefer et al., 2015; Pirlo & 
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Lolli, 2019). However, also the effect of ecosystem services and territory maintenance 
need to be mentioned (Chatterton et al., 2015; Kiefer et al., 2015). Evaluations on the 
effect of global warming are widely increasing, due to its important role in current and 
future policies (Opio et al., 2011; Steinfeld & Gerber, 2010).

To achieve the primary goal of a farmer (i.e. production of milk, meat, eggs, fiber, etc.) 
high productivity in an economically sustainable way is fundamental. Growing healthy 
animals, with good performances, welfare, and a balanced use of inputs (e.g., feed) is 
very important (Brito et al., 2020). These aspects have also an environmentally sustain-
able façade, since a balanced use of inputs in respect to the outputs, good performanc-
es, efficiency, high yields, and high welfare and health indicators are positive aspects 
for an environmentally sustainable livestock system (Lovarelli et al., 2020). In addition, 
considering that farms are reducing in number while increasing the number of farmed 
animals, monitoring all individuals within the herd for a farmer is becoming more 
challenging and automatic systems can be of help (Pezzuolo et al., 2017). Technologies 
able to support farmers in monitoring big herds and single animals and in the deci-
sion-making process are spreading widely. They also bring benefits to the monitoring 
of variables that have become impossible to be continuously monitored by humans, 
such as the identification of night-time or silent oestrus events (Arcidiacono et al., 
2020; Zebari et al., 2018), variations in behaviour (Cairo et al., 2020), but also the mon-
itoring of other variables that help improve welfare, such as the microclimate in the 
barn (i.e. temperature, relative humidity, wind speed) and the air quality (i.e. pollutants 
concentration in air). Furthermore, until now farmers, researchers and policy makers 
have focused their attention on animals in their production stages, but it is important 
to provide enhancements to the non-productive phases as well, which represent the 
future of the herd: animals growing in healthy conditions will be more robust and re-
sistant to illnesses or stresses during their productive stages. Paying attention to young 
animals also influences the environmental perspective. In fact, heifers not adequate-
ly farmed (i.e. fed and monitored) will postpone their first calving, thus prolonging 
their unproductive age. Measuring the potential environmental advantage of new PLF 
technology in comparison with the absence of technology is quite complex. Setting up 
experimental studies that compare this condition (with PLF) with the one prior to the 
installation of PLF tools entails the difficulty of not having specific data in that previous 
period. Collecting accurate data during several seasons is expensive, takes a lot of time 
and manpower and is often not accurate enough to come up with reliable results. For 
example, to measure the possible effect of a low cost PLF technology for dairy cows on 
the emissions from a naturally ventilated barn is today quite impossible. Ammonia 
concentrations can be measured with expensive techniques, but measuring methane 
is challenging. Even more difficult is the absence of an available measuring technique 
to monitor the ventilation rate through the barn with required accuracy. 

The example that we use aims to show the potential of LCA to evaluate environmen-
tal impacts on dairy cows, thus comparing the environmental sustainability of a farm 
equipped or not with PLF, in particular with pedometers. In this condition, both the age 
of the first calving and the efficiency of the heat detection are evaluated. A simulation 
is carried out for a traditional dairy cattle farm, modelling the effect of PLF installation. 
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Material and methods

Farm description 
To evaluate the environmental performance of a dairy cattle farm in which pedometers 
or other similar technological support is introduced to detect heat events, a dairy cat-
tle farm of average dimensions located in Northern Italy was identified. A survey was 
carried out to collect data useful for the inventory phase of the Life Cycle Assessment 
(LCA) study. This farm has no technological support, since it is a traditional farm where 
the farmer is still evaluating the potential benefit of introducing sensors/tools (Tra-
ditional Scenario, TS). In Italy, in fact only about 30% of farms have PLF tools for heat 
detection (Abeni et al., 2019). This farm has the characteristics reported in Table 1 re-
garding herd dimension, average dry matter intake (kg DMI d-1) and milk production (kg 
milk d-1) in the different phases of the lactation. Considering the lack of technological 
support in the herd monitoring, the cows farmed in these conditions show an average 
age at first calving equal to 28 months, and the pregnancy rate and fertilization suc-
cess are quite unsatisfactory, on average with 3 months of failed inseminations. This is 
quite common in Italian dairy cattle farms of this type (Holtz & Niggemeyer, 2019). The 
lactation lasts longer than theoretical, reaching 395 DIM before drying which creates 
unnecessary environmental impact.

Table 1: Farm characteristics in the traditional scenario.

Variable Unit TS

Dairy cows n. 180

Dry cows n. 28

Heifers n. 82

Calves n. 70

Dairy cows kg DM d-1 23.0

Dry cows kg DM d-1 12.0

Heifers kg DM d-1 12.0

Calves kg DM d-1 8.0

Total lactations n. 3

Milk prod. at 0-90 DIM kg d-1 45

Milk prod. at 90-210 DIM kg d-1 37

Milk prod. at 210-305 DIM kg d-1 26

Milk prod. at 305-365 DIM kg d-1 22

Milk prod. at 365-395 DIM kg d-1 21
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Evaluated scenarios
Beside these traditional farm characteristics, two improved situations are modelled 
and tested on their environmental impact consequences:

 — “Best Scenario” (BS): in this case, the farmer adopts the best technologies that can 
support the heat events detection, such as the measurement of the progesterone 
level in milk. In this case, the farmer properly grows heifers and promptly identifies 
the oestrus window, even when it occurs at night-time, or it is silent. Then, the first 
calving takes place at 23 months, which is a proper timing for not encountering 
parturition problems (Pirlo et al, 2000). The subsequent calving-conception interval 
(CCI) is minimized since monitoring progesterone in milk can allow identifying at 
best the oestrus events and defining when to inseminate the cow. This implies that 
the lactation proceeds in its optimal theoretical duration and the cow is dried off 
after 305 DIM;

 — “Intermediate Scenario” (IS): in this case, the farmer installs common technology 
solutions like accelerometer sensors on the cows. This allows the detection of heat 
events with a better accuracy than humans but with possible errors. In this case, the 
heifers are properly grown, but insemination and the subsequent calving take place 
later than in BS (calving at 25 months). This condition is quite common in Italian 
livestock farms of Northern Italy, where 25 months represents the average age of 
the first calving (CLAL, 2022).  Due to not identifying all of the estrus events, some 
failures in the fertilization of cows are considered, therefore the cows are dried off 
after 365 DIM, which is also a common practice.

Table 2 reports the differences in the age at first calving and the duration of lactation of 
TS (traditional scenario), IS (intermediate scenario) and BS (best scenario).

Table 2: Age at first calving and duration of the lactation in the three scenarios (traditional, 
intermediate and best, respectively for TS, IS and BS).

Variable Unit TS IS BS

Age at first calving months 28 25 23

Duration of lactation days 395 365 305

LCA and climate change
After a literature survey and previous experience on the assessment of the environ-
mental sustainability of dairy farms in Northern Italy, a linear equation that relates 
dairy efficiency with climate change was defined (Lovarelli et al., 2019; Pirlo and Lolli, 
2019; Zu cali et al., 2017). This equation permits to quantify the environmental impact 
for the category of Climate Change (CC; kg CO2eq/kgmilk) based on the dairy efficiency 
(DE; kgmilk/kgDMI) of each farm, and was used in each scenario (TS, IS and BS) to predict 
CC. The variable DE was calculated based on the collected/modelled data.
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Results and Discussion
Table 3 reports the average dry matter intake (DMI; kg DM) per scenario of farmed an-
imals during the early growing stages and, for dairy and dry cows, for each lactation. 
Table 4, instead, shows the milk production of the 180 dairy cows in the 3 scenarios, de-
pending on the length of their lactation period. Here, IS and BS show a lower total inges-
tion for dairy cows because of the shorter duration of the lactation compared to TS, and 
because of the shorter duration of the diet as a heifer (i.e. different age at first calving). 

Table 3: Dry matter intake of the entire herd per lactation per scenario.

Variable Unit TS IS BS

Dairy cows Mg DM 1635.3 1511.1 1262.7

Dry cows Mg DM 13.4 13.4 13.4

Heifers Mg DM 275.5 246.0 226.3

Calves Mg DM 67.2 67.2 67.2

Total ingestion Mg DM lact-1 1991.5 1837.7 1569.7

Similarly, for milk production it is observed that IS and BS produce less milk than TS, 
due to the shorter duration of the lactation period. In this period, however, the lacta-
tion curve is decreasing, therefore milk production is lower. Both aspects of feed intake 
and milk production contribute to the quantification of DE (i.e. the amount of milk 
produced per amount of feed ingested) that results higher in BS and lower in IS and TS.

Table 4: Milk production of the farmed dairy cows (n. 180) per lactation per scenario, and the 
calculated average dairy efficiency (DE; kg milk/kg DMI).

Variable Unit TS IS BS

Milk prod. 0-90 Mg d-1 729 729 729

Milk prod. 90-210 Mg d-1 799.2 799.2 799.2

Milk prod. 210-305 Mg d-1 444.6 444.6 444.6

Milk prod. 305-365 Mg d-1 237.6 237.6

Milk prod. 365-395 Mg d-1 113.4

Total milk production Mg lactation-1 2323.8 2210.4 1972.8

Dairy efficiency kgmilk kgDMI
-1  1.17 1.20 1.26

A literature search and analysis on Dairy Efficiency (DE) and Climate Change (CC) data 
resulted in the values as reported in Table 5. The linear regression among these values 
is reported in Eq. (1) and shows quite satisfactory results, with R2=0.69:
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Table 5: Mean and standard deviation of DE and CC from literature for calculating Eq.(1).

n. farms DE CC Authors

33 1.35 (0.26) 1.38 (0.32) Lovarelli et al. (2019)

102 1.19 (0.25) 1.51 (0.53) Zucali et al. (2017)

The application of Eq. (1) results in CC (kgCO2eq kgmilk
-1) values for the 3 scenarios as: 1.65 

(TS), 1.60 (IS) and 1.50 (BS), respectively. This is a simplification in the quantification of 
CC, because it assumed that the composition of the animals’ diet and milk quantity 
and quality are not affected by any difference in the 3 scenarios. Instead, the different 
CC values are caused by the duration of one diet instead of the other and of one lac-
tation duration instead of the other. For a more detailed assessment, additional con-
siderations could be done to include the possible effects of different productivity, milk 
quality and mastitis due to the different management opportunities and technological 
equipment. In this case, these differences were excluded to avoid additional variability. 

Some further considerations can be made by making equal lifetimes for the cows. Both 
a longer and a shorter lifetime have been tested as follows: (a) if cows in BS live longer, 
reaching equal levels of IS and TS (i.e. 66 or 72 months) and (b) if cows live shorter (i.e. 
also IS and TS have lifetime equal to 58 months as in BS). Of course, this is an assumption 
based on the need to compare all scenarios based on the common productive duration, 
set equal to 3 lactations. When changing the lifetime to make it comparable in the 3 sce-
narios, the lifetime becomes equal, while the number of lactations changes. In this con-
dition, the cows in IS and TS need 8 and 14 months more, respectively, than cows in BS 
to conclude the 3rd lactation. Therefore, if cows in BS had a prolonged productive period, 
they would eat (with a diet for dry and dairy) and produce more, as reported in Table 6 
(they would add one dry period and one lactation – partial in BS-66 or complete in BS-72). 
Conversely, if the cows in TS and IS had a shorter productive period to compare them 
with cows in BS, then the results would be as reported in Table 7, with a common lifetime 
equal to 58 months, thus not being able to start (TS) or conclude (IS) the 2nd lactation.

Table 6: Results for prolonged lifetime of BS.

Variable Unit BS-66 months BS-72 months

Lifetime months 66 72

Additional milk prod. Mg 1328.4 1972.8

Total milk prod. (*) Mg 7247 7891

Additional feed Mg 765.4 1323.7

Total feed (*) Mg 5474 6033

Dairy efficiency kgmilk kgDMI
-1  1.32 1.31

Climate Change kgCO2eq kgmilk
-1 1.39 1.42

(*): referred to lifetime.
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Table 7: Results for shortened lifetime of TS (-14 months) and IS (-8 months).

Variable Unit TS-58 months IS-58 months

Lifetime months 58 58

Lowered milk prod. Mg -2324 -1238

Total milk prod. (*) Mg 4647.6 5392.8

Lowered feed Mg -9.1 -5.6

Total feed (*) Mg 5965.3 5507.6

Dairy efficiency kgmilk kgDMI
-1  0.78 0.98

Climate Change kgCO2eq kgmilk
-1 2.31 1.97

(*): referred to lifetime.

The results of CC reported in Table 6 and 7 were calculated based on the different DE 
values that results from the modelled assumptions. Both DE and CC result better in BS 
in all the modelled options (i.e. BS, BS-66 months and BS-72 months), followed by IS.

Conclusions
The example used in this case study shows that using a PLF technology that permits 
a more accurate identification of oestrus events and that avoids missed inseminations 
in dairy cows, finally leads to relevant reductions in the Climate Change impact cate-
gory. Therefore, LCA can work as a feasible approach to understand the significance of 
an environmental benefit when applying a certain PLF technology on farms. It is clear 
that a more comprehensive LCA study can be done by considering more environmental 
impact categories for a better and more detailed understanding of the system. 
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Abstract
Livestock production is a relevant anthropogenic source of gaseous and particulate 
pollutants. The increasing regulatory pressure to reduce emissions requires their sys-
tematic assessment. However, current methodologies for accurate GHGs, ammonia and 
particulate measurements at farm level demand extensive field and laboratory work, 
with high costs in terms of equipment and skilled personnel. In this context, the devel-
opment of cost-effective methods for rapid and systematic monitoring of emissions is 
a key element. A UAV-based system was developed to measure gas (CO2, CH4, NH3) and 
particulate matter (PM2.5, PM10) concentrations in the bottom atmospheric boundary 
layer. The system is founded on a flexible architecture and can be adapted to different 
operating environments. Prototype measuring units equipped with low-cost sensors 
were designed and implemented with the aim to identify emission hotspots. The units 
are designed to be employed both for ground measurements and for in-flight data col-
lection on board of a customised UAV. Two flight missions were carried out in a dairy 
farm to evaluate the feasibility of ground and in-flight measurements. Ground units 
were positioned both inside and outside the building where dairy cows were housed, 
while simultaneous measurements were collected by the UAV. The results obtained 
showed that the prototype units are able to provide ground and in-flight measures of 
gases and PM, however further research is required to embed additional sensors and 
validate data across multiple state of the art methods.

Keywords: drone, sustainable livestock farming, GHG emissions, dairy farming

Introduction
Current environmental policies are targeting a green transition, which involves the re-
duction of greenhouse gases and air pollutants emissions. In this context, a key issue 
will be to develop cost-effective techniques ensuring a rapid and continuous assess-
ment of air quality and of the distribution of pollutants in the atmosphere. 

Atmospheric particulate matter (PM) is classified into inhalable particles, with an aer-
odynamic diameter less than or equal to 10 𝜇m (PM10), and in fine particle matter with 
an aerodynamic diameter lower than 2.5 𝜇m (PM2.5). Livestock production can emit con-
siderable amounts of PM, which is a cause for air quality issues inside, but also outside 
livestock houses. Fine particles are known to be responsible for respiratory and cardio-
vascular diseases (Losacco & Perillo, 2018), thus a systematic assessment of particulate 
pollution is crucial for the protection of human and animal health.
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Farming activities and livestock breeding cause also the emission of several gases, as 
CH4, CO2, N2O, NH3, especially during the digestive process and excreta decomposition. 
The emissions of greenhouse gases contribute notably to global warming, while NH3 
can cause respiratory diseases, damage terrestrial vegetation and be a precursor of 
secondary PM2.5. Obtaining punctual and regular measures of gas concentrations at 
farm scale represents a crucial goal to assess the efficacy of mitigation practices and, 
ultimately, to improve the management of GHGs emissions.

In the last decade, UAV-based monitoring systems have emerged as an alternative or 
complementary technique to traditional ground-based detectors. UAVs represent a new 
frontier for atmospheric chemistry research; moreover, they are being increasingly ap-
plied in the fields of industrial emission monitoring and precision agriculture (Burgués 
& Marco, 2020). Drones equipped with gas and/or PM sensors have been employed to 
measure the emissions at point sources or to investigate the vertical profile of pollut-
ants concentrations in the atmospheric boundary layer. Examples of the assessment 
of emissions at pollutant sources with drone-based measurements regard the quanti-
fication of methane emissions from oil and gas infrastructures (Smith et al., 2016) and 
landfills (Emran et al., 2017) or multipollutant determination in open burnings (Aurell 
et al., 2017). Vertical profiles were assessed using multicopters equipped with particu-
late (Kuuluvainen et al., 2018) and gas (Cabassi et al., 2022; Gu et al., 2018) sensors both 
in urban and in rural environment. A variety of small and low-cost gas sensors (am-
perometric gas sensors, metal oxide semiconductor sensors, non-dispersive infrared 
sensors, and photoionization detectors) were used on UAVs to detect or measure leaks, 
concentrations or flux of a wide array of gases (e.g. CO, CO2, NOx, N2O, O3, NH3) and 
VOCs. In the field of precision agriculture, however, research is still pioneering. Drones 
equipped with environmental sensors have been proposed as an option to automate 
certain agricultural tasks, such as monitoring climate variables in greenhouses (Roldán 
et al., 2015) or evaluating fruit maturity (Valente et al., 2019), but their potential use for 
gas pollutants and particulate monitoring has still to be assessed. In this framework, 
the research aimed to develop and test a UAV-based system to assess PM, GHGs and 
ammonia hotspots in the context of livestock farming. The goal is to provide a rapid 
and real-time system for emission monitoring of livestock buildings, manure and feed 
stores. A prototype UAV-based and ground measurement system was developed, im-
plemented and tested to assess the feasibility of ground and in-flight measurements.

Material and methods

System design
The project is based on a modular design with flexible architecture and can be adapted 
to a wide range of operational fields. The design is structured in four layers (Figure 1). 
Layer 1 (sensor layer) concerns the sensors and the collection of all measurements; lay-
er 2 (network layer) regards the transmission of data collected by the sensors towards 
the storage system; layer 3 (service layer) represents the storage system where meas-
urements are collected and analysed; layer 4 (application layer) provides a tool for data 
presentation where measurements can be visualised through a dashboard. 
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Figure 1: Layer organisation of the system architecture

The whole project design comprises four modules: gas and particulate measurement 
units, a UAV, a server and a dashboard. For the purposes of this research, aiming to as-
sess the feasibility of ground and in-flight measurements, the first two models were de-
veloped and tested. The sensor layer and network layer were embedded in a prototype 
ground-based measurement unit and in a miniaturised version on board of a drone 
(Figure 2). The measurement unit on the UAV was deployed on a tube to prevent the 
effects of the airflow and turbulence generated by the rotors on gases and PM meas-
urements. The drone (3DR Solo; 45.7 x 45.7 x  25.4 cm; weight: 1.5 kg) was a quadricop-
ter. The units were provided with multisensor boards with ARM Cortex M0+ processor, 
ATM2560 microcontroller for data processing and transmission and Raspberry Pi Com-
pute Module. They integrated data from all onboard sensors, tagged data with times-
tamp and, for the UAV module, geolocation in real time, while ground-based units were 
manually georeferenced with a GPS-GNSS receiver.

Air pollutant sensors
Low-cost commercial sensors were selected to meet the goal of air quality monitor-
ing in a livestock farming environment, according to a Life Cycle Assessment (LCA) 
procedure. Target pollutants were particulate matter (PM2.5, PM10), NH3, CH4 and CO2. 
Additionally, temperature, relative humidity and atmospheric pressure sensors were 
embedded in each unit. Detailed technical characteristics of the sensors are summa-
rised in Table 1.
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Field tests 
The ground and the UAV measurement units were tested in a commercial dairy farm 
located in Tuscany, Central Italy, where 450 Holstein Friesian cows were housed. 

Table 1: Name, type, measurement and operative range of the tested sensors 

Target 
measurement

Sensor
name

Type of 
sensor

Measurement 
range

Operative range

Temperature 
(°C)

Relative 
humidity

(%RH)

PM2.5,PM10 (μg m-3) SDS011 Optical 0 to 999.9 - 20 to 60 0 to 90 

NH3 (ppm) MICS 6814 Electrochemical 0 to 100 - 30 to 50 15 to 95

CH4(ppm) IRC-AT Electrochemical 200 to 10000 - 20 to 50 0 to 95

CO2 (ppm) SCD30 NDIR 400 to 10000 - 40 to 70 0 to 95

Temperature,
%RH SHT40 CMOSens - 40 to 90

0 to 100 - 40 to 125 0 to 100

Atmospheric 
pressure (hPa) BMP280 CMOSens 300 to 1100 - 40 to 85 0 to 100

The field tests on the ground and on the UAV unit were conducted during two days in 
March and July 2021. In each session, the ground station was deployed in five locations: 
inside (I) the cubicle barn, in the central feeding alley, and outside (O) the barn, at the 
four sides of the building. Environmental, gas and particulate measurements were re-
corded for on average 20 minutes at each location; overall, 788 records were collected. 
Two flights were conducted at 31.3 ± 0.9 m a.g.l. over the farming site; the first measure-
ment session (March 2021) was carried out during a 7 minutes non-stop flight, where 
175 records were collected while the drone was moving along the chosen path (Figure 
3). In the second measurement session (July 2021) the flight mission was planned to ob-
tain static measurements: the drone stopped at each waypoint where measurements 
were taken. To cover the same area over the farm, two consecutive flights were con-
ducted for 24 minutes in total, and 451 records were collected.

Figure 2: The ‘3DR Solo’ drone equipped with 
the miniaturised prototype measurement unit

Figure 3: Path followed by the UAV 
during the 1st field session
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At the same time of ground and in-flight measurements, representative samples of air 
inside and outside the main building were collected in sample bags selected to ensure 
good stability of the target gases. Sampled air was analysed by Gas Chromatography 
(GC) to determine methane and carbon dioxide concentrations. The results were used 
to assess the adequacy of measures from the prototype units.

Results and Discussion

Table 2: Gas and PM measurements (minimum, maximum, average ± standard deviation) collected 
by the prototype UAV unit and ground unit (O: outside the cubicle barn; I: inside the cubicle barn). 

UAV
(March 2021)

UAV
(July 2021)

Ground
(March 2021)

Ground
(July 2021)

Min - Max CO2 (ppm) - 0 - 40000 O: 3.10 - 30.34
I: 4.56 - 37.00

O: 401.00 - 475.00
I: 442.00 - 504.00 

Ave ± S.D. CO2 (ppm) - 3187.49 ± 
7440.68

O: 6.92 ± 4.08
I: 15.88 ± 12.02

O: 426.20 ± 22.31
I: 467.81 ± 15.38 

Min - Max CH4 (ppm) 0.75 - 4.44 0.12 - 26.8 O: 1.62 - 11.40
I: 1.64 - 10.69 -

Ave ± S.D. CH4 (ppm) 2.48 ± 0.87 5.24 ± 5.77 O: 2.52 ± 1.50
I: 4.49 ± 3.26 -

Min - Max NH3 (ppm) - 0.47 - 1.10 O: 0.22 - 0.65
I: 0.20 - 0.43 -

Ave ± S.D. NH3 (ppm) - 0.99 ± 0.21 O: 0.42 ± 0.10
I: 0.27 ± 0.04 -

Min - Max PM2.5 (μg m-3)   4.60 - 
327.60  2.00 - 249.30 O: 1.50 - 4.60 

I: 1.30 - 2.90
O: 4.10 - 10.40 
I: 5.00 - 14.00

Ave ± S.D. PM2.5 (μg m-3) 153.16 ± 
126.83 96.41 ± 70.47 O: 2.82 ± 0.77

I: 1.65 ± 0.27
O: 5.10 ± 0.89
I: 6.43 ± 1.99

Min - Max PM10 (μg m-3)   7.56 - 
327.48  3.30 - 715.70 O :2.00 - 14.70

I: 1.60 - 21.20
O: 4.50 - 71.00
I: 5.60 - 98.80 

Ave ± S.D. PM10 (μg m-3) 123.50 ± 
100.07

206.81 ± 
197.43

O: 5.03 ± 1.87
I: 4.45 ± 3.83 

O: 10.30 ± 8.61
I: 17.38 ± 20.32

The first field tests on the ground and UAV measurement units demonstrated the tech-
nical feasibility of the prototype modules. The gas and particulate concentration meas-
urements collected during the two surveys with UAV and ground units are summarized 
in Table 2. Data collected in March 2021 by the CO2 sensor in the first ground unit pro-
totype (O: 6.92 ppm; I: 15.88 ppm) were not plausible compared to the concentration 
measurements obtained with GC analysis of sampled air (O: 448.38 ppm; I: 525.34 ppm). 
Thus, a different commercial sensor was selected for the second version of the proto-
type unit (July 2021). The new sensor revealed concentration values (O: 426.20 ppm; I: 
467.81 ppm) that were comparable to those measured with GC (O: 486.01 ppm; I: 608.80 
ppm), although lower. The same sensor was deployed on the UAV, however results were 
not reliable due to technical reasons related to the sensor placement on the unit. The 
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methane electrochemical sensor on the ground yielded plausible, yet lower, values  
(O: 2.52 ppm; I: 4.49 ppm) compared to those measured in sampled air (O: 3.24 ppm; 
I: 8.50 ppm). With the aim of improving the accuracy of the system, the CH4 and NH3 
sensors were removed from the second version of the prototype unit and newer com-
mercial options will be evaluated. Measurements collected at 30 m a.g.l. with the UAV 
unit yielded values that were consistent with those measured by the ground unit, sug-
gesting that in-flight gas and particulate assessment is a promising technique.

Conclusions
The prototype system described in this work represents a first attempt to evaluate the 
feasibility of a low-cost and real-time air quality monitoring in livestock farms. Tech-
nical adjustments will be needed to optimize costs, accuracy of measures and size of 
the units; moreover, further laboratory and field trials will be necessary to select the 
best available sensor options on the market, calibrate the sensors in a lab environment 
and to assess the accuracy of measures in the field. Despite improvements are required 
before its use for research or farm management, the results confirm the feasibility of 
the system and set the basis for a rapid and smart tool to monitor GHGs, ammonia and 
particulate emissions in livestock farms.
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Abstract
We propose an approach for efficient, robust learning and reasoning under realistic 
conditions. Our approach emulates the way students acquire prior knowledge from the 
combination of practical and theoretical training. This prior knowledge then informs 
the interpretation of observations on the farm, and provides a causal model for the 
prediction of future events and the outcome of actions. Grounding the causal model 
in physical modeling fusing all sensors, enables future sensor data to be predicted. 
Recognition and segmentation of materials and objects is done on the physical model. 
This provides descriptions that are definitive, enabling one-shot, and zero-shot learn-
ing. Flow of mass, energy, momentum and force, facilitate recognition of actions and 
causes. Objects and actions are input to abstract causal model search. This allows tan-
gible concepts of anatomy and physical examination to be linked to abstract concepts 
of physiology, nutrition and disease. The abstract causal model provides explanation in 
terms of counter-factuals, actions that would alter the outcome. Unlike deep networks, 
all the components are examinable and explicable

Keywords: causal, physical modelling, segmentation, one-shot, zero-shot

Introduction
We consider what is possible in machine perception for precision livestock farming 
(PLF), from evidence in cognitive science, information theory and computer vision. This 
leads to an approach for efficient, learning and reasoning under realistic conditions.

Problems with existing approaches
PLF sensors (Gómez et al., 2021) can be broadly classified as either point sensors or im-
aging sensors. The interpretation of point sensors depends on where they are, and the 
significance the signal in that location. This leaves important tasks to the user includ-
ing (a) ensuring that the instrument is measuring what is intended, and (b) integrating 
the sensor data with other information about the farm, to arrive at useful actions. 

The use of imaging sensors depends on interpreting the scene. Advantages of imaging 
sensors are that fewer are needed, and that they last longer than sensors in contact 
with livestock. At present interpretation of image data in PLF is predominantly done 
with neural networks, with PLF as an end-user of techniques developed in computer 
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vision research. Previously ‘industrial vision’ techniques relied on controlling causes of 
variation in the image, so that simpler measures could be used.

Limitations of big-data/deep-learning inference for PLF
Deep-learning (DL) from big-data has been the dominant paradigm in artificial intel-
ligence and computer vision since AlexNet in 2012, (Oliveira et al., 2021). However, the 
quantity of data and processing required for Deep Learning techniques to solve re-
al-world problems can be extreme. For example, in 2021 Tesla announced (CNBC, 2021) 
that they are building a custom ExaFLOP computer to process billions of kilometers 
of driving videos, in the hope of making their autonomous driving system safe to use 
without a human supervisor. The fact that humans learn this task from a few hundred 
kilometers of driving shows that much more efficient algorithms are possible.

Obfuscation: DL systems are ‘black boxes’ that are prone to making errors that appear 
bizarre and obviously wrong to humans, (Geirhos et al., 2020). This tendency to make 
types of errors that a human would not is a major barrier to using DL in automation 
of any critical task. In particular, DL tends to short-cut recognition, by correlation with 
characteristic patches of texture and absolute value of image pixels, without consider-
ation of how the image is caused by a scene of objects with 3D structure, illumination 
and material properties.

Limited transfer-ability: Lack of understanding makes DL systems sensitive to irrel-
evant changes, and unable to interpret novel scenes or events. Consequently, the 
training data must include many examples of every irrelevant cause of variation in 
the sensor data, for each thing that must be recognized. DL systems often need exten-
sive retraining on each farm, if there are differences in breed of animal, illumination, 
cameras, or scenery, especially where superficially similar objects or actions need to be 
distinguished. Where rare events must be reliably recognized, under all conditions, it 
can be challenging to obtain adequate training data. For novel scenes and events, there 
is by definition no training data available.

By comparison non-neural network methods can be two orders of magnitude faster on 
the same task e.g. (Yu et al., 2021), and do not require a ‘black box’ stage. We now consider 
what is necessary to build a system with human-like causal understanding of PLF tasks.

Cognitive science of livestock management
It is worth considering the tasks required in livestock farming and how it is possible 
for humans to perform these. When we unpack the complexity of skills we take for 
granted, this can provide a guide as to what component problems must be solved, to 
produce a system with human-like competence. When a farm manager, consultant, or 
vet inspects a farm and its livestock they integrate information from many sources:

1. senses: vision, hearing, smell, and touch
2. prior knowledge

1) geographic: layout of buildings, the farm, its surroundings
2) ecological: soil types, biomes, field condition
3) procedural: farm routines, feeding methods, feed composition
4) medical: anatomy, physiology, nutrition, pathology, epidemiology
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Fig 1 sketches the sources of information that a farm manager or veterinarian would be 
expected to draw on when deciding what actions to take. This context is critical to the 
significance of the data from any sensory sample.

Figure 1: Information leading to actions.
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both more and different information from the “data sufficient to perform”. Note that if 
we present topics in random order, then student will fail to understand critical parts of 
them. Likewise, if we omit key parts of practical training, then the student will not be 
able to relate their textbook knowledge to reality on the farm. Conversely, it would be 
prohibitively slow to leave the student to rediscover agricultural and veterinary science 
from personal experience. 

If in the thought experiment we replace the student with a baby, we can consider the 
“data sufficient to learn”, for the perceptual skills and “common sense” understanding of 
the physical world that we expect the student to already possess. Chief among these 
are (i) the ability to perceive materials, objects and actions as the cause of the data 
coming from all their senses (sensor fusion), (ii) to predict physical consequences (sim-
ulation) and (iii) to reason about causes of past and future events (causal inference). 
It is the ability to reason about causal relations abstractly, that enables the student to 
learn and apply theoretical knowledge.

Components

Causal inference
Causal inference has been an increasingly active field of research since the 1990s 
(Spirtes et al., 2000a). Most researchers will be familiar with the maxim “Correlation does 
not imply causation”. While this maxim is true in itself, idea that purely observational 
(non-experimental) correlation cannot be used to obtain information about causation 
is false (Spirtes et al., 2000b). What is true is that some initial causal information is 
required. This may be the ability to manipulate just one variable in the system, or confi-
dence in the direction of causality between one pair of variables (e.g. sunrise wakes the 
rooster and not the other way around). Given this initial causal axiom, it is then often 
possible to infer a great deal of the causal structure from observational data, and also 
to define a minimal set of experiments for determining the unresolved causal relations.

Figure 2: The Do operator : P(A|set_B,C)  !=  P(A|B,C)   Observation vs action “set_Sprinkler” modifies 
the graph (Pearl 2009, fig1.2&1.4)

 



 Precision Livestock Farming ’22 461

Key insights include (i) the distinction between observing versus setting the value of 
a variable (fig 2), (ii) the use of graphical models to represent causal relations between 
variables, (NB a causal edge implies a “counterfactual” hypothesis about what would 
occur if the values of variables were changed) and (iii) the concept of dependence-sepa-
ration “D-separation” between variables (Pearl, 2009). Together these enable propagation 
of causal relations and effects across a causal model, even to variables that can neither 
be manipulated nor directly observed.

Causal model search
Of particular importance for PLF is the ability to discover the correct causal model 
for a system of interest. Glymour et al., (2019) reviewed of causal model discovery al-
gorithms. The Tetrad library (Ramsey et al., 2018) provides implementations of many  
published algorithms. There are also algorithms such as PC-MCI (Runge et al., 2019) 
which model time-lagged relations between variables. The PC-MCI family of algorithms 
are implemented in the Tigramite software library (Runge et al., 2016).

Physical grounding 
Abstract causal inference algorithms require input of semantically meaningful varia-
bles, measurements of observed objects and actions. Relating abstract concepts to the 
tangible world is physical grounding. Modeling the physical world from sensor data is 
physical perception. These are a crucial part of the “common sense” skills expected of the 
new student, and applied in practical training to ground the abstract models taught in 
lectures and textbooks.

Figure 3: Causal relations in physically grounded visual perception
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For visual perception (fig 3) physical grounding can be broken into four subsidiary prob-
lems (i) dynamic SLAM, and (ii) shape-from-shading, (iii) mechanical perception, and 
(iv) semantic perception, for which nearly complete ‘white box’ solutions are available. 
From image data to mechanical perception, the causal relations derive from the physi-
cal laws of geometry, optics and mechanics. Conversely, semantic perception is a lossy 
compression of the physical model to produce a much more compact  representation, 
that retains predictive accuracy.

Dynamic SLAM/SFM 
In dynamic SLAM  the sensor can move and the object(s) can move and deform e.g. ani-
mals. The source of information in passive visual SLAM is parallax motion in the image 
sequence of a camera. For reconstruction from conventional video cameras “passive 
dense monocular dynamic SLAM” is required.  A monocular algorithm provides the ad-
vantage markerless auto-calibration e.g. (Mahmoud et al., 2017). Real-time passive dense 
monocular SLAM algorithms have been available since DTAM (Newcombe et al., 2011), 
however extension is required to accommodate dynamic scenes. 

Shape, illumination and reflectance from shading
People perceive 3D scenes from single photographs. Single image 3D reconstruction 
is a strictly ill posed problem (fig 4). By including prior information about natural scene 
statistics, it is possible to find the 3D reconstruction that represents the most probable 
cause of the image. Such algorithms are known as “shape from shading” algorithms.  
When people describe the color of an object in a scene, they refer to the constant mate-
rial property of reflectance. Knowing the reflectance, the appearance can be predicted 
under different illumination, hence it is possible to recognize an object having seen it 
under only one illumination. Algorithms and code have been published for single-image 
shape illumination and reflectance reconstruction from shading, e.g. (Barron & Malik, 2014). 
Combining dynamic-SLAM and SIRFS algorithms would be particularly useful in PLF. 
Modeling reflectance and illumination would improve the robustness of the SLAM al-
gorithm. This is particularly true for specular (shiny) materials, e.g. the fur and skin of 
animals, wet surfaces, glass, metals and plastics.

Mechanical perception
Perceiving and predicting forces and motion in the world is a critical part of the “com-
mon sense” skills that enable a student to learn from practicals. In particular it is critical 
to understanding the  anatomy and mechanics of animals, machinery and all materials 
of importance in PLF (e.g. feed, bedding, soil, flooring).

If the moving visible surface is tracked then a mechanical model can be fitted under the 
surface using a differentiable soft matter physics simulator e.g. (Hu et al., 2020). From the 
observed deformation it is possible to infer the relative density, elasticity, viscosity and 
mechanical structure of objects. The mechanical simulation also provides constraints 
on plausible reconstruction of the moving surface. It is possible integrate force sensing 
and calibrate the absolute values of the parameters of the model. Multi-physics can 
fuse different classes of sensors, e.g. heat, sound and olfactory/chemo sensors. 
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Figure 4: Adelson and Pentland’s “workshop” metaphor for different possible causes of the same 
image, from (Curtis & Baker 2011).

Semantic and instance segmentation 
Distinguishing and tracking individual animals in a herd, and distinguishing what 
part of the scene belongs to each animal, require instance segmentation and semantic 
segmentation.

In physical perception, objects are described in terms of their mechanical structure, 
topology of parts, material properties, and 3D geometry. This is sufficient to predict 
how they will behave and how they will appear. 3D geometry and topology facilitate 
instance segmentation. Mechanical simulation and SLAM provide robust tracking. 

This physical causal definition of objects  (1) is invariant in changing scenes, (2) ena-
bles classification to be completed with non-black-box methods, (3) “one-shot” learning 
from a single example, (4) “zero-shot” learning from description1, and (5) retains end-
to-end differentiability2. 

Action, cause and agent recognition
Mechanical perception provides a model of the forces, accelerations, and the flow of 
mass, momentum and energy in the scene. These provide a causal basis for recog-
nizing actions and power sources. Agents (animals, people, and machinery) standout 
because they are power sources, whose behavior is more complex than inanimate ob-
jects. Agents can be modeled as having purposeful actions, selected based on goals 
and limited perception. Physical perception allows the sensory stimuli and behavior of 
other agents to be predicted via perspective transform, e.g. livestock may refuse to walk 
forwards because they perceive something nearby as threatening.

1 These correspond to (i) the learning from minimal examples in student practicals and first 
encounters of new object classes, and (ii) learning from verbal information in textbooks or 
professional communication

2 This enables (i) learning scene specific priors for SIRFS and SLAM and (ii) top-down refinement 
of physical reconstruction from recognition, e.g. completion of partially obscured objects.
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Interface between physical perception and abstract causal inference
Instance segmentation of objects and actions from physical perception provides the 
ability to learn and recognize high level semantic concepts that link abstract causal 
reasoning to sensor data. Together these provide the perceptual skills needed to learn 
professional knowledge.

Acquiring information

Sensors
The sensors needed for the system would also provide “data sufficient to perform” for re-
mote consulting. Applying them in this role is a good way to acquire some of the train-
ing data. Eye tracking glasses capture what the wearer sees and  where they focus their 
attention (Tobii, 2022). Force sensing is important for learning material properties and 
mechanical structure. If tools can be used to perform the handling work, then strain 
and vibration sensors can be added to them, and their motion tracked visually, to infer 
forces applied in the scene.

Prior knowledge
The required knowledge has sequential dependencies, so requires a similar syllabus 
to human learning. Much of the learning can be done passively and in parallel from 
recordings of student interaction in existing practicals. Theoretical knowledge would 
be initially acquired by parsing textbooks to generate  abstract causal models, which 
are then linked to recognition and physical simulation from the practical learning. The 
abstract model can be inspected by the human trainer. It can also be used to find edge 
cases in its predictions and generate questions to verify and refine its understanding.

Application in service
Monitoring from fixed cameras and point sensors, taking account of professional and 
farm-specific knowledge, would (i) produce a warning and prediction system that is 
transferable between farms, and (ii) able to learn production systems and diseases in 
a human-like way. 

The causal model can predict the outcome of potential actions (counterfactuals). This 
can be used (i) to recommend optimal plans of action for farm management, or treat-
ment of individual animals, and (ii) combined with prediction of sensor data from phys-
ical simulation, to automate control of machines to do the work. The system would 
have the ability to learn the ‘what, how, why and context’ of manual tasks. Physically 
grounded causal modeling would enable the system to understand the tangible and 
meaningful risks and consequences that are crucial to “common sense” behavior.  

Conclusions
Causal models predict the outcome of interventions. This allows optimization of 
planned actions. Physically grounded causal modeling provides a fully explicable sys-
tem, capable of efficiently acquiring professional prior knowledge, to interpret senso-
ry perception, and produce justified diagnoses and plans. The necessary components 
are nearly complete in the published literature, but need particular extensions and 
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integration into a coherent system. Such physically grounded, causal AI systems, with 
human-like common sense, have become a focus of research in computational cogni-
tive science, as solution to the shortcomings of deep-learning, (Zhu et al., 2020). 
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Abstract
Precision Livestock Farming (PLF) is a tool for management of livestock by continuous 
automated real-time monitoring of production/reproduction, health & welfare, and en-
vironmental impact. A “tool” means that PLF does not replace experts like farmers, 
veterinarians, feed experts, etc. but that it supports people in their decision taking by 
offering objective measurements. The paper aims to give an overview of where it start-
ed, where we are and where to go.

When starting this research in 1991 with a more fundamental question on predicta-
bility of the responses of living organisms, we started on insects and mussels. It soon 
became clear that animals, like humans, are so called C.I.T.D. systems: Complex, Indi-
vidually different, Time-varying in their responses and Dynamic. We did experiments 
on bees, fish, mice, rats, chicken, pigs, cow, horses, dogs to from 2001 also work on 
humans. Results are shown in videos and graphs. The research trajectory showed prin-
ciples on how to develop the technology and to implement it in products.

The pickup in the field however goes far too slowly and that is where we must put more 
efforts. Finally, we will show where to go with this technology to create a real impact for 
many people and animals worldwide.

The PLF concept takes off worldwide and can help us to create a more sustainable live-
stock sector which is so much needed. We need to deliver more animal product with 
less feed input, less manure and environmental impact and improve animal welfare 
and health. PLF shows high potential to help us create these solutions.

Keywords: Precision livestock farming, overview of what has been accomplished, 
where we go.

Introduction
PLF is perceived by many as digital technology for continuous monitoring and auto-
mated management of livestock. We like to define it as “a tool for management of 
livestock by continuous automated real-time monitoring of production/reproduction, 
health & welfare and environmental impact”. A “tool” means that PLF does not replace 
experts like farmers, veterinarians, feed experts, etc. but that it supports people in their 
decision taking by offering objective measurements. PLF is realized by using digital 
technology like cameras, microphones, sensors on or sensing technologies around the 
animal combined with digital networks, internet of things, databases in digital envi-
ronments, general software and a lot of PLF-specific software.
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In 1991, there were three arguments that made us start with rather fundamental re-
search projects for continuous monitoring of animals. The first reason resulted from 
a research project from 1980 – 1990 where we followed 100 fattening pig houses for ten 
years (Goedseels et al., 1987). These pig houses had totally different systems like natu-
rally versus mechanically ventilation, heated versus unheated, different types of inlets, 
floorings, feeding systems, climate controllers, etc. But they were all built by the same 
materials and equipment for each system, used at the same moment the same feeder 
composition, same genetic line of pigs, same advisors, etc. They were all contract farms 
with a same follow up. The question was which factor (type of flooring, feeding system, 
ventilation system, heating system, etc.) has most effect on the production results (feed 
conversion, growth rate, mortality and diseases). All farms were visited each in fatten-
ing period over 10 years and all results from over 2500 fattening periods were analyzed. 
The big conclusion was that the farmer has the highest impact on how the animals 
were producing in the different production systems. Farmers with the best production 
results used as a  main tool more audio-visual observation of the animals several times 
a day (Goedseels et al., 1987). We then realized that we were busy trying to optimize the 
thermal environment for the animals with working on the ventilation system, heating 
system with different technologies, the climate control system (Berckmans et al., 1988), 
but that we did not pay enough attention to the core of the whole process: the animal. 
Having experienced as a twelve year old boy how my grandfather observed his animals, 
I realized the importance of continuous monitoring. My grandfather had more kids 
than cows and they all had a first name, and he checked the animals several times 
a day. Being in a creative team at the KU Leuven, led by Professor V. Goedseels and with 
my colleague Dr. R. Geers, I was submerged in the vision of looking directly to the an-
imal. That’s when the idea originated to monitoring animals continuously during the 
production cycle and to focus on which technology could make this happen. 

The second reason was to notice that animal welfare was subjectively and ‘manually’ 
observed and this only once at or near the end of the production period. The first gen-
eral animal protection law, called the Protection of Animals Act, was introduced by 
UK  in  1911  and updated several times since. In US since its inception in  1966, the 
Animal Welfare Act (AWA) has been shaped and expanded upon by political and social 
influences. In 1965 the Irish professor Brambell had published the 85-page “Report of 
the Technical Committee to Inquire into the Welfare of Animals Kept under Intensive 
Livestock Husbandry Systems” (Rogers Brambell, 1965), later known as “the Five Free-
doms”. The Farm Animal Welfare Advisory Committee in UK was created in response 
to Brambell and colleagues’ report to monitor the livestock production sector. In 1979, 
the name was changed to the Farm Animal Welfare Council  (since 2011 Committee) 
(Wathes, 2009). The field implementation of systematic monitoring animal welfare was 
mainly based upon visual checkups after the production period with the so-called ice-
berg indicators. Like the top of an iceberg hides a bigger obstacle under the water, some 
indicators (e.g., a bitten tail) in the slaughterhouse indicated a problem in that farm. 
The visual observation happened in the slaughterhouse, after the production period, 
too late to solve the problem for these animals. The visionary approach by observers 
in the field of the Welfare Quality (Blokhuis et al., 2003) concept was described in 2003 
and the project started in 2004. It generated a detailed protocol for human observers to 
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observe and score the animal welfare for different species in European farms. But also, 
this approach was based upon scoring once a year a farm and yet near or at the end of 
the production period.

Seeing around 1989 that a lot of sensor technology and software was under develop-
ment, research was started to  develop technology for continuous monitoring of live-
stock (Figure 1). 

Figure 1: Continuous objective PLF-monitoring during the whole production period versus once 
scoring at or near the end of the production period.

Problems to be solved 
Society and everybody connected to the livestock sector knows for sure the big chal-
lenges that we are facing. The worldwide demand for animal products is increasing 
till 2050. Recent facts show how animal health is of crucial important since zoonoses 
coming from animals remain a serious issue. Tuberculosis for example goes from el-
ephants to dairy cows and from cows to humans. Looking to the fundamentals of the 
biological core process in the livestock sector, it is about transferring feed energy into 
animal product. All the metabolic energy, coming from feed and lost in the lack of 
animal welfare or health, is not available for animal product (meat, milk, eggs, fiber, 
etc.,). This shows that animal welfare is not only an ethical issue but is in the middle 
of a more sustainable production. We need higher efficiency to produce more animal 
product with less feed input to reduce the environmental impact (manure, emissions, 
odor, etc.) (Figure 2). 

In September 2015, 193 Member States of the United Nations agreed in the General 
Assembly to adopt the 2030 Agenda for Sustainable Development that includes 17 Sus-
tainable Development Goals (SDGs). We must realize that SDG 1, 2, 3, 6, 11, 12, 13, 14 
and 15 are related to the livestock sector and that all of us, have the responsibility to 
contribute in transforming to a more sustainable world (Figure 3) (UN, 2015).
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Figure 2: From metabolic energy viewpoint, animal welfare is in the middle of the biological process 
to transfer feed energy into animal product.

Figure 3: Half of the 17 Sustainable Development Goals by the United Nations are related to the 
performance of the worldwide livestock sector.

Today, the position of livestock within a worldwide context with climate change and 
available economic means of food production is challenged. Concerns are expressed 
on several issues, notably: Lack of increasing sustainability and efficiency in animal produc-
tion; criticism on the guarantee of animal welfare for several reasons; environmental pollution 
by intensive animal production, absence of or so far no successful identification of appropriate 
technologies to improve this; risk for disease transfer from livestock to humans. More questions 
are raised by the society and the sector such as: are lab-meat and plant-based protein a threat 
for livestock producers? Can we reduce food loss and create food waste recovery as animal feed?  
Does livestock of the rich eat the grain of the poor?
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Objective
The objective of this paper is to show where we came from in the research trajectory to 
come to basic principles of PLF technology and to give a vision on where we will go to. 

Where we came from
Around 1990,great explorative research was done on analyzing possibilities to monitor 
variables on animals, but not yet with the idea to have a continuous monitoring tech-
nology for field applications (Scott and Johnson, 1982,  Leidl and Stolla, 1976). When 
in 1991 we focused  research on continuous monitoring living organisms, we realized 
that the detection of animal problems is based upon understanding the normal be-
havior. The more fundamental question was whether it was possible to predict normal 
responses of living organisms. Research was started using well controlled laboratory 
experiments with living organisms which we naively thought were simpler to do ex-
periments with and for sure cheaper in experiments. This first research for continuous 
monitoring of living animals, was done with contactless technology to make sure not 
to influence the animal response by the used monitoring technology. 

In those pioneering years, developing the PLF concept, several efforts were done with 
image analysis on different species to develop model-based monitor techniques on liv-
ing animals and their behavioral responses. It showed that digital image analysis is 
an accurate technique for the quantification of the behavioral response of Tubificidae 
to pollutants (Vanhoof et al., 1994). A biological early warning system was developed 
based on the phototactic swimming behavior of Daphnia Magna in relation to the re-
producibility of its response and sensitivity towards potential pollutants in water (Ley-
nen et al., 1999). Research was done on continuous monitoring of animals like on poul-
try (Aerts et al., 1997, Sergeant et al., 1998, Bloemen et al., 1997, Leroy et al., 2006), pigs 
(Geers et al., 1991, Wu et al., 2004, Shao et al., 1997), cows (Herlin and Drevemo, 1997,  
Choi et al., 2001, Leroy et al., 2005), horses (Audigie et al., 2001, Schofield et al., 2003, 
Jansen et al., 2009), fish (Ruff et al., 1994), mice (Leroy et al., 2009), etc. With sound anal-
ysis many trials were done with applications on pigs (Chedad et al., 2001,  Van Hirtum 
and Berckmans, 2002, Guarino et al., 2008), chicken (Silva et al., 2010, Tong,et al., 2015), 
cows (Jahns et al., 1998,  Laca and  Wallis DeVries, 2000,  Ikeda et al., 2003), fish (Nordei-
de and Kjellsby, 1999), bees (Ferrari et al., 2008), One of the first attempt with sensors was 
to monitor the so crucial heart rate in the production of metabolic energy in a living 
organism, that was on embryos in chicken eggs (Aubert et al., 2000).   Due to the cost of 
sensors it cannot surprise that most research with sensors on animals was on higher 
value animals like cows (At-Taras and Spahr, 2001, Mottram et al., 2000).

Around 2005, several researchers were working on the development of technology for 
continuous monitoring of farm animals, but still there was doubt about the feasibili-
ty to develop systems than can monitor animals continuously 24/7 working with the 
required accuracy and reliability within the harsh farm conditions (Carpentier et al., 
2018).
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A living organism is a C.I.T.D. system
Lesson learned from the early research and mainly from laboratory work under well 
controlled environments is that living organisms are very different from other phys-
ical, mechanical, electrical or digital systems. All animals, as all living organisms, are 
Complex, Individually-different, Time-varying and Dynamic (CITD). We did bring this 
concept in the first ECPL2003 conference in Berlin and published it in 2006 (Berckmans, 
2006). When looking to the data transfer in a single cell of an animal body, it becomes 
clear that animals are very complex systems. No way to describe such systems in re-
al-time with mechanistic models. Another fact is that animals respond in a complete 
individually different way to experienced environmental events or interactions with oth-
er animals or humans.   This contrasts with the general classical approaches where an-
imals are considered as “an average of a population”. The average of a population and 
the standard deviation are made to compare groups, like e.g., the treated group versus 
the control group. But population statistics is not the best method to analyze results 
from individually different animals. In each variable considered, the standard devia-
tion of the group is much bigger than the standard deviation of an individual (Figure 4). 

Figure 4: Animals are individually different and dynamic. They are CITD systems (Berckmans, 2006).

The fact that animals are individually different has consequences on the required ac-
curacy of sensors or sensing techniques. The sensor now needs to be accurate enough 
in relation to the much smaller individual standard deviation of variables over time, 
than the population standard deviation. That is also why many sensors for animals or 
wearables for humans are yet not bringing the required accuracy. As shown in Figure 4, 
animals have variations over time in all physiological variables and behaviors. Depend-
ing on the variable measured, sensors or sensing techniques must have the appropri-
ate sampling frequency.
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Even more interesting is to notice that animals, like all humans, are time-varying sys-
tems. This is a different thing than being dynamic. Time-varying responses means that 
every time an environmental event or stressor happens, the animal might respond in 
a different way. For example, a horse is happy when receiving the feed, and next time 
it is frustrated because the feed was not given fast enough. It is like humans, a Monday 
morning might to the same question give different responses than a Saturday morning.

Of course, animals are very dynamic which needs the appropriate analysis tools to 
catch the information. Humans and animals act individually different, whether we like 
it or not. The concept of an animal being a CITD system has huge consequences on the 
appropriate technology to monitor animals and to improve the management to create 
more sustainability.

Where we go
In 2022 we can notice that there is more research than ever before on precision live-
stock farming which started in Europe and is worldwide more than just being picked up 
like in US and China, but yet we are far away from enough implementation and proof in 
the field. We see that a lot of researchers repeat work being done in the past not being 
eager enough to make the very challenging step from research to application. Though 
several efforts happen in precision livestock applications (Halachmi, 2015), more field 
application is what we need. If we do not bring efficient applications to the field with 
demonstrated return on investment for the farmer and all stakeholders, we will not be 
able to produce more animal product with less feed input, and that is what we need.

In history, most of the increase in animal products has come from an increase in num-
ber of animals rather than from an increase in individual-animal productivity, beside 
the huge advantage in genetic lines of farm animals. This year over 70 billion animals 
will be slaughtered, it is unthinkable that we will solve the increasing demand for ani-
mal products with 65%, by keeping more animals. When considering the fundamentals 
of the process to be managed in the livestock sector, we have to look to it’s essential 
components as given in Figure 5.

Figure 5: The fundamental process of transferring feed energy into animal product.
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Where we go-1: Focus on each term of the fundamental equation (Figure 5)
It is all about managing and supporting the animal to help it transferring the feed ener-
gy with highest efficiency in the Energyproduction term (meat, eggs, milk and fiber). It is not 
a matter of focusing on a specific term of this equation in Figure 5. It is not a matter of 
optimizing OR this OR another term in the energy equation. It is about working on AND 
this AND all other terms to maximize the Energyproduction with minimal Total Energyintake. 
In other words, we need “more with less”: more animal products from less feed intake 
and consequently with less manure production, less emissions, less infections, and 
less losses in lack of health or animal welfare.

The good news is that PLF has the potential to develop and implement more tech-
niques and to offer more possibilities to work on each of the terms of the energy equa-
tion (Figure 5).  

Total Energyintake: There are several opportunities to improve feeding management. There 
is a difference between the amount of feed fed to animals and the real feed intake. In 
research stations feed delivery or feed intake are measured since many years but the 
used technology is too expensive for large scale applications in livestock houses in the 
field and for sure for small family farms. PLF has shown techniques for very accurate 
measurements of feed intake by broilers using sound analysis with a simple micro-
phone integrated in the feeder pan (Aydin et al., 2014, Ran Bezena et al., 2020, Green-
wood et al., 2017).

Energybasal metabolism: The basal metabolism is the absolute minimal amount of energy that 
an individual body needs to keep all organs functioning. This is a totally individual 
characteristic depending on species, age, weight, health condition, production phase, 
etc. So far, the individual feeding strategy is depending on the Energy production term 
in milking cows, but the real estimation of the basal metabolism term is not yet real-
ized, although feasible. Genetic selection has accomplished huge advantage in working 
on this Energy basal metabolism and has consequently played a huge role in producing 
more animal product. More efficiency in terms of feed conversion, growth rate, less 
infections will result in less manure, less emissions. 

Today, PLF technologies can offer the advantage of collecting data from many animals 
to study the efficiency of phenotypes in the field at very large scale. If one is for ex-
ample interested in analyzing the aggressive behavior of a specific species and wants 
to collect data from e.g., 500.000 animals, PLF can make it happen. Knowing this, new 
breeding opportunities can be defined for the potential of livestock species to acquire 
plasticity for adaptation to for example current climate changing conditions or im-
proved emission results.

Energymovement: All physical or mental performances of animals or humans take meta-
bolic energy. So far, we are not monitoring the effect of the animal movement on the 
management of the energy equation. Many solutions are described in the scientific 
literature to monitor movement continuously mainly for cows, pigs, and bigger ani-
mals by using 3D accelerometers and gyroscope technology. The wearable technology 
is making fast progress in terms of accuracy, dimensions, weight, price, and energy use. 
For lameness detection several solutions have been proposed for several species and 
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position and gait analysis become standard techniques for milking cow. The potential 
of technology for active management of the Energymovement component however is not 
yet explored. When combining such technology with heart rate monitoring, interesting 
opportunities become available for active management of this component. Do we get 
more happy animals when they move more like has been shown for humans when 
doing sports? What is the effect on body composition, meat quality, feed conversion, 
etc.? For large animals like cow, beef cattle, horses, etc. the metabolic energy for moving 
the body is not neglectable which does not mean that active movement management 
would not be a good option for health management or animal welfare.

Energythermal: What we do for many decades is to work on the Energythermal term by housing 
livestock in structures to protect them from the varying outside weather conditions. 
With climate change there are new problems to be solved. With genetic engineering 
many possibilities are still unexploited in relation to phenotypes of livestock where PLF 
can collect many data. There are several candidate genes that are associated with ad-
aptation of ruminants, monogastric and poultry to heat stress (Rovelli et al., 2020) Also, 
the use of new technologies and materials in climate control of livestock houses has 
many unexploited opportunities when combining with the concept where  animals de-
cide for themselves by using PLF technologies with camera’s, microphones, sensors etc.

Where we go-2: Continuous real-time physiological measurements to manage the 
mental component
Energymental: the mental component includes animal welfare as a central element in the 
metabolic energy equation. Animal welfare is not only required for ethical reasons 
but also for reasons of efficiency of the animal production process. How many of the 
70 billion livestock animals, slaughtered this year for the worldwide demand, are not 
stressed? All the energy, used for the mental component when stressed, is not available 
for the basal component, the immune system, the thermal or the (re)production term 
in the equation. What we expect to become a real disruptive technology for the live-
stock sector is the continuous real-time monitoring of the Energymental term or animal 
welfare based upon physiological variables. In the past, Darwin has already shown that 
there is a dynamic relationship between the central nervous system and the expres-
sion of emotions and more recent literature shows that physiological variables offer 
potential for monitoring stress (Darwin, 1872,  Porges, 1995). When an animal produces 
metabolic energy within the aerobic zone, the inhaled air is brought into the blood in 
the lungs. The heart is pumping the oxygen rich blood to the cell level where the met-
abolic energy is produced in the mitochondria. This means that the level of heart rate 
is a measure for the possible total production of metabolic energy. The decomposition 
of heart rate components in mental and physical components remains a challenge on 
moving subjects, which leads to the consequence that most methods for stress moni-
toring based on heart rate are limited to non-moving subjects, like heart rate variability. 
However, the technology is available for humans and animals and will also become 
available for animals as soon as the appropriate sensor is realized (Joosen et al., 2019, 
Luwei et al., 2020).
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Where we go-3: real-time infection monitoring 
Energyimmune system: Animal health is of course crucial in realizing a more efficient energy 
equation (Figure 5). PLF offers many possibilities for real-time health monitoring from 
which most of them are yet not implemented in operational field systems. PLF might 
become the most important One Health Technology to detect infections in wildlife, 
livestock and humans. Tuberculosis for example goes from elephant or deer to dairy 
and next to humans. A 24/7 real-time infection monitoring system for humans and 
animals is possible. For humans, several algorithms have been developed based upon 
using heart rate or heart rate combined with activity (Mishra et al., 2020). To introduce 
this technology in the field we need a sensor that can accurately measure heart rate 
and movement for example in an ear tag. A candidate technology to monitor heart 
rate in livestock is the meanwhile well know ppg technology (photoplethysmography) 
(Luwei et al., 2020). It can be expected that such an ear tag, monitoring heart rate and 
movement, will come soon and it seems obvious that the first species will be the more 
expensive individual animal such as milking cow, beef cattle, racehorses etc. We can 
expect that miniaturization can also bring it to pigs and poultry but the existing infec-
tion monitoring with sound analysis will be more economic (Mishra et al., 2020).

Conclusions
This paper was not aiming to be a review paper since it is far too incomplete in covering 
the work of many colleagues worldwide who contribute with fantastic work  to the PLF 
field. A great overview of existing PLF technology is made by Halachmi et al (2018). The 
objective was to show where we came from in the field and based upon lessons learned 
where we should go. It is clear that PLF has a huge potential in bringing solutions for the 
enormous challenges the livestock sector is facing. We need focus on the core energy 
equation that runs in each livestock application to turn feed energy into animal prod-
uct. PLF offers solutions to focus on each of the components of the equation to gener-
ate more animal product with less feed input. The way to go is by using the new sensor 
technology to measure 24/7 physiological variables on the animals with totally new 
possibilities for higher efficiency that will generate a more sustainable livestock sector. 
Such objective and continuous monitoring of animal welfare and infection, based upon 
objective physiological measurements, will be a huge step in creating a more efficient 
production process. We will finally create the possibility to give animals in the produc-
tion system a life worth living (Wathes 2010, Yeates, 2011). Bringing a worldwide 24/7 
infection monitor for animals will not only help the animal and the sector but all peo-
ple on planet earth and specially people in developing countries. more implementation 
in the field is a first priority. To come up with real solutions, a collaboration between 
different research disciplines (animal scientists, veterinarians, engineers, etc.) is need-
ed as well as a strong collaboration between researchers and industry.
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Abstract
Sustainable production and development in livestock sectors are critical to meeting the 
growing requirements placed on it, increased production, efficiency and reduced la-
bour, along with the various political declarations and societal claims. Digitalisation is 
increasingly seen as a prerequisite to achieving the goal of sustainable agriculture and 
reduced labour. Therefore, it is the aim of the DiLaAg project to bring together scien-
tists from different fields of expertise to work interdisciplinary on the complex topic of 
digitalisation in agriculture. In the DiLaAg consortium, PhD students and their super-
visors from the University of Natural Resources and Life Sciences, Vienna (BOKU), the 
University of Technology Vienna (TU) and the University of Veterinary Medicine Vienna 
(VETMED) build the scientific core. The project was initiated and is funded by the Feder-
al State of Lower Austria and the private foundation ‘Forum Morgen’. The PhD students 
work in the fields of robotics, image-based plant classification, agronomic analyses of 
crops, impact of technologies, digital twinning, livestock management on pasture and 
sustainability assessment as well as on interdisciplinary topics such as computer vi-
sion, application of digital sensor technologies, machine learning, complexity science, 
remote sensing, data integration, precision agriculture and precision livestock farming. 
Apart from this scientific nucleus, the DiLaAg consortium aims to act as a platform for 
innovation and exchange, by continuously expanding its network and collaborations in 
order to continue working on current challenges in agriculture.

Keywords: digitalisation, smart farming, agriculture, sensor technology, precision 
farming, sustainability

Introduction

Vision of DiLaAg
The DiLaAg project aims to connect the expertise in the field of Precision Farming at 
the University of Natural Resources and Life Sciences, Vienna (BOKU), the University 
of Technology (TU) and the University of Veterinary Medicine (VETMED) for scientific 
cooperation. Interdisciplinary collaboration between experts is a promising approach 
when tackling the complex problems found in agriculture, leveraging the various in-
sights, methodologies and research topics, novel solution can be developed. The main 
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objective of DiLaAg is to form a scientific nucleus in the area of agricultural digitali-
sation and educate young researchers in this interdisciplinary field. It shall also serve 
as a platform for consultation, development, education, exchange, and knowledge 
transfer.

Innovation platform
The Innovation platform of DiLaAg consists of the ‘Applied Farming Network’ and the 
‘Company Network’. The basis of the ‘Applied Farming Network’ is built by the two 
experimental sites of BOKU and VETMED in order conduct studies on agronomic pro-
duction (‘Groß-Enzersdorf’) as well as on livestock farming (‘VetFarm’) in the frame 
of DiLaAg. Further expansion of the ‘Applied Farming Network’ is planned to enable 
research on digitalisation in agriculture on commercial farms in the crop and livestock 
sector.

DiLaAg partners
In addition to the three partner universities, which are responsible for the scientific 
in- and output, there are two partners, who support DiLaAg with funding: the Federal 
State of Lower Austria and Forum Morgen Private Foundation. In terms of networking 
and knowledge transfer, DiLaAg is collaborating with ‘Smart Agri Hubs’ (https://www.
smartagrihubs.eu/) and ‘DIH Innovate’ (https://www.dih-innovate.at/). Moreover, a val-
uable input is the recent inclusion of Prof. Holzinger, Prof. Stampfer and Prof. Roth into 
DiLaAg due to their expertise in agronomy, forestry, livestock and artificial intelligence.

PhD projects
The common aim of the individual PhD projects is to facilitate everyday farming, to 
optimise production and to promote sustainability in farming by using digital sensor 
technologies under agricultural conditions. Interdisciplinary collaboration is necessary 
to deal with topics that play a role in several PhD projects, such as computer vision, 
remote sensing, resilience analysis, sustainability assessment and machine learning.

A) Data-based networked process management in agricultural engineering 
In the project ‘Data-based, networked process control in agricultural engineering’, 
a ‘digital field’ at the experimental farm in Groß-Enzersdorf should be used to demon-
strate robotic integration into agricultural process engineering, generating data for 
a wide variety of crop production models, and its integration into corresponding work-
ing processes. In order to achieve this, a mobile robot platform (Supper et al., 2019) is 
being used to collect the data during systematic field experiments. Beside the pure 
data collection, the focus of this project is on autonomous cultivation using an auton-
omous field robot platform. Possible fields of applications are numerous, such as data 
acquisition of the plant stocks, weeds, soil condition, and autonomous performance 
(e.g., of the weeding process). To achieve that, the robot will be equipped with sensors 
to detect the environment and an attachment will be developed to carry out an appli-
cation in the field. Connectivity with the robot’s higher-level systems should enable 
data storage and data exchange. A user interface is used for direct communication 
with the user. To make this possible, the robot is equipped with long-term evolution 
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(LTE), wireless-fidelity (WiFi) and bluetooth communication systems. The free platform 
ROS (Robot Operating System) is used as software. This enables sensors and actuators 
to be integrated flexibly into the robot application. To fulfil the previously mentioned 
demands, a set of experimental procedures have been established and performed, de-
fining the required autonomous working parameters e.g., indoor navigation, as well as 
the investigation and evaluation of the main performance parameters in the outdoor 
field working tasks e.g., slip, traction performance and electrical energy consumption. 
Above mentioned findings should represent a solid ground for the future upgrades of 
the autonomous robot system, e.g., integration of the computer vision system on ro-
botic platform.

B) Integration of plant parameters for intelligent agricultural processes 
The project ‘Integration of plant parameters for intelligent agricultural processes’ aims 
to identify plant parameters on a single plant basis for smart crop farming. These plant 
parameters serve as a base for decision support, offline creation of application maps, 
or online actions on the field. The goal of the work is to combine colour and shape in-
formation in deep neural networks for image classification and semantic segmentation 
tasks in the context of plant parameter identification. One use case is to implement 
a semantic segmentation of different plant species in crop images that can be used 
for smart weeding concepts like precision hoeing or spot spraying. For the creation 
of a red-green-blue-depth (RGB-D) training database, we performed field trials, cap-
tured images with a ground-based measurement system equipped with a red-green-
blue (RGB) stereo camera pair and a global navigation satellite system with real time 
kinematic (GNSS RTK) module, and annotated the images adding plant species infor-
mation on a pixel level. In comparison to satellite data or even drone images, a ground-
based image capturing system offers high-resolution information from single plants 
that can reflect the heterogeneity in the field. Based on the RGB-D dataset of various 
crop and weed species, different deep neural networks will be trained to segment the 
images based on the colour and depth information. We expect our method to improve 
the state-of-the-art plant classification performance by adding depth information, as 
shown in other domains by Wang & Neumann (2018). Other research interests focus on 
the potential of image-based automated crop and weed estimation and data augmen-
tation techniques for RGB-D images.

C) Strategic collection and provision of field crop data
The objective of this PhD project is to perform agronomic analyses and the estimation 
of canopy parameters using remote sensing technologies in wheat (Triticum aestivum 
L.). Experimental data were collected in a two-year field experiment, which was con-
ducted at the experimental farm in Groß-Enzersdorf. In agronomic analyses, the ef-
fects of experimental factors, e.g. environment, sowing date and nitrogen fertilization, 
on canopy parameters are examined. Investigated parameters include developmental 
stage, above-ground dry matter, leaf area index, nitrogen content, protein yield, grain 
yield and yield components. These parameters are analysed based on state-of-the-art 
techniques for statistical analysis, e.g. quantitative mixed model analysis and principal 
component analysis. In addition, agronomic analysis was performed on experimental 
data of autumn- and spring-sown triticale (Koppensteiner et al., 2021). Furthermore, 
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canopy parameters, e.g. leaf area index and nitrogen content, are estimated based on 
remote sensing data. Therefore, various devices were used to collect remote sensing 
data in the two-year field experiment including a handheld hyperspectral sensor and 
multispectral satellite images (Sentinel-2, ESA). Different techniques are applied to 
process spectral data and setup models, e.g. vegetation indices and radiative transfer 
modelling. Preliminary agronomic analysis on yield and yield components showed that 
grain yield was higher for autumn-sowing than spring-sowing, the increase in grain 
yield with nitrogen fertilization was higher for autumn-sowing and yield components 
were highly affected by sowing date, nitrogen and environment. Preliminary estima-
tions of leaf area index and nitrogen content were performed using radiative transfer 
model inversion, which showed promising results (Koppensteiner et al., 2021b). In the 
future, agronomic analysis on growth and nitrogen uptake as well as the estimation 
of canopy parameters based on remote sensing techniques with a focus on radiative 
transfer modelling will be published.

D) Identifying novel approaches for socio-environmental technology assessments and 
their implications for managing complex agricultural systems 
This PhD project addresses the following core area:

 — Finding methods that render the complexity of agricultural environments quantifi-
able and thus capture the impact of the technologies in terms of sustainability and 
resilience.

For this purpose, geochemical soil data sets were processed and a code test infrastruc-
ture was built that enables the application of individual complexity metrics. Initial re-
sults of defining the system state through probabilistic measures (e.g., Fisher informa-
tion) showed promising applications for capturing the systemic stability of agricultural 
soil environments. For this purpose, a conglomerate of geochemical parameters (calci-
um, magnesium, sodium, pH, etc.) collected over a twenty-three-year period was used. 
By capturing the probabilistic properties of the individual variables and their progres-
sion over time, conclusions can be made about systemic soil equilibrium and the eval-
uation of agricultural practices to multivariate soil properties. The next steps mainly 
concern the expansion of the quantitative test environment of geochemical soil prop-
erties and the recording of resilience and sustainability aspects. In this context, differ-
ent methods (e.g., stochastic interpolation methods, mutual information acquisition, 
entropy measures) will be applied to analyse and improve data properties (uniformity, 
completeness, increase of informative value) in order to enable the fine-tuning of in-
dividual complexity metrics. Concepts for fusing metrics will be developed and tested. 

E) A deep-learning based approach for the Digital Twinning of biological entities and 
systems 
The announcement of ‘Agriculture 4.0’ in academia and industry has brought the prom-
ise of digitalisation to agriculture, by leveraging advancements in data analysis, decision 
support and the adoption of data collection technology, to increase sustainability (Zhai 
et al., 2020). Initiatives such as Climate Smart Farming and technological adoption in the 
form of Precision Agriculture (PA), Precision Livestock Farming (PLF) and more recent-
ly the Digital Twin (DT) show a shift toward these allusive goals, however, extracting 
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actionable information from heterogeneous agricultural systems remains difficult 
(Neethirajan & Kemp, 2021). The DT is a real-time synchronized virtual representation 
of a product, process, or environment. It provides a novel means to achieve digitalisation 
through high-fidelity modelling, simulation, and consolidation of data streams (Wright 
& Davidson, 2020). Since its inception and early classification, the DT has evolved, in 
terms of requirements, capabilities and applications, growing beyond its original focus 
on manufacturing (Grieves, 2015; Jones et al., 2020). PLF, the closest area of research, 
has seen extremely promising results. However, requirements for PLF in Austrian ag-
riculture are often ambiguous and suffer from isolated views of systems, processes, or 
applications, with current implementations consisting of bespoke technologies applied 
to individual use cases and tasks (Mahmud et al., 2021). Therefore, the goal of the Digital 
Twin project has been to go beyond the state-of-the-art examples found in research, 
with the goal of developing the requirements, methodologies, and technical approaches 
necessary to leverage the Digital Twins’ benefits for the agricultural domain, with a spe-
cific focus on dairy cows. Utilizing a variety of internet-connected sensors, animal and 
environmental data is used to develop a Digital Twin for the modelling and monitor-
ing of temperature effects on behaviour and rumination, leveraging cutting edge Deep 
learning techniques to extract and model the complex features associated with these 
effects, allowing the current animal state to be assessed in near real-time. 

F) Using digital sensors to monitor dairy cows on pasture 
The project ‘Using digital sensors to monitor dairy cows on pasture’ aims to investigate 
sensor-based parameters to assess health and welfare of dairy cows at pasture and to 
display differences between indoor housing and grazing conditions. For dairy farming, 
different types of technologies have been validated for supporting animal health and 
welfare monitoring (Chapa et al., 2020; Stygar et al., 2021), mainly for the use in indoor 
housing. Therefore, the first step of this project was the evaluation and practical testing 
of different sensor systems for their use on pasture. Indirect visual observation using 
a drone-mounted camera served as gold standard for the sensor-based classification of 
behaviour of lactating dairy cows (standing, lying, rumination) with restricted access 
to pasture. In the second use case, prior tested technologies were employed to monitor 
the time budget of dairy cows before, at and after dry-off, under indoor housing and full 
grazing conditions. Apart from on-cow sensor systems, digital technologies to collect 
environmental parameters were included to this project, as they can play an important 
role in pasture management. Clinical examinations and laboratory parameters served 
as reference for animal health and welfare. We expect the outcome of this project to 
be a contribution to the application of reliable sensor systems for monitoring grazing 
dairy cows, to yield insights regarding the effects of pasturing and dry-off management 
and to contribute to the assessment of cow comfort using sensor-based parameters. 
Sensor data and video footage collected in the frame of this study can also provide 
a basis for further interdisciplinary collaboration. 

G) Sustainability assessment with LCA 
According to the latest IPCC (Intergovernmental Panel on Climate Change) report, there 
is high confidence that climate change will make some areas no longer suitable for 
crop production. Consequently, the necessity to produce more food with fewer inputs 
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without causing environmental impacts is more latent than ever. Agricultural digital-
isation can be one of the solutions to maximise food production while minimising 
environmental degradation (Biermacher et al., 2006; Pedersen et al., 2006; Diacono et al., 
2013). However, most of the studies present their results in terms of input efficiency 
without showing evidence of reducing critical environmental impacts. Life Cycle As-
sessment (LCA) is a scientific-based decision support tool that quantifies environmen-
tal impacts during the life span of a service or product. The objective of this research 
project is to quantify the environmental impacts of smart farming technologies using 
the LCA as the main method of assessment. Moreover, to have a more holistic and com-
prehensive evaluation of these technologies other methods to quantify environmental 
emissions are being used together with the LCA methodology. For instance, the Deni-
trification-Decomposition soil model (DNDC) (Li et al., 1992), which assists to quantify 
site-specific soil emissions. Positive environmental impacts results have already been 
revealed by implementing smart farming technologies for crop production. Preliminary 
results of this study showed that using an optical crop sensor for variable rate nitrogen 
application (VRNA) in comparison to a conventional application scheme can reduce 
8.8% the global warming potential. Furthermore, additional primary results of another 
LCA comparison study of several smart farming technologies – remote and proximal 
sensors, automatic steering, and automatic section control (ASC) – show that remote 
sensing is the most environmentally friendly technology. It is of great relevance to as-
sess emerging technologies in order to enable decision-makers to place more resources 
on technologies with better performance and less damage to the environment. 

Discussion

Interdisciplinary approach
The use of similar or the same sensors, data and techniques in different projects is one 
aspect that connects the three Universities with each other. For instance, computer 
vision techniques are useful both for animal classification as for crop and weed char-
acterisation. There are ongoing overlaps between the PhD projects as well as future 
collaboration possibilities: Using the field robot, the derived information of computer 
vision can be applied for online action on the field (e.g., precision hoeing). Image-based 
plant parameters and strategically collected remote sensor data on crops can be ana-
lysed together in combined models. The assessment of sustainability and the impact 
of agricultural technologies as well as resilience analysis are based on experimental 
data from other projects. With regard to machine learning and digital twinning, sen-
sor data from the experimental farms (e.g., on-cow sensors, environmental sensors, 
remote sensing) yield data for more complex analyses, which are in turn necessary 
for research questions on modelling and decision support. It becomes clear that these 
overlapping topics require close collaboration. Regular meetings between the PhD stu-
dents take place to guarantee an exchange on the status of the projects and to discuss 
arising challenges as well as future ideas. In the course of the DiLaAg project, students 
from different fields of expertise were able to develop a better understanding of mutual 
research areas and strategies. To deepen interdisciplinary collaboration and to expand 
the network of doctoral students, DiLaAg is currently being extended with two associ-
ated PhD students. One study at BOKU, Institute of Agricultural Engineering, is focusing 
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on the subject of ‘Life Cycle Assessment of innovative agricultural systems with a focus 
on multi-output processes’. Another student at VETMED, Clinical Unit of Herd Health 
Management, is working mainly on sensor-based monitoring of the development of 
pre-weaned calves, but also on the assessment of grassland by using digital devices 
for pasture management. The inclusion of these additional PhD students strengthens 
interdisciplinarity and broadens the horizons of all students, as new topics and ap-
proaches are being added to the consortium.

Future – DiLaAg II
Ideas for future projects are based on the holistic approach to agricultural digitalisation 
that has been established within DiLaAg. The currently existing network between the 
Universities enables inter- and transdisciplinary research to be built upon a solid basis. 
As climate change poses rising challenges for agriculture, the focus on sustainability 
and food security is gaining importance rapidly. This consortium has expertise to tack-
le both the approach to plant-based human nutrition as well as keeping ruminants to 
convert grassland into valuable human-edible protein in a viable agriculture without 
impairing environmental resources.

Conclusion
The DiLaAg consortium consists of experts from three different Universities, who are 
connected by the topic of digitalisation and the aim of promoting sustainable produc-
tion in agriculture. At the core of DiLaAg are the PhD projects, which are closely inter-
linked and therefore allowed the students to deepen their expertise in their own field 
as well as to gain insights into other fields of expertise. A planned consortium and 
future network of collaboration can bring DiLaAg and its technological development 
closer to local farmers. In the frame of workshops and conferences, the PhD students 
can present their work to a broader audience. This collaboration between the Universi-
ties builds the basis for interdisciplinary and even transdisciplinary research. 
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Abstract
Sensors dominate modern agricultural technology more and more, also could milk re-
cording organisation benefit from this. Sensor assisted Alpine milk production (SES-
AM) project is an Interreg Alpine Space project. The main aim was to promote in the 
Alpine region intelligent, sustainable and integrative growth. The objective was to de-
velop a tracking system for dairy cows based on an existing system that integrates the 
data from the milk performance test and the health monitoring systems. The SESAM 
tracking system at final stage will monitor: walking, lying, eating and ruminating dairy 
cows and can localize the animals. By integrating animal health data with activity data, 
it is possible to identify emerging health problems in dairy cows (ketoses, acidosis, 
mastitis, etc.). A central, multi-lingual server, record the sensor information, perform 
the integration with the health data and run the second level algorithm. Since August 
2020 the system is subjected to performance and validation tests and in addition, all 
events relating to animal health will be recorded in order to identify behaviour patterns 
in cow’s health events. These behavioural patterns are the source for development of 
2nd level algorithm, which is relevant to automate the classification in order to produce 
a fast database in case the cow behaviour deviates from normal. The new and holistic 
(due to integration of milk recording data with the data on animal behaviour) data re-
cording leads to an easy and understandable decision-support system for farms in the 
Alpine area.

Keywords: sensor, tracking, health, milk recording organization, dairy cow, dairy 
farming

Introduction
The SESAM project was starting in 2018, true different milk recording organisations 
in the Alpine space, the project was funded by the INTERREG Alpine Space program, 
with a budget over 2 million euros. SESAM provides all framework conditions to enable 
farms to realize innovative, integrated monitoring: introduction of an easy-to-use tool 
that allows remote monitoring of individual animals through holistic, real-time as-
sessment of their activity and connection to existing health data from milk recording 
organizations. The project work was carried out by a total of 9 partners from 6 countries 
in the Alpine region - France, Germany, Austria, Italy, Slovenia and Switzerland. Among 
them are 4 milk recording organizations, university, and chambers of agriculture, tech-
nological institute and livestock breeders organizations. In the main and final phase of 
the project, it was collected and analyze data from about 26 pilot farms with over 1000 
dairy cows - 5 Germany, 7 in Austria, 4 in France, 7 in Slovenia and 3 in Italy. Although it 
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was planned and prepared sensors and infrastructure for a minimum of 40 pilot farms, 
due to pandemic constraints, two of our partners were unable to equip and launch 
their pilot farms.

Material and methods
SESAM is a system of sensors, infrastructure equipment and software tools that pro-
vide a remote monitoring of individual animals through holistic, real-time assessment 
of their activity and connection to existing health data from milk recording organi-
zation. SESAM aims at introducing an innovative IT-sensor based framework for in-
novative decision-support, tailored to family farm (SME) needs, that enables them to 
improve competitiveness, animal wellbeing, decrease calf-loss through real-time mon-
itoring while preserving the traditional & culturally relevant role in the regional soci-
oeconomic structure. SESAM work via the transnational existing partner network of 
milk recording organizations (reaching out to 80.000 farms & more than 3 M cows), in 
cooperation with key research organizations and farms themselves, to implement an 
Alpine wide solution through pilots and market roll out.

Experimental data – infrastructure equipment and technology used
Sensors - The SESAM sensor uses a 3-axis MEMS acceleration chip to measure the 
movements of the cow. It records the sensor measurements, perform buffering, pro-
cessing and transmitting the data to the next component – the base station/amount: 10 
– 200 (number of cows). The raw acceleration data needs to pass through multiple de-
vices and programs before the cow activities can be visualized on a web page (Figure1).

Figure 1: The sensor data is transmitted to the base station(s) over Bluetooth (low energy) and 
processed on the SESAM Gateway. The classification results (cow activities) are sent to the SESAM 
Server.

Radio Base station
The base stations build the connection with the sensor using Bluetooth. The base sta-
tions consist of a raspberry pi 3 and receive commands from the gateway (gateway 
base). Up to 20 base stations can be placed in a barn. The base stations use the WIFI 
network of the gateway (SesamBarnWIFI) to connect and transmit data to the gate-
way, amount: 1 – N (depending on barn size and localization accuracy necessary). Only 
two programs/services are running on the base stations. The program “basestation_up” 
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makes sure that the base station reconnects with the SesamBarnWIFI network, in case 
the connection is interrupted. The “base station” program/service receives commands 
from the gateway, connects to the sensors over Bluetooth, and sends the received data 
back to the gateway.

Barn Gateway
The SESAM gateway consists of a Jetson Nano Computer from Nvidia, WIFI Access 
Point, USB-SSD, and in some cases an LTE-Modem, if a connection with an Ethernet 
cable is not possible in the barn. The main responsibility of the gateway is to send 
commands to the base stations, store the received data to the SSD, process the sensor 
data using the build-in classification model (First level algorithm) and send the results 
to the SESAM server. The gateway base software decides which base station should 
connect to a particular sensor, receives the data from the base stations and transmits 
the data to other program for post-processing. The Logstat program/service receives 
the raw sensor data from the gateway base program (using a pipe file/Fifo buffer under 
Linux) and saves the data into a binary raw file into the SSD. The saved sensor data can 
be processed manually later on, if necessary. The SesamClassification service (aka Ses-
amGatewayServer) receives the raw sensor data from the gateway base program and 
estimates the cow activities. First, some features are calculated from the acceleration 
signal and then a classification model is used to get the cow activities. The results are 
saved into a SQL database on the SSD. The “SesamConnector” program/service reads 
out the SQL database on SSD every 5 minutes and sends the classification results (cow 
activities) with timestamps to the SESAM server.

SESAM Server
The SESAM server receives the cow activities from the SesamConnector program and 
saves the data. The classification results can then be visualized using a web browser. 
On the SESAM server is deployed the Second level algorithm, which purpose is to pre-
dict important events based on the activity data of each cow.

Feature calculation
As input for the classification algorithm data of an accelerometer is used, measuring 
the acceleration along the X, Y and Z-Axis. Additionally, the derivate and the integral of 
each axis was calculated. Based on this data a feature set consisting out of 345 features 
was created. These features consist out of time-domain features, such as different sta-
tistical measures like the mean and the standard deviation but also frequency-domain 
features to capture activities with repetitive nature like e.g. walking. These features 
were calculated over a window size of 250 samples, which corresponds to a window 
size of 25 seconds with a sampling frequency of 12.5Hz of the accelerometer. To prevent 
overfitting a smaller set of features was selected, consisting out of 40 different features, 
which were determined to be the most influential ones. The resulting features were 
used as input for a decision tree ensemble consisting out of multiple decision trees 
(see Figure 2). Each decision tree calculates the probability for a given class (Eating, Lay, 
Ruminating, Standing, Walking). These probabilities get averaged across the trees and 
the output of the model will be the class that yields the highest probability. This way we 
get a predicted class for every 250 Samples of accelerometer data.
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Figure 2: Singular decision tree used for the classification

Algorithm optimization results
The final analysis was carried out with an independent test set.

Collected data from a new farm for testing showed good results for Eating and Walking 
but some difficulties with correct detection of Rumination. Decent results for laying 
and standing.

Comparison with specification (Figure3):

Walking > 90% (Prio 1) met

Rumination > 90% (Prio 2) not met

Eating > 90% (Prio 3) almost met

Average > 88% not met

Figure 3: Final results from sensor data classification
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Results and Discussion

“AliBaba” platform for data analysis
We have our pilot farms from which we receive sensor information classified by the 
1st level algorithm in 5 main activities - Walking, standing, lying, eating, and ruminat-
ing. From MRO through a standardized interface, we receive health information about 
the same animals - diagnoses, major events, information about milk production, milk 
quality, etc. The main events are marked in the activity graph with the help of symbolic 
icons (on the top right corner of the screenshot). With the help of the visualization tool, 
we have the opportunity, with the active participation of the pilot farms, to analyze 
the activity of animals during, before and after the events marked in the MRO data - 
insemination, birth, disease diagnosis, hoof manipulation or other manipulations. Ob-
servation of individual activities in a day interval, brings useful information about the 
routine of the farm and whether and to what extent the animal fits into it. Any devia-
tion from the mean values or from the manifestation of the same within the day, can 
be interpreted and investigated further - it can only be a social manifestation, but it can 
also be an indicator of a disorder or problem. A tool for working with experts and de-
cision support - using visualization and comparison features, experts can analyze ani-
mal behavior, identify “normal” conditions, and track changes indicating abnormalities 
- potential health problems. By the time the project was completed, information had 
been accumulated from nearly 1,000 cows over an interval of more than a year. This 
information was analyzed in combination with the data on the health status of the 
observed animals, their diagnoses during the observed period as well as the performed 
manipulations. Those analysis serve as a guide line for the development of the second 
level algorithm that will eventually send back to the farmers alerts for major events or 
abnormalities in the animal activities. 
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Second level algorithm – concept and application
The working group dealing with the second level algorithm developed the main pa-
rameters of the model. Subsequently, each partner‘s experts made their own versions 
using data collected from the pilot farms.

Within the project, two developments of a second-level algorithm were made. The first, 
is from the experts of LKV BW, with an emphasis on the ability to predict a wide range 
of events and diagnoses like oestrus, milk fever, ketosis, mastitis, cysts, cycle disrup-
tion, liver fluke, Mortellaro claw disease, Limax claw disease, Sole ulcer claw disease, 
and White Line Defect (WLD) Claw disease. For the model, behavioral parameters com-
prising lying, standing, walking, eating, and ruminating were collected from the 6 LKV 
BW pilot farms over a 13-month period. These parameters were used as predictive fea-
ture attributes and combined with observational data on previous events and diagno-
ses from the corresponding time period, to train support vector machines with the aim 
of detecting them prior to onset.

The second, under the supervision of Prof. Dr. Hubert Pausch and Peter von Rohr, fo-
cused on the possible prediction of calving and oestrus, published in Jessica Gaering’s 
master thesis in 2022. Behavioral parameters comprising lying, standing, walking, eat-
ing, and ruminating were collected from the 4 Slovenian pilot farms over a 13-month 
period. These parameters were used as predictive feature attributes and combined 
with observational data on previous oestrus and calving events from the correspond-
ing time period, to train support vector machines with the aim of detecting oestrus and 
calving in the 24 hours prior to onset.

The most appropriate for the needs of this material is the description given by Jessica 
Gearing in her Master’s Thesis at ETH on “Exploring the potential of machine learning 
to predict oestrus and calving in Alpine dairy cows” using the Slovenian data from the 
SESAM project. Due to limited space, we will mention a brief description of the method 
and the conclusions from the results of the model.

The data set for Ms. Goering‘s model has been cleared of other health problems and 
comprises 9079 „no event“ cases, 22 cases of oestis and 19 cases of calving. A two-sam-
ple t-test was used to analyze the potential relationship between behaviors and the 
occurrence of oestrus and calving compared to periods of no reproductive or health 
events (J. Gearing, (2022)). Separate models are designed for oestrus and calving using 
the support vector machines method.

For SVM classification each data point in the training set was allocated a 5-dimension-
al vector consisting of each of the five behavioral attributes. The SVM model was thus 
built to discriminate between the two classes (no event vs pre-oestrus or pre-calving) 
by attempting to define a hyperplane decision boundary that maximized the margin of 
separation between the data points of the two classes (J. Gearing, (2022)).

With a sensitivity of 100% and specificity of over 90%, the model was effective for 
the prediction of calving 24 hours before onset. For the oestrus detection, the model 
yielded a sensitivity of 83.3%; however, the low specificity of 43.4% means this would 
not be applicable in practice.
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Conclusions
In the process of analysis, we found that clearly expressed samples of activity are not 
always available, or they do not carry useful information for the needs of forecasting. 
With a number of udder or hoof problems, there is a slow or sharp decrease in activ-
ity, reduced mobility or, of course, reduced productivity. This means that a number 
of health problems have similar patterns of changes in the activities we observe. But 
over time, thanks to the large amount of data, we will be able to train our algorithms 
to recognize specific diagnoses that are most common in our sample of pilot farms. 
With the accumulation of data, more and more new and interesting opportunities are 
opening up: at the moment we start processing data from the first pilot farms, which 
are already in an interval of more than a year - we will have the opportunity to com-
pile a detailed picture of the activities during the whole lactation, or seasons and type 
of feeding. To compare the patterns of activities between lactation cycles, or animal 
breeds, of breeding systems. Farm experts and advisers are already beginning to accu-
mulate their ideas for comparing annual activity data, drawing conclusions about food 
and farming efficiency.
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Abstract
A large amount of different data already exists in partly isolated databases of various 
stakeholders, but are generated by different hardware and software products on the 
farms every day. As automation increases, so does the amount of data recorded. In 
order to derive maximum benefit from these data and to optimally support farmers in 
their herd management and genetic improvement, it is necessary to create structures 
to collate these data sources. 

The COMET project D4Dairy unites 44 partners, among them experts and researchers 
from universities and other domestic and international research organisations, profes-
sionals from national and international company partners along the dairy value chain, 
stakeholder organisations and national and international technology providers to ex-
ploit the opportunities offered by new technologies and analytical methods. 

In various pilot studies with 305 participating farms, numerous cow specific parame-
ters (e.g. automation, performance recording, genetic and genomic information, health 
information) as well as environmental factors (housing, feeding, management, climate) 
are recorded.

D4Dairy aggregates data into a central platform in compliance with data protection 
requirements and specific agreements. Analyses within D4Dairy include identification 
of risk factors and early predictors of health problems using big data approaches, use 
of mid-infrared spectra, genetic and genomic studies, mycotoxin detection and infor-
mation about the impact of housing climate on animal health and welfare and the 
development of data-based strategies to reduce the use of antimicrobials.

The overall objective is that D4Dairy aims to benefit the farmer and the community by 
improving health, welfare and sustainability in dairying.

Keywords: interdisciplinary network, welfare, animal health, advanced data 
technologies
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Introduction
New technologies are revolutionising the dairy industry and as automation increases, 
so does the amount of data produced. According to a survey within D4Dairy in 2019, 
30% of the farms keeping more than 50 cows are equipped with a milking robot and an-
imal sensors in Austria with further expected increase. This means that large amounts 
of data are generated by different hardware and software products, but also other 
sources, on and off the farms every day, but many systems are still stand-alone solu-
tions with no or a low level of communication and integration between different data 
sources (Rutten et al. 2013). Hence, data exist in partly isolated databases of various 
stakeholders. An Austrian survey among farmers and veterinarians (Perner et al. 2016; 
Weissensteiner et al. 2018) revealed the importance of linkage of data. 

In order to derive maximum benefit from data and to best support farmers in their herd 
management and genetic improvement, it is necessary to create structures to bring 
data sources together. 

D4Dairy
The transdisciplinary, cross-industry COMET project D4Dairy (Digitalisation, Data inte-
gration, Detection and Decision Support in Dairying) started on 1.10.2018 with 4 years 
duration and a budget of 5.5 million Euro. It aims to develop further digitally supported 
management and breeding tools for dairy farms that contribute to improvements in 
animal health, animal welfare and product quality through data-supported and in-
tegrated information systems. Cooperation between various partners and integrating 
different data is a prerequisite for that.

Figure 1: D4Dairy Consortium
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D4Dairy unites 13 scientific and more than 30 industrial partners in an international-
ly competitive, transdisciplinary network. It includes universities, competence centres 
and research institutes in Austria and abroad, companies along the milk value chain, 
including farmers, breeding organisations, milk processors, animal health services and 
interest groups and national and international technology providers in the areas of 
sensor technology, feeding, housing climate measurement and data processing (Figure 1). 

Data collection
In the nine projects of D4Dairy research is done on different topics (Figure 2). 

Figure 2: Focus of research within D4Dairy

Figure 3: D4Dairy project farms

Data collection was set up in a way to minimize the effort for data recording and use as 
many synergies and cooperation between the projects as possible. 
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Data were collected on the project farms between October 2019 and June 2021. In total, 
305 farms participated in the projects as shown in Figure 3.

Digital tools developed in other projects of Rinderzucht AUSTRIA or already availa-
ble within the different applications within the Central Cattle Database (RDV) could 
be used for data collection. Harmonised protocols for recording were elaborated tak-
ing into account already existing international standards (www.icar.org) and different 
needs within the various projects within D4Dairy. Comparability and joint use of data 
was considered. Strategies to record directly and electronically as much as possible 
were set up. This includes Application Programming Interfaces (API) to the automatic 
milking systems and sensors, routine interfaces (e.g. with the feed laboratory, milk 
laboratories), as well as the electronic recording by mobile APPs. Farmers, veterinari-
ans, claw trimmers and technology providers were motivated to participate or collab-
orate in the project. The huge data set comprises data from performance recording, 
data from automatic milking systems, activity and health data from animal sensors, 
lab data, like feed analysis, milk MIR spectra or bacteriological milk tests, genetic and 
genomic data, environmental and housing climate data, data on housing, feeding and 
management and health information of the individual animals, for example veterinary 
diagnoses, claw trimming data, ketosis tests, lameness and body condition scores and 
daily milk yield.

D4Dairy developed standards for data sharing e.g. harmonised the antimicrobial sus-
ceptibility testing or feeding rations. New interfaces to automatically submit results 
from feed analysis, antimicrobial susceptibility testing, sensor and automatic milk-
ing systems to the Central Cattle Database (RDV) were established (Egger-Danner et 
al. 2021). This is important to reduce the workload for the farmer by avoiding multi-
ple entries of data. Data integration is also the base for added value out of different 
data sources. Beside technical aspects, the legal background had to be elaborated and 
agreed between partners.

Monitoring data quality
To ensure high data quality all data recorders were trained and the inter observer re-
liability was evaluated. We found good agreement (values of weighted Kappa of 0.6 
and above) between all participating LKV-employees recording the body condition and 
lameness scores on the project farms. The received data was monitored continuously, 
missing data and outliers were identified and investigated and an automatic feedback 
to the data recorders and partly farmers was established. 

D4Dairy data
The newly developed D4Dairy data platform provides an interface to project partners 
for data collection. It is a platform for data integration, harmonization, quality assur-
ance, data exchange and offers the possibility for evaluation (e.g. algorithm for pre-
dictions). Anonymized research data sets are made available to the research groups in 
D4Dairy directly out of D4Dairy data following legal agreements on the use of the data 
between data providers and researchers. 
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Figure 4: D4Dairy data platform developed within the project (Papst et al. 2021)

Data-sharing concept
Another challenge of data integration from different sources is compliance with legal 
data protection regulations. A detailed D4Dairy data-sharing concept (Figure 5), which 
regulates data exchange, data use and ensures data protection with various agreements 
was established between all participating partners. For each research question a Mate-
rial Transfer Agreement is signed, that lists the specific data, the purpose they can be 
used for, who works with the data and specifies the conditions for the use of data. To 
date (February 2022) 32 Material Transfer Agreements exist in D4Dairy. Additionally, all 
participating farmers signed their agreement to use data from his/her farm in D4Dairy 
and all D4Dairy partners agreed to an Agreement pursuant to Art. 26 General Data Pro-
tection Regulation (GDPR) and the Consortium Agreement.

Figure 5: D4Dairy Data Sharing Concept 
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Decision support tools – added value out of data integration 
The focus in D4Dairy is on data analysis and tool development. Integrated datasets 
are the precondition that different animal-, farm- and environment specific data can 
be used for big data analyses to explore the impact of and dependencies between dif-
ferent risk factors for development of diseases (Matzhold et al. 2021). Models to predict 
individual diseases using a selection of features and the best performing methods are 
being developed (Lasser et al. 2021). In the first step a comprehensive already existing 
dataset from the project Efficient Cow (Egger-Danner et al. 2017) was used to predict 
disease risks. The F1 Score e.g. for lameness was 0.72 and for ketosis 0.70. Presently, 
models that also integrate data from automatic milking systems and sensors are being 
developed. The overall aim is to provide an alarm for farmers if diseases are developing 
using integrated relevant data. 

Further areas of research and development of decision support tools are mid-infrared 
spectra for health monitoring (Rienesl et al. 2019, Christophe et al 2021, Köck et al. 2019, 
Dale et al. 2021) genetic and genomic studies, mycotoxin detection (Penagos-Tabares et al., 
2021), information about the impact of housing climate on animal health and welfare 
and the development of data-based strategies to reduce the use of antimicrobials. 

Some further examples of the numerous results that can be expected out of D4Dairy 
are a decision support tool for drying off strategy to support a targeted use of anti-
microbials, a herd management decision support tool to analyse reasons for health 
problems, enhanced risk predictions by means of routine MIR milk spectra or merging 
of different data sources and new breeding values for health traits to make it easier to 
breed healthier cows. 

Farmers want better tools that are more effective for prevention of diseases or genetic 
improvement of health and welfare (Palluch et al. 2021). 

Conclusions
With the collaboration within the D4Dairy consortium uniting various expertise in an 
interdisciplinary network with one common goal, a big step towards generating added 
value through data integration and applying advanced research was taken. The key to 
success are multi-actor approaches and a win-win cooperation with shared benefit. 
D4Dairy brought many players along the dairy value chain together in one project to 
develop structures together, which enable transparency in data sharing and trustful 
cooperation. Major challenges in creating added value out of different data sources are 
different standards and parameter definitions, different data formats and data qual-
ity, data privacy concerns or competing business interests. An approach to overcome 
these challenges is by means of data sharing platforms (Papst et al. 2021) with a trans-
parent data-sharing concept. Comparability of results, standardisation and harmoni-
sation, data validation, data privacy, transparency and data protection concerns were 
addressed in the project. 

The overall objective is that digitalisation aims to benefit the farmer and the communi-
ty by improving health, welfare and sustainability in dairying. Expected results are the 
reduction of the workload of farmers, better tools that are more effective for prevention 
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of diseases, the early detection of health problems, the use of new data for breeding 
allowing increased genetic improvement of health and welfare and overall leading to 
healthier animals and a more sustainable and efficient production. 
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Abstract
Precision livestock farming (PLF) is expected to add value in both economic and animal 
welfare domains. Sub-optimal mobility (SOM; syn. lameness) in dairy production is 
a costly health condition with negative animal welfare effects. Implementing PLF tech-
nologies to help manage SOM may prove beneficial in both domains by reducing SOM 
costs and increasing animal welfare. While many PLF technologies apropos SOM are 
documented in the literature, few of them are available in practice. This contributes to 
a lack of empirical data available to quantify whether these PLF technologies add value 
to the economic and welfare domains. To circumvent the lack of available information, 
our objective was to quantify herd-level SOM costs and welfare impacts with stochastic 
simulation modelling. SOM was described by 5 mobility scores. SOM costs were quan-
tified with a partial budgeting approach. Animal welfare was quantified by multiplying 
mobility score durations with welfare compromise weights per mobility score. We sim-
ulated 9 different scenarios for a farm with automatic SOM detection sensors (ASDS) 
and compared them with a without ASDS scenario. Scenarios differed by SOM manage-
ment and alert notification intervals. Results from 5/9 scenarios showed added value in 
both economic and welfare domains; the optimum scenario obtained a 45% reduction 
in SOM costs and a 93% improvement in animal welfare. The remaining 4/9 scenarios 
showed added value in only the welfare domain. We conclude that PLF can add value 
to both economic and welfare domains, albeit altered SOM management strategies and 
improved sensor performance are required.

Keywords: Sub-optimal mobility, sensor detection, animal welfare, simulation.

Introduction
Precision livestock farming (PLF) is expected to add value in both economic and ani-
mal welfare domains. Sub-optimal mobility (SOM; syn. lameness) in dairy production 
is a costly health condition with negative animal welfare effects. Using PLF technol-
ogies, such as automatic SOM detection sensors (ASDS) to manage SOM, are expect-
ed to add economic and welfare value to the farming operation (Banhazi et al., 2012; 
Berckmans, 2017, 2014)particularly in Asia, India, and South America, are getting more 
financial possibilities to buy animal protein. This fact, combined with the changing 
diets of these people in those countries, will result in an increase of the worldwide 
demand for animal products (meat, eggs, and milk. Research quantifying the economic 
value of PLF technologies in relation to SOM are sparse. For ASDS, only Van De Gucht et 
al. (2017)information about their economic value is lacking. In this paper, a conceptual 
and operational framework for simulating the farm-specific economic value of auto-
matic lameness detection systems was developed and tested on 4 system types: walk-
over pressure plates, walkover pressure mats, camera systems, and accelerometers. 
The conceptual framework maps essential factors that determine economic value (e.g., 
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lameness prevalence, incidence and duration, lameness costs, detection performance, 
and their relationships and Kaniyamattam et al. (2020) showed that an economic value 
exists. On the other hand, no research quantifying the animal welfare value in man-
aging SOM with ASDS exists. The objective of this study was to quantify the economic 
and welfare gains of ASDS when used to manage SOM. This was done via bio-economic 
simulation modelling. In the economic context, this research adds to the work of Van 
De Gucht et al. (2017)information about their economic value is lacking. In this paper, 
a conceptual and operational framework for simulating the farm-specific economic 
value of automatic lameness detection systems was developed and tested on 4 system 
types: walkover pressure plates, walkover pressure mats, camera systems, and accel-
erometers. The conceptual framework maps essential factors that determine econom-
ic value (e.g., lameness prevalence, incidence and duration, lameness costs, detection 
performance, and their relationships and Kaniyamattam et al. (2020) by considering 
different SOM management strategies with ASDS and includes alert notification inter-
vals for mild SOM. In the animal welfare context, this research is the first to simulate 
the impact of SOM on animal welfare and to assess the animal welfare gains of ASDS 
when used to manage SOM. 

Material and methods

Simulation model
A stochastic daily time-step bio-economic simulation model was used for this study 
(Edwardes et al., 2022). The model simulates a Dutch dairy herd of 125 cows that are 
housed in cubicle housing with concrete slatted floors during Autumn and Winter 
while cows have pasture access for >6h per day during Spring and Summer. 

The cows’ actual state of mobility, either optimally or sub-optimally mobile, is simu-
lated by the model. This is achieved by simulating the incidence and duration of hoof 
disorders at hoof-level. The occurrence of hoof-disorders are then modelled as the 
mechanisms responsible for SOM. Cow mobility is modelled using the Sprecher 5-point 
mobility scoring scale where 1 = optimal mobility and 5 = severely impaired mobility 
(Sprecher et al., 1997). If a cow is scored with mobility score ≥2, she is considered as 
SOM. Mild and severe forms of SOM are represented by mobility scores 2 – 3 and 4 – 5, 
respectively. 

SOM management is defined by a simulated management scenario. These scenarios in-
clude SOM (mild and severe) treatment by either the farmer, veterinarian, or hoof-trim-
mer. Further explanation on SOM management is provided in the Scenarios section. 

In each time-step, (re)productive events were simulated. These (re)productive events 
are milking, feeding, culling, estrus detection, insemination, and calving, and are all 
affected per mobility score 1-5.

Economic module
Economic computations are based on production events (unaffected and affected by 
SOM), and management actions for non-SOM specific events (i.e., culling for non-SOM 
reasons and inseminations) and SOM specific events (i.e., treatment). Associated input 
parameters are found in Edwardes et al. (2022). Economic variables include gross milk 
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returns and costs of milk losses, discarded milk, feed, inseminations, culling, farmer 
labour, veterinarian, hoof-trimmer, treatment. These variables were summed for each 
cow over a one-year time period to obtain the annual total of each economic variable. 
An annual (ASDS) sensor depreciation was included as the annual (ASDS) sensor cost 
(€1553.75 based on Nedap (2021) and (Sleurink, 2018)). The difference between the an-
nual total gross milk returns and the sum of the annual total costs obtained the net 
economic farm results. Subtracting the net farm economic results for a scenario where 
SOM was present from the net farm economic results for a scenario where SOM was 
not present obtained the annual cost of SOM (Rushton, 2009).

Welfare module

Table 1: Welfare impact weights per mobility score.

Aspect
Mobility score 

1 2 3 4 5

Feed and water intake 0.00 0.00 0.57 1.14 1.14

Functional impairment 0.00 0.42 1.01 1.46 2.06

Body condition score 0.00 0.00 0.39 0.67 0.67

Behavioural change 0.00 0.00 0.42 0.75 0.75

Cow-human interaction 0.00 0.00 0.20 0.20 0.20

Quantifying the welfare impact of SOM was done in a two-step procedure. First, welfare 
impact weights per mobility score were derived via adaptive conjoint analysis (ACA; 
Orme, 2006). In brief, ACA allowed us to elicit welfare impact weights due to SOM that 
experts placed on the multi-aspect concept of animal welfare (Mellor, 2017) per mobili-
ty score. Five welfare aspects that SOM affects were included in the ACA. These aspects 
were: feed and water intake (Norring et al., 2014), functional impairment (Sprecher et 
al., 1997), body condition score (O’Connor et al., 2019)economic, and environmental 
consequences that have yet to be extensively quantified for pasture-based systems. 
The objective of this study was to characterize mobility quality by examining asso-
ciations between specific mobility scores, claw disorders (both the type and severity, 
behavioural change and cow-human interaction (Welfare Quality®, 2009).  Second, the 
welfare impact weights βj,l for welfare aspect j and mobility score l were then used as 
parameter inputs to compute the welfare impact of SOM per SOM incident per cow that 
occurred in a one year period. These inputs are tabulated in Table 1. Per SOM incident, 
the duration of mobility scores within the incident were respectively weighed by the 
welfare impact weights as follows:

 (1)

where Wh,i is the total welfare impact score of SOM incident h for cow i, βj,l is the welfare 
compromise weight for welfare aspect j and mobility score l, αh,i,l is the duration (days) 
of mobility score l during SOM incident h for cow i, and γh,i,l is the number of cow-hu-
man interactions directly related to SOM (i.e. treatments) for mobility score l during 
SOM case h for cow i. Cow-human interactions were separated from the summation of 
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the 4 other welfare aspects to limit the indirect effects of SOM on cow-human inter-
action that may occur during daily farming activities. The welfare impact scores were 
analysed at SOM incident level and normalised to the maximum welfare impact score 
to obtain welfare impact scores between 0 and 100 across all SOM incidents. These 
normalised welfare impact scores were then summed to obtain an annual herd-level 
welfare impact score.

Simulation scenarios

Table 2: Description of simulated scenarios

Aspect Scenario

0a 1 2 3 4 5

ASDS b on farm No Yes Yes Yes Yes Yes

Mobility score 
ASDS threshold 
value for SOM

NA Mobility 
score ≥3

Mobility 
score ≥3

Mobility 
score ≥3

Mobility 
score ≥2

Mobility 
score ≥2

Routine hoof 
trimming at 
start of pasture 
and housing 
period

Yes Yes No No No No

SOM cow treated by:

Mild SOM c

At routine hoof trimming At alert notification

Hoof 
trimmer

Hoof 
trimmer Farmer Hoof 

trimmer Farmer Hoof 
trimmer

At alert notification

Severe SOM d Farmer/ 
veterinarian

Farmer/ 
veterinarian

Farmer/ 
veterinarian

Farmer/ 
veterinarian

Farmer/ 
veterinarian

Farmer/ 
veterinarian

Alert 
notification 
interval in 
day(s)

NA 1 1; 7 1; 7 1; 7 1; 7

a Baseline simulation scenario: visual detection as per Edwardes et al. (2022).
b ASDS = automatic SOM detection sensor.
c In Scenarios 2and 3 mild SOM is defined by mobility score 3 and in Scenarios 4 and 5 mild SOM is 
defined by mobility scores 2 – 3.
d Severe cases of SOM with mobility score 5 are treated by the veterinarian.
e See Equation 2.

Management scenarios were defined and simulated for a farm with an ASDS that had 
a sensitivity of 68% and a specificity of 88% (Van Hertem et al., 2016). These scenari-
os were compared to a farm without ASDS (Scenario 0). This was done to assess the 
economic (reduced SOM cost) and welfare gains of using ASDS in the management of 
SOM. The management scenarios are described in Table 2. In Scenario 0 and 1, mild 
SOM is treated twice yearly at routine hoof trimming as a preventative measure for 
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severe SOM. In Scenario 2 – 5, routine hoof trimming no longer occurred. Mild SOM was 
treated by either the farmer or the hoof trimmer. Severe SOM was either treated by the 
farmer or a veterinarian in all management scenarios (Scenario 0 – 5). In Scenario 1 – 3, 
the mobility score ASDS threshold value for SOM was mobility score ≥3 meaning that 
the ASDS classified cows with these mobility scores as SOM (Van Hertem et al., 2016), 
else they were non-SOM. In Scenario 4 – 5, the ASDS classified all cows with mobility 
scores ≥2 as SOM. 

In Scenario 1, alerts were generated daily. Whereas in Scenario 2 – 5, 2 sub-scenarios 
concerning alert notification interval scenarios of 1 and 7 days for mild SOM were sim-
ulated, respectively. At each alert notification interval, alerts were generated for cows 
that were classified with mobility score 3 (Scenario 2 – 3), or mobility scores 2 or 3 (Sce-
nario 4 – 5) for more than 50% of the notification interval. Thus, notification intervals 
of 1 day represent an ASDS that cannot distinguish between mild and severe SOM. In 
total, nine with ASDS and one without ASDS scenarios were simulated.

Results and Discussion

Absolute results from the nine with ASDS (Scenario 1 – 5) and without ASDS (Scenario 0) 
simulated scenarios are presented in Table 3. Mean results from the nine with ASDS 
scenarios are plotted in Figure 1 relative to the without ASDS scenario. Overall, 5/9 with 
ASDS scenarios resulted in a reduction in SOM costs (i.e., economic gain) and welfare 
gain, while 9/9 showed a reduced welfare impact (i.e., welfare gain) and 4/9 showed 
increased SOM costs.

Table 3: Absolute results (95% CI) apropos the annual cost and welfare impact of SOM.

Management 
scenario

Alert notification 
interval

SOM cost  
 in € ‘000

SOM welfare impact 
in ‘000

0 NA 14.65 (1.76; 27.52) 30.44 (22.10; 38.83)

1 1 18.76 (6.3; 31.34) 28.77 (17.29; 38.01)

2 1 14.23 (1.48; 27.06) 14.84 (13.02; 16.13)

3 1 10.00 (-2.18; 22.58) 15.12 (13.21; 16.81)

4 1 21.91 (9.71; 34.22) 1.38 (0.24; 0.49)

5 1 16.5 (4.59; 28.64) 1.4 (0.44; 10.33)

2 7 13.08 (0.72; 25.46) 17.47 (15.12; 19.66)

3 7 8.45 (-4.25; 21.06) 17.38 (14.76; 19.66)

4 7 14.8 (2.58; 26.85) 2.1 (1.16; 2.9)

5 7 8.13 (-4; 20.22) 2.28 (0.66; 3.2)

Scenario 1 with an alert notification interval of 1 day showed an increase in SOM costs 
(28%). This was mostly due to the additional annual sensor depreciation and cost of 
labour required to check false alerts or alerts generated for cows with mobility score 3 
that were to be trimmed at routine hoof trimming. The additional labour related costs 
apropos alert checking may be an overestimation as Eckelkamp and Bewley (2020) 
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found that farmers tend to ignore alerts if too many are generated at one time. A wel-
fare gain of 5% was obtained due to severe SOM cows being detected and consequently 
treated sooner compared to severe SOM cows in management scenario 0.

Figure 1: Mean reductions in SOM costs and animal welfare gains for a farm with an automatic SOM 
detection sensor respective of notification interval and management scenario. Mean SOM costs and 
animal welfare results per scenario are compared relative to a farm without an automatic SOM 
detection sensor.

Detecting and treating cows with mobility score 3 sooner, as in Scenario 2 with an alert 
notification interval of 1 day, showed a reduction in the cost of SOM by 3%. While large 
reductions in production losses costs (i.e., milk and culling) occurred, they were off-
set by the increases in labour for treatment and alert checking, treatment, and sensor 
costs. However, with sooner treatment of cows with mobility score 3 a welfare gain of 
51% was achieved. Increasing the alert notification interval to 7 days reduced the SOM 
cost by 11%. The alert notification interval reduced the number of false alerts and thus 
the associated labour costs. A welfare gain of 43% was achieved.

Larger reductions in SOM costs in Scenario 3 for both notification intervals of 1 (32%) 
and 7 (42%) days were achieved. This is due to the hoof trimmer hourly rate being 
cheaper than the farmer labour apropos the cumulative time to treat cows with mobil-
ity score 3. These results may overestimate the reductions in SOM costs because we did 
not consider different hoof trimer fee structures that may occur as they become more 
frequently required. The welfare gains for alert notification intervals of 1 and 7 days 
were 50% and 43%, respectively.

Interestingly, an alert notification interval of 1 day in Scenario 4 and 5 when cows with 
mobility score ≥2 were detected and treated, the cost of SOM increased by 50% and 13%, 
respectively. A large contributor to both increases in the SOM costs was the increase 
labour cost apropos alert checking since the frequency of alerts was higher with alerts 
being generated for mobility scores ≥2. On the other hand, welfare gains of 95% were 
achieved due to treating mobility scores ≥2 as soon as possible, which affects cow welfare.

Similar welfare gains (93%) were achieved when the alert notification interval was 
7 days in Scenario 4 and 5. However, in Scenario 4 the cost of SOM increased by 1%. Al-
though costs related to alert checking farmer labour reduced due to an alert notification 
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interval of 7 days, the costs related to farmer treatment labour were high and offset the 
reductions in costs related to alert checking farmer labour. In management scenario 5 
when mild SOM was treated by the hoof trimmer the cost of SOM reduced by 44%.

Overall, results from the simulated scenarios show that using ASDS to manage SOM 
can achieve animal welfare gains because of sooner intervention of mobility scores 2 
and 3. However, using ASDS does not always result in economic gains when treating 
mobility scores 2 and 3. This is largely due to the increased labour costs associated with 
alert checking and treatment. Increased costs due to alert checking reflect the costs 
associated with false alerts and show the economic importance of sensor performance. 
Better economic gains can be achieved apropos mobility score 2 and 3 intervention by 
limiting the number of false alerts with alert notification intervals of 7 days while this 
change in alert notification interval reduces the welfare gains marginally.

Conclusions
This research concludes that economic gains cannot always be achieved with ASDS 
due to the high labour costs associated with high frequencies of SOM intervention 
for mobility scores 2 and 3. Introducing an alert notification interval apropos mobility 
scores 2 and 3 helps prioritise mild SOM cases and reduces the labour costs associated 
with mild SOM intervention. On the other hand, managing SOM with ASDS can achieve 
welfare gains because intervention for cows with SOM can be performed sooner.
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Abstract
Knowing which mastitis cases are at risk of becoming chronic as early as possible dur-
ing a (subclinical) episode would be helpful in limiting transmission of chronic masti-
tis, and unnecessary culling. The Online Cell Counter (OCC) enables the collection of 
data on Somatic Cell Count (SCC) at each milking. The aim of this study was to develop 
a forecasting model of mastitis chronicity after the initial increase in SCC and to ex-
amine predictive performance of such a model. We used sensor data from 14 European 
and North American dairy farms with an automatic milking system (AMS) and an OCC 
(DeLaval International AB). Chronicity was defined as the lack of a structural decrease 
below 200,000 SCC/ml in 50 days after the day at which the prediction was performed. 
This prediction was performed using OCC data from 30 days prior to the day where the 
forecast was made. The label (i.e. to-be-predicted status) indicates whether the cow 
would recover or turn chronic. A random forest classification model was trained on 
data from seven randomly selected farms and the data of the remaining seven farms 
were used to estimate the predictive performance. These results were compared with 
a default approach that approximated how farmers would diagnose chronicity with 
monthly SCC data. On average, the model outperformed the default approach on all 
farms based on accuracy, Matthew’s Correlation Coefficient, sensitivity, and specificity. 
This study shows that it is possible to predict the mastitis chronicity status with high 
accuracy using past SCC data from the OCC.

Keywords: chronic mastitis, udder inflammation, automatic milking system

Introduction
Chronic subclinical mastitis causes substantial costs through increased risk of patho-
gen transmission within the herd, increases the risk of clinical mastitis, and prolonged 
milk loss in affected cows (Bonestroo et al., 2022). Knowing which cases run the risk of 
becoming chronic at an early stage of a subclinical mastitis episode would be helpful in 
planning appropriate interventions and limiting cow-to-cow transmission of the path-
ogen. Automatic milking systems can employ sensors that can measure somatic cell 
counts (SCC) regularly. These measures can be performed more often than the com-
monly used monthly Dairy Herd Improvement (DHI) SCC measurement. The benefits 
of more frequent sampling would include a higher diagnostic performance to forecast 
whether the case would recover or become chronic. This forecast could serve as deci-
sion support tool on treatment, dry-off, or culling decisions. The aim of this study was, 
therefore, to develop a prediction model based on online cell counts that forecasts 
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chronic mastitis status based on past sensor data after an initial increase in SCC. The 
model, based on SCC and using random forest classification, was compared to a default 
approach representing the performance achieved with monthly sampled SCC data.

Materials and Methods
We used data from 14 herds from Belgium, Canada, France, Sweden, and the Neth-
erlands, with herd sizes of lactating cows ranging from 55 to 638 cows. The data was 
retrieved from a central database of DeLaval International AB (Tumba, Sweden). Herds 
with an online cell counter (DeLaval OCC, DeLaval International AB, Tumba, Sweden) 
and an automatic milking system (DeLaval VMS series, DeLaval International AB, Tum-
ba, Sweden) were selected. The data included SCC and days in milk for each milking, 
and the cow identification number. The SCC data was aggregated from a “per milking” 
frequency to a “daily” frequency by taking the daily mean SCC. All days with missing 
SCC data were imputed using a forward fill procedure. To create a training and a vali-
dation dataset, we randomly divided the herds in our dataset. Half of the herds were 
selected for the training set and the other half of the herds entered the validation set. 
Validation herds were identified as herd 1 to 7 while herds 8 to 14 were designated as 
training herds. The data from the training herds were used to fit a prediction model, all 
at once (i.e. the model was trained once using data from all training herds), and data 
from the validation herds were used to test the model’s performance. 

A prediction day (i.e., a day on which a prediction of a future mastitis state was made) 
was defined as a day in the lactation with a) a daily mean SCC higher than or equal 
to 200,000 cells/ml (International Dairy Federation, 2013); b) 30 days of preceding SCC 
data, since the model used 30 days of data as input for the prediction (i.e. the lagged 
variables); and c) 50 days of subsequent SCC data, since 50 days of SCC data were used 
to derive the chronic mastitis status.

A cow was labelled as chronic when the rolling 20-day mean SCC did not decrease 
below 200,000 SCC/ml at any time during the 50 days after the prediction day. As most 
cases tend to recover within 3-4 weeks (Bonestroo et al., 2021), we see that most cases 
would recover within the 50-day window. We used the random forest classification al-
gorithm, as implemented in sci-kit learn (Pedregosa et al., 2011), to create a prediction 
model that forecasted whether the cow would recover (=0) or turn chronic (=1). This 
random forest classifier used the default settings for all parameters. A random forest 
classifier was chosen as they can be quite robust to outliers by binning them. 

The predictive performance of the random forest classifier was compared to that of 
a default approach: the monthly sampling approach (monthly sampling approach 
mimicking DHI sampling frequency, but using OCC data). To mimic a monthly sam-
pling frequency, we used 2 SCC measurements in the 30 days preceding the prediction 
day. This approach labelled the cow as chronic when the SCC was higher than 200,000 
SCC/ml in the SCC measurement closest in time to the prediction day and the SCC 
evaluation as early as possible within the preceding 30-day window. If both SCC sam-
ples were higher than 200,000 SCC/ml, chronic mastitis was predicted. A comparison 
between the monthly (default) sampling approach and the predictions of the random 
forest classification model on the basis of sensitivity, specificity, accuracy, Matthew’s 
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correlation coefficient, and accuracy metrics (see Equations 1 to 4) allowed us to ap-
proximate whether there is an increase of predictive performance of using online SCC 
relative to using SCC in a non-sensor setting. 

 (1)

 (2)

 (3)

 (4)

Results and Discussion
Table 1 presents the sensitivity, specificity, Matthew’s correlation coefficient, and accu-
racy of the model predictions and monthly sampling approach. All performance meas-
ures varied slightly between the different validation herds. Overall, the chronic mastitis 
prediction model outperformed the default approach on all farms for all performance 
indicators. We were also able to see that the accuracy does not majorly differ between 
the herds, apart from herd 7. This is interesting as this hints to the limited influence of 
herd-specific factors in chronic mastitis prediction.

On average, if we would have 100 mastitis cases for which chronic mastitis is fore-
casted, 27 cases would be wrongly forecast under the default approach, while 19 cases 
would be wrongly forecasted using the forecasting model. The difference in wrongly 
forecasted cases would lead to unnecessary culling and treatment when chronic mas-
titis is falsely forecasted, and unnecessary transmission of pathogens when recovery 
is falsely forecasted. In both cases, it would lead to extra economic costs for the dairy 
farm. Another factor to consider is that the prediction can be made more frequently us-
ing daily sensor data. This would result in more moments of evaluation and henceforth 
allowing for more moments to intervene in chronic mastitis.

The results show that a random forest classifier based on frequent SCC values would 
have value for farmers in the activity of forecasting chronicity, assuming that farmers 
currently use the default approach as provided in the study. This point is strengthened 
by the fact that farmers may not need to invest in extra sensor technology to gather 
these forecasts, as all sensors are already available on commercial dairy farms. Chronic 
mastitis forecasting has not obtained substantial interest in the literature. Bartel et al. 
(2019) created two chronic mastitis prediction models for healthy cows and unhealthy 
cows, respectively, using non-sensor DHI data and generalized additive models. How-
ever, this two-model approach cannot be directly compared with our results due to the 
usage of non-sensor SCC measures. Kristula et al. (1992) also used DHI SCC to predict 
chronic mastitis, in which they concluded that chronic mastitis prediction is challeng-
ing. However, sensor data from milking machines is more frequent than monthly sam-
pled SCC measurements and hence can potentially contain more information regard-
ing the chronic mastitis status. This can potentially explain the difference in predictive 
performance between the default approach and the model.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤′𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀 =  
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 × 𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�(𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡)(𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡)(𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
 

𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 =
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 =
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡

𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 =
𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤′𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀 =  
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Table 1: The predictive performance of the model predictions and default approach over 7 validation 
herds 

Herd Sensitivity Specificity Matthew’s correlation 
coefficient Accuracy

Forecasting Model

Herd 1 0.84 0.73 0.58 0.79

Herd 2 0.85 0.74 0.59 0.80

Herd 3 0.83 0.76 0.58 0.79

Herd 4 0.84 0.74 0.56 0.78

Herd 5 0.86 0.78 0.64 0.82

Herd 6 0.85 0.79 0.62 0.81

Herd 7 0.86 0.89 0.70 0.88

All herds 0.85 0.78 0.61 0.81

Default approach1

Herd 1 0.70 0.70 0.40 0.70

Herd 2 0.75 0.65 0.40 0.71

Herd 3 0.69 0.68 0.36 0.68

Herd 4 0.76 0.69 0.44 0.72

Herd 5 0.76 0.72 0.48 0.74

Herd 6 0.73 0.72 0.43 0.72

Herd 7 0.72 0.83 0.51 0.81

All herds 0.73 0.71 0.43 0.73

1The default approach is using 2 SCC samples, approximately 1 month apart. 

We expect that the performance of the forecasting model would increase further when 
additional mastitis indicators recorded are included as input in the model These mas-
titis indicators would be able to measure different markers related to different biolog-
ical processes tied to udder inflammation (Viguier et al., 2009). Additionally, data on 
the general health state of the cow (e.g., the rumination, the activity of the cow) could 
be added to the model to capture the severity of the mastitis. Including more mark-
ers containing predictive information on the severity of mastitis could improve model 
performance and enable a more complete sensor-based evaluation of the disease. The 
combination of the markers would potentially enable to correct for possible measure-
ment errors of a single inflammation marker by using the rest of the inflammation 
markers. Nevertheless, these markers would still need to be relevant to the chronic 
mastitis forecasting problem to increase the predictive performance.

We used SCC data to define a prediction day and define the future chronic status, as 
SCC is a common way to measure and define subclinical mastitis (Smith et al., 2001; 
International Dairy Federation, 2011). However, different markers of inflammation 
may be used to perform these activities. Electrical conductivity is available for all AMS 
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systems, while the inflammation marker lactate-dehydrogenase (Nyman et al., 2016) is 
increasingly available using sensors on-farm. However, one could also use a non-mas-
titis-specific indicator such as milk yield, which could serve as an indicator for the 
consequences of a mastitis case on animal production. Using milk yield, one may fore-
cast a chronic status based on the milk yield loss that would come with a mastitis case 
(Bonestroo et al., 2022) and see whether the amount of milk yield would return to a lev-
el similar to other healthy cows. In this case, it is vital to have some mastitis-specific 
indicators as otherwise the predicted milk loss could be due to other diseases. Even 
though the approach used in this study focused on SCC, it could be applied on a broad-
er scale of mastitis or disease indicators.

Conclusions
This paper shows that a machine learning approach based on data of an SCC sensor 
attached to an AMS outperformed a default identification approach that approximates 
common non-sensor-based decision-making. These results indicate that it is possi-
ble to improve the identification and forecasting of chronic mastitis using on-farm 
SCC and machine learning methods. In the future, forecasting chronicity and thus im-
proved recovery of a mastitis case could help farmers to make better decisions based 
on online SCC. This could result in targeted antibiotic treatment, culling, and dry-off 
protocols that take consideration of cows that will not recover.
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Abstract
Coughing in response to environmental irritants can detrimentally affect pig health 
and performance even in the absence of disease. This study aimed to characterize the 
influence of temperature, relative humidity, and ammonia concentrations on the fre-
quency of coughing on a farm free of respiratory disease.

Six replicates were conducted (690 pigs in total). A cough monitor (SoundTalks®) and 
an ammonia sensor were installed, issuing a daily Respiratory Distress Index (RDI: 
average number of coughs/pig/24h), average temperature and relative humidity values; 
and ammonia concentrations for an average of 78 days per replicate.

A cross-correlation analysis was performed and lags of the predictor variables were 
carried forward for multivariate regression analysis when significant and showing 
r > 0.25. Results show that coughing frequency was overall low. In the first replicate, 
coughing was best predicted by exposure to higher ammonia concentrations that oc-
curred with a lag of 1, 7 and 15 days (P = 0.003, P = 0.001 and P < 0.001, respectively). 
While in the sixth replicate coughing frequency was best predicted by the exposure 
to lower relative humidity and higher ventilation rates with a lag of 7 and 15 days  
(P < 0.001 and P = 0.003, respectively). 

Guidelines on coughing levels in healthy pigs, and calibration of the alarm systems of 
tools that measure coughing frequency can be extrapolated from this study. Environ-
mental risk factors are associated with the respiratory health of finisher pigs. A better 
understanding of these effects can help determine when to implement appropriate 
preventive measures.

Keywords:  Ammonia; Air quality; Coughing frequency; Porcine Respiratory Disease 

Introduction
Respiratory disease remains a major economic and health concern in the pig industry 
worldwide (Nathues et al., 2017). Although there are several primary and opportun-
istic pathogens involved in the Porcine Respiratory Disease Complex (PRDC) (Brock-
meier et al., 2002), inappropriate thermal and gaseous environments in pig buildings 
can exacerbate transmission and spread of these pathogens, triggering and/or increas-
ing severity of clinical outbreaks (Brockmeier et al., 2002). Furthermore, unfavourable 
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environmental conditions act as a stressor and may damage the pigs’ respiratory tract 
(Brockmeier et al., 2002). Therefore, they have a detrimental effect on pig health, wel-
fare and performance (Brumm, 2019).

Ammonia (NH3) is the most common health threatening gas in animal buildings (Cargill 
et al., 2002). Like several respiratory pathogens, NH3 depresses ciliary activity and mucus 
flow (Stombaugh et al., 1969), impairing the mucosal clearance system, thus predispos-
ing the respiratory tract of pigs to infections (Yaeger & Van Alstine, 2019). Temperature 
and relative humidity can also influence pigs’ respiratory health by disrupting the nor-
mal respiratory and thermoregulatory behaviour of the animals, while contributing to 
the survival of pathogens (Brumm, 2019). Environment-oriented data, specifically data 
on air temperature and relative humidity, are routinely collected and used to regulate 
ventilation systems in most intensive pig farms. Unfortunately, the potential of such 
data to add value to pig health management on farm is rarely exploited (Pineiro et al., 
2019). Measurements of NH3 concentrations on-farm largely rely on portable sensors that 
give intermittent and short-term readings (Dennier, 2019; Pineiro et al., 2019). 

With on-going technological developments, a variety of PLF tools are available (Larsen 
et al., 2021; Norton et al., 2019). In recent years, research efforts developed a tool to help 
monitor and control respiratory disease on-farm by performing continuous and automat-
ed measurements of coughing through the analysis of sound collected within pig build-
ings using a microphone (Hemeryck et al., 2015). A recent study employing such technol-
ogy identified the need to classify patterns of coughing according to environmental risk 
factors, and to verify the baseline coughing frequency in healthy pigs (Pessoa et al., 2021). 

Combining animal- and environment-oriented sensor data for the purpose of strategic de-
cision-making is a promising area of future research (Pineiro et al., 2019) and could help ad-
dress the challenge of the respiratory disease syndromes in pigs (Chantziaras et al., 2020). 

Therefore, the objectives of this study were 1) to assess baseline levels of coughing on 
a respiratory disease-free farm, and 2) to assess the relationship between environmen-
tal conditions (ammonia, temperature, and relative humidity) and levels of coughing.

Material and methods

Experimental design
This study took place at the Teagasc Pig Research Facility in Fermoy, Co. Cork, Ireland 
from March 2019 to January 2020. The farm operates as a farrow-to-finish facility with 
a three-week farrowing batch system. The farm was negative for Porcine Reproductive 
and Respiratory Syndrome virus, Influenza A virus, Mycoplasma hyopneumoniae, and Ac-
tinobacillus pleuropneumoniae. Pigs were housed in rooms with 10 pens with fully slatted 
concrete floors, containing a wet-dry feeder (MA37, Verba, Netherlands) and one nipple 
drinker. Water and pelleted feed were provided ad libitum. Temperature was controlled 
with a temperature-based mechanical ventilation system (Big Dutchman 135pro, Vech-
ta, Germany). Three production batches of pigs (690 pigs in total) were each housed in 
two rooms (rooms A and B; 115 pigs per room) from 11 weeks of age, thus encompass-
ing six replicates. All pigs were identified with ear-tags such that they could be mon-
itored until reaching the target slaughter weight of 110 kg. All seasons within a year 
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were covered. The first batch was reared from March to May (spring), the second from 
July to September (summer), and the third from October to January (autumn/winter).

Data collection
Data on environmental parameters and respiratory health were collected resulting in 
several datasets originating from different sensors. Moreover, lung lesions were scored 
at slaughter.

Environmental data
Environmental sensors were used to record daily measurements (average, minimum, 
and maximum values) of temperature and relative humidity. Sensors were placed in 
the center of each room. Temperature sensors were placed at a height of approximately 
1.5m and the relative humidity sensors were placed at approximately 2m. These sen-
sors were part of the cough monitor (SoundTalks NV, Leuven, Belgium) system.

The ammonia sensors (Dräger Polytron C300 with DrägerSensor NH3-Al, Lübeck, Ger-
many) used in this study were electrochemical sensors that perform continuous long-
term ammonia measurements. One NH3 sensor was placed in each room, following 
manufacturer’s guidelines. It provided data points for ammonia concentrations every 
30 seconds. Data on ventilation rates were recorded for the whole duration of this study.

Respiratory health data
The cough monitors (SoundTalks NV, Leuven, Belgium) used in this study perform con-
tinuous and automated measurements of cough sounds, issuing a Respiratory Distress 
Index (RDI) that corresponds to the average number of coughs per pig per twenty-four 
hours. They also generate an automated warning, which is set according to a patented 
Statistical Process Control algorithm using the history and the variation of the RDI from 
a specific room. One cough monitor was installed in each room, following the manufac-
turer’s guidelines. All data collected during this study were stored and accessed using 
the associated pig respiratory distress monitoring (RDM) software.

Statistical analysis
R version 4.0.2 was used for the statistical analyses. Descriptive statistics are presented 
for all variables assessed.

For all variables (temperature, relative humidity, ammonia concentrations, ventilation 
rates and the respiratory distress index), mean, standard deviation, median, minimum 
and maximum values were calculated for rooms A and B in each batch.

Daily averages of NH3 concentrations and of ventilation rates were used. 

To assess the relationship between the time series corresponding to temperature, rel-
ative humidity, NH3 concentrations, ventilation rates (the predictors), and the RDI (re-
sponse variable), variables were first tested for stationarity using the Dickey-Fuller test. 
If non-stationary, differencing was applied. 

Because respiratory health can depend on the exposure to the currents day’s environmental 
conditions (lag 0), but also on exposure on previous days (negative lags), a cross-correlation 
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analyses was carried out in order to gain insight into the relationship between these varia-
bles, and to identify lags that may be useful predictors of the RDI. For biological reasoning, 
only negative lags and lag zero were considered. Lags of the predictor variables were car-
ried forward for multivariable regression analysis when significant and showing r > 0.25. 

Models were constructed using a backward stepwise elimination based on the Akai-
ke information criterion (AIC). Residuals’ autocorrelation was assessed using the 
Breusch-Godfrey test. Only models where no residual’s autocorrelation was detected 
are presented. Bonferroni correction was applied to correct for multiple testing.

Results and Discussion
The duration of each finisher period was on average 78 (±1) days. Lung lesions were 
scored on 506 pairs of lungs (84 ± 22 pairs of lungs per replicate). In general, no gross 
pathology was observed in the lungs. However, the prevalence of pericarditis in pigs 
reared in the first batch in room A was 10%; moreover, 3 ± 2% of the trial pigs presented 
liver milk spots. Table 1 shows descriptive results for all sensor-based variables.

Overall, the respiratory distress index remained low throughout the six replicates as-
sessed, with the exception of room A during the 1st batch where the RDI reached 31.9 at 
the end of the finisher stage (Figure 1). Daily variation for all sensor-based variables can 
be seen in Figure 1. In general, higher daily values of NH3 concentrations were recorded 
in autumn/winter (3rd batch), followed closely by spring (1st batch).

The multivariable models fitted for the RDI in room A during the 1st batch and in room 
B during the 3rd batch are presented in Table 2 and were able to explain 47 and 39% of 
variability, respectively. In room A during the 1st batch the RDI was best predicted by 
exposure to higher ammonia concentrations that occurred with a lag of 1, 7 and 15 days 
(P = 0.003, P = 0.001 and P < 0.001, respectively). While in room B during the 3rd batch the 
RDI was best predicted by the exposure to lower relative humidity and higher ventila-
tion rates with a lag of 7 and 15 days, respectively (P < 0.001 and P = 0.003, respectively).

Table 1: Multivariable regression models of lagged environmental parameters from the Respiratory 
Distress Index.

Models Predictors Estimate (SE) P-value

Respiratory Distress Index
(1st batch – room A)

Adj. R2 = 47%

Intercept
[NH3]1 lag -1
[NH3] lag -7
[NH3] lag -8
[NH3] lag -15
RH2 lag -3

-0.01 (0.426)
0.58 (0.184)
0.70 (0.209)
0.51 (0.210)
0.98 (0.240)
-0.32 (0.127)

0.976
0.003 *
0.001 *
0.020

<0.001 *
0.014

Respiratory Distress Index
(3rd batch – room B)

Adj. R2 = 39%

Intercept
RH lag -7
RH lag -8
Ventilation flow lag - 15

-0.00 (0.033)
-0.07 (0.016)
0.03 (0.016)
0.01 (0.004)

0.982
<0.001 *

0.028
0.003 *

1Ammonia concentrations
2Relative humidity
*Indicates significant variables after Bonferroni corrections
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The findings of our study show that the frequency of coughing were mostly low. Several 
studies measured the RDI in farms with a high prevalence of lung lesions (Hemeryck et 
al., 2015; Pessoa et al., 2021) and/or in farms positive for different pathogens associated 
with the Porcine Respiratory Disease Complex (Pessoa et al., 2021; Polson et al., 2018). 
When compared to our study, others generally reported higher values of the RDI, where 
it reached ≈ 10 (Hemeryck et al., 2015; Pessoa et al., 2021) and ≈23 (Polson et al., 2018). 
However, these studies also report low coughing levels throughout the finisher stage. 
Indeed, Polson et al. (2018) associated an increase in coughing with positivity to Influ-
enza A virus.Although more research is needed to understand how different coughing 
patterns associate with different pathogens, our study indicates that RDI values be-
tween 0 – 4 can be considered normal for intensive, indoor commercial farms.

Figure 1: Daily averages of the respiratory distress index, three environmental parameters, and 
ventilation flow.

However, we also recorded RDI values of ≈ 32 at the end of finisher stage in one batch (1st 
batch in room A). When exploring the relationship between environmental risk factors 
and coughing frequency, our model was able to explain 47% of the variability. Interest-
ingly, in this case, the RDI was best predicted by the exposure to higher concentrations 
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of ammonia occurring with a lag of 1, 7, and 15 days. In Figure 1, we can see that, by 
the end of finisher stage, a steep increase in NH3 precedes an increase in the RDI. To 
our knowledge, this is the first study evaluating the relationship between continuous 
measurements of coughing frequency and NH3 concentrations. However, in 1969 Stom-
baugh et al. reported that at 100 and 150 ppm, pigs coughed three times more than 
those exposed to lower ammonia concentrations (10 and 50 ppm). Still, several other 
studies showed that 1) NH3 concentrations over 35 ppm induce inflammatory reactions 
in the respiratory mucosa of animals (Johannsen et al., 1987); 2) pleurisy is positively 
correlated with NH3 concentrations above 25 ppm  (Donham, 1991); 3) pigs exposed to 
NH3 concentrations varying from 0.6 – 37 ppm show small pathological changes in their 
respiratory tract (Done et al., 2005); and that pigs show a preference for clean air when 
compared to air with varying NH3 concentrations (Jones et al., 1996; Jones et al., 1999; 
Smith et al., 1996).  Moreover, high concentrations of NH3 are relevant not only to ani-
mal health and welfare, but also to occupational health and safety of farm staff (Cole et 
al., 2000; Lühken et al., 2019). Although there are no legal requirements regarding con-
centrations of ammonia in pig buildings, studies recommend that levels should be kept 
below 25 ppm, and ideally below 10 ppm (Donham, 1991; Michiels et al., 2015). In our 
study, maximum daily averages reached 22.5 ppm, with mean daily averages varying 
between 6 – 13 ppm. Furthermore, for the trial pigs reared during Autumn/Winter (3rd 
batch in room B) we also found that the RDI was best predicted by the exposure to lower 
relative humidity and higher ventilation rates with a lag of 7 and 15 days, respectively 
(adjusted R2 = 39%). As reviewed by Boyle et al. (2022) there is strong evidence that high 
ventilation rates, i.e. draughts are risk factors for respiratory disease. Indeed, draughts 
are associated with in-creased frequencies of coughing and sneezing (Scheepens et 
al., 1991), and with the prevalence of pleurisy (Fablet et al., 2012). Conflicting with our 
results, high relative humidity is associated with respiratory disease (Done, 1991).

Ultimately, our results suggest that coupling continuous environmental-oriented data 
and animal-oriented data may be useful to better understand pigs’ respiratory health, 
and as suggested by Chantziaras et al. (2020) could help to elucidate the complexity of 
the Porcine Respiratory Disease Syndrome.

Conclusions
Results of this study can be used as guidelines on coughing levels in healthy pigs, 
and to calibrate the alarm systems of tools that measure coughing frequency, such 
as the cough monitor used in this study. Furthermore, we show that environmental 
risk factors are to some extent associated with the respiratory health of pigs, thus 
we suggest that information collected on these risk factors should be used to help 
with decision-making processes on farm. We highlight the importance of continuously 
measuring ammonia concentrations, and urge for the integration of sensor technology 
and ventilation systems.
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Abstract
Constraints such as respiratory infectious diseases can cause significant econom-
ic losses to the pig industry worldwide and these are also the main reason for high 
antimicrobial use in growing-finishing pigs. As antimicrobial resistance has become 
a worldwide problem, threatening both livestock and public health, measures must be 
taken to reduce the use of antibiotics. (Aarestrup et al., 2008; Holmer et al., 2019).

Continuous monitoring of the respiratory health status of pigs based on automated  
detection of respiratory symptoms offers a solution to treat animals in an early stage of 
disease development, and consequently reduce the use of antimicrobials (Berckmans 
et al., 2015; Chung et al., 2013; Ferrari et al., 2008; Genzow et al., 2014; Guarino et al., 2008; 
Gutierrez et al., 2010; Polson et al., 2018).

The aim of this on-going study is to assess the relationship between a sound based 
Respiratory Health Status score (ReHS) which represents the respiratory health status 
in the farm, and the production performance in different commercial farms spread 
over 4 European countries. 

In each farm, sound monitors were placed in all rooms (1 device per 200 pigs), resulting 
in a current data base of over 60 production rounds for fattening pigs and 97 production 
rounds for piglets with complete sound data. In all farms, records were kept in logbooks 
concerning the used medical treatments.

Data analysis showed a strong correlation between the ReHS and the performance 
metrics average daily growth and mortality as well as the number of treatments in pig-
let farms. In fattening farms, a correlation was also found between ReHS and average 
daily growth.

Based on the results of this study, we could evaluate the effect of (early) detection of 
respiratory diseases on the reduction of medication use in pig production.

Keywords: respiratory health, production results, treatments

Introduction
Respiratory infectious diseases are an important problem in the pig industry world-
wide. They can cause significant economic losses and they are the main reason for high 
antimicrobial use in growing-finishing pigs. As antimicrobial resistance has become 
a worldwide problem, threatening both livestock and public health, measures must be 
taken to reduce the use of antibiotics (Holmer et al., 2019). In addition, one infection 
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with a pathogen may lead to an easier infection of another (Schagemann et al., 2016). 
Often more than one pathogen can be acting concurrently in the respiratory system. 

Because of the limited physical presence of caretakers in the barn, technological solu-
tions detecting the health status of the animals in a continuous way are considered in 
this study. 

Precision livestock farming (PLF) offers a real-time monitoring and managing system 
for farmers. This is fundamentally different from other approaches that tried to moni-
tor the animal welfare by human experts scoring (Norton et al., 2019).

In that regard, SoundTalks has developed the SoundTalks® surveillance system to mon-
itor the respiratory health status of the pigs by sound analysis (Genzow et al., 2014; 
Polson et al., 2018).. The sound in the barn is monitored 24/7. Sound data are analysed 
using Artificial Intelligence providing a trustworthy and objective way of detecting res-
piratory problems. Based on this, automatic warnings and alerts are generated. That 
way the farmer knows when respiratory health issues occur in the barn and when and 
where to intervene or call a vet.

Material and methods

Data collection
Since the start of a research project funded by the Flemish Government within Sound-
Talks, sound monitors (1 device per 200 pigs) were installed at 6 commercial fattening 
pig farms and 9 commercial nursery farms spread over 4 European countries: Belgium, 
The Netherlands, Germany and Spain. Besides sound data, the monitors also collect 
climate data themselves in real-time such as temperature and relative. In addition to 
the data collected by the monitors, other sensor data such as temperature (in the barn 
and outside), relative humidity, ventilation rate, CO2-concentration, NH3-concentra-
tion and feed and water supply is collected when they are available on the specific 
farm. Farmers fill in a logbook every day. It contains information about daily mortality 
(and cause), technical issues, medical treatments and used antibiotics. Also,  manual 
assessments are done by the farmers. These reveal a score between 1 and 5 related to 
number of coughs and sneezes, the activity of the pigs  and the general health status 
of the animals.

Respiratory Health Status
The Respiratory Health Status (ReHS) is a A.I.-processed, sound-based metric that ob-
jectively reflects the respiratory health status of a monitored group of pigs in real time. 
The score is calculated based on the detection of respiratory symptoms, such as coughs 
during the course of the day. The score is presented on a scale from 0 to 100. A certain 
color is assigned to different categories of the respiratory health status. A ReHS be-
tween 0 and 40 is presented as a red colour; it means that the respiratory health status 
of the pigs is in an alarm phase. A ReHS between 40 and 60 results in a yellow colour; it 
means that the respiratory health status of the pigs is in a warning phase. A ReHS be-
tween 60 and 100 is an indication that the respiratory health status of the pigs is good.
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Data analysis
The average ReHS calculated over all days of a production round can be used to repre-
sent the overall respiratory heath status in one metric. In this paper, the health perfor-
mance of a production round is often expressed in this way. Another way to represent 
the respiratory heath performance of a round in one metric is using the alarm score. 
For this alarm score, points are given over each day. A day when the respiratory health 
status of the pigs is optimal gets a score of 0. A day when the respiratory health status 
of the pigs is in a warning phase (yellow color) gets a score of 1. A day when the res-
piratory health status of the pigs is in an alarm phase (red color) gets a score of 2. The 
sum of these numbers over a production round is presented as the overall alarm score 
for that production round. 

To determine the relationship between the Respiratory Health Status (ReHS) and the 
production performance in commercial pig farms, correlations between the ReHS and 
production numbers were examined. To check the performance of a round, 4 Key Per-
formance Indicators (KPI’s) were investigated:  mortality (expressed as percentage of 
the number of animals), Feed Conversion Ratio (i.e. FCR, no unit), Average Daily Growth 
(i.e. ADG, expressed in g/day) and treatments (expressed in percentage treated animals 
during a round).

Results and Discussion

Fatteners
A total of 60 fatteners rounds were analysed from October 2020 till December 2021. 
The relationship between the average ReHS and the alarm score is shown in Figure 1. 
It shows that both numbers are significantly correlated (R2=0.892; P<0.001). This means 
that the average ReHS also gives information about the days in warning (monitor in 
yellow) and days in alarm (monitor in red). In the studied relationships, average ReHS 
was used. Similar relationships can be expected when using the alarm score.

There was no significant correlation between the Respiratory Health Status (average 
ReHS) and Feed Conversion Ratio (FCR; R2=0.021; P>0.05) as shown in Figure 2. This can 
be explained by the fact that both feed consumption and growth are reduced during 
periods with respiratory symptoms and therefore the feed conversion will not change 
significantly. The clustering of rounds of a farm (shown in figure 2) are due to different 
duration of production periods between farms. However, there is not yet enough data 
to do farm-specific analysis in terms of FCR. Also the relation between average ReHS 
and mortality in the fattener groups (Figure 4) is not significant (R2=0.001; P>0.05). A rea-
son for this can be that mortality has many causes and is not limited to respiratory 
infections. On the other hand,  a positive significant correlation (R2=0.196; P<0.001) was 
found between Respiratory Health Status and pig growth (i.e. ADG) (Figure 3). The better 
the pigs score on respiratory health, the higher their growth will be. Also, the number 
of treatments and the use of medication is significantly negatively correlated (R2=0.183; 
P<0.001) with the ReHS. For this relationship, information of less rounds was available 
because only 1 farm could be analysed so far (figure 5). 
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Figure 1: Relationship between the Average ReHS and the alarm score (Fatteners)

Figure 2: Relationship between the average ReHS and the Feed Conversion Ratio (FCR) (Fatteners)

Figure 3: Relationship between the average ReHS and the Average Daily Gain (ADG) (Fatteners)
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Figure 4: Relationship between the average ReHS and mortality (Fatteners)

Figure 5: Relationship between average ReHS and treatments of animals (Fatteners)

Figure 6: Relationship between average ReHS and mortality (piglets)
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Piglets
A total of 97 weaned piglets rounds were analyzed from October 2020 till December 
2021. Figure 6 shows that there is a significant negative correlation (R2=0.114; P<0.01) 
between average ReHS and mortality. In contrast to fattening pigs, respiratory symp-
toms in piglets cause higher mortality rates. Also the daily growth (i.e. ADG) is positive-
ly correlated with the average ReHS (R2=0.292; P<0.001) (Figure 7). The better the respira-
tory health, the better the growth. Figure 8 shows that there is no significant correlation 
(R2=0.142; P>0.05) between the average ReHS and Feed Conversion Ratio (FCR). To con-
firm this conclusion, more production rounds should be present with an available FCR 
to have a better insight on the relationship between those two variables.

Figure 7: Relationship between average ReHS and Average Daily Gain (ADG) (piglets)

Figure 8: Relationship between average ReHS and Feed Conversion Ratio (FCR) (piglets)

Conclusions
This study showed that the sound based respiratory health status (ReHS) measured by 
SoundTalks® has a significant relation with the production performance parameters 
during the growth and finishing phase of the pig. 

 

 

200
250
300
350
400
450
500
550

40 50 60 70 80 90 100

AD
G 

(g
/d

ay
)

Average ReHS

Average ReHS - ADG

1,35

1,4

1,45

1,5

1,55

1,6

1,65

50 60 70 80 90 100

FC
R

Average ReHS

Average ReHS - FCR

 

 

200
250
300
350
400
450
500
550

40 50 60 70 80 90 100

AD
G 

(g
/d

ay
)

Average ReHS

Average ReHS - ADG

1,35

1,4

1,45

1,5

1,55

1,6

1,65

50 60 70 80 90 100

FC
R

Average ReHS

Average ReHS - FCR



536 Precision Livestock Farming ’22

For the finishing phase (fatteners), the association of the ReHS with pig growth (i.e. 
ADG) was strong, similar to the relationship between a good respiratory health and 
reduced use of medication. The impact of ReHS on FCR and mortality seems rather 
limited, but further investigation on more production rounds is needed. 

For piglets, different from fatteners, a negative correlation was found between ReHS 
and mortality. A positive correlation was found between ReHS and average daily growth 
rate. The relationship between ReHS and FCR needs some more investigation since the 
available data was limited at the moment this study was done.
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Assessment of the economic value of early intervention triggered by an 
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Abstract
An audio-based Precision Livestock Farming (PLF) technology, SoundTalks, continu-
ously records and processes sounds in pig facilities. generating algorithm-based alerts 
when respiratory problems are detected. These alerts enabled earlier caregiver aware-
ness of the onset of respiratory clinical episodes than via caregiver observations alone. 
However, for tangible value to be derived from early detection, timely and appropriate 
intervention actions must be taken. The purpose of this experimental study was to 
evaluate the performance and economic differences resulting from earlier intervention 
following the onset of clinically detectable respiratory disease episodes as measured 
by SoundTalks using a standardized economic index (SEI) method. Eleven week old 
pigs (n=1655) were allocated to 72 pens across two rooms, with three SoundTalks zones 
covering 12 pens per zone. Sets of treatment groups (G0, G5 and G10) were randomly 
allocated within each zone. In every pen, three randomly selected seeder pigs were 
challenged seven days apart with Mycoplasma hyopneumoniae and PRRS virus. The 
number of days to the onset of treatment after the first SoundTalks alerts was defined: 
day zero (G0), day 5 (G5) and day 10 (G10). All groups received the same post-Sound-
Talks-alert treatment. Economic differences between groups were calculated using 
a Standardized Economic Index (SEI) model. Throughout the 120 month SEI data period 
the mean monthly B:C Ratio was 4.59, ranging from 2.80 to 8.12 and exceeding 2:1 for 
120 of 120 (100%) months (G0:G5). Further, the 48 month rolling B:C Ratio ranged from 
3.55 to 5.27, exceeded 2:1 for 120 of 120 (100%) intervals (G0:G5).

Keywords:  pig, cough, seeder challenge, economics

Introduction
Respiratory disease outbreaks continue to be a major pig production problem, impact-
ing antibiotic use, welfare, productivity and profitability (Lopes et al, 2019). SoundTalks 
is an audio-based technology that continuously identifies and quantifies respiratory 
problems in pigs, generating alerts (yellow warnings, red alarms) when respiratory out-
break onset is detected. These alerts have enabled triggering earlier caregiver aware-
ness than caregiver observations alone (Polson et al., 2018).  However, further research 
is needed to quantify the economic impact of this technology. The objective of this 
study was to evaluate the performance and economic differences resulting from earli-
er detection and intervention following the onset of a clinically detectable respiratory 
disease episode measured by SoundTalks.  
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Materials and Methods
Eleven-week-old pigs (n=1655) were placed in 72 pens throughout two rooms (airspac-
es).  Each room contained three SoundTalks monitors, one monitor per 12 pens.  Study 
groups were randomly allocated within each zone. In every pen, three randomly select-
ed seeder pigs were challenged with Mycoplasma hyopneumoniae for two consecutive 
days followed by a PRRS virus challenge seven days later. 

Continuous sensor data was recorded at the zone level (e.g., audio, temperature) and 
pen level (e.g., water use, temperature). Performance was measured at both the indi-
vidual pig and pen levels. Individual pigs were weighed at the beginning of the study 
and every four weeks through the end of the study.  Feed disappearance was recorded 
weekly for every pen.  Daily individual pig treatments and mortality were also recorded.   

There were three study groups, defined as: SoundTalks (ST) alert day zero (G0), day 
5 (G5) and day 10 (G10). Alert day 0 was defined as the day that the first ST yellow/
red alerts were reported post-challenge. All pigs received the same treatment proto-
col – differentiated only by the date the treatment protocol was started.  Group ST-G0 
received the intervention beginning the day of the first actionable SoundTalks alert.  
Subsequently, groups ST-G5 and ST-G10 received the same intervention at ST alert day 
0 + 5days and ST alert day 0 + 10 days, respectively.  

Linear regression mixed models were used to study the association between the pro-
duction parameters and treatment groups after controlling for other independent var-
iables. Economic differences among treatment groups were calculated using a “Stand-
ardized Economic Index” (SEI) based on a partial budget spreadsheet model. 

The SEI is a function of finished pig performance measures, historical feed ingredi-
ent costs, historical market pig prices, historical inflation rates and the calculated 
cost-to-operate (CTO) of the technology being evaluated. Pig performance measures 
utilized in the SEI were average daily gain (ADG), feed conversion rate (FCR), average 
daily feed (ADF), mortality, and individual pig treatment cost.  Historical monthly mar-
ket prices and feed ingredient costs were obtained for a 30 year period from January 
1992 through December 2021.  The most recent 12 year (144 month) time period (Jan-
uary 2010 through December 2021) was used as the focus of the economic analysis. In 
addition to hardware installation costs (labor and materials), a weighted SoundTalks 
hardware lifespan of 48 months was used to calculate the hardware cost on a per pig 
marketed basis for inclusion in the CTO.  

To represent the impact of a more natural (contact) exposure and infection dynamic 
under routine operational conditions, performance data for contact challenged pigs 
that did not experience exceptional handling (e.g., did not experience individual snar-
ing, bleeding, tracheal catheterization) were used to model the SEI. 

A sensitivity analysis was conducted by constructing a 3 x 3 table (nine combinations) 
where the X-axis was pig live market price (USD per kg live body weight) and the Y-axis 
was diet cost per metric ton (USD per 1000 Kg complete diet).  The pig price middle val-
ue was the calculated average of the 144 historical monthly market price values from 
January 2010 through December 2021.  The pig price lower and higher sensitivity matrix 
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values used were calculated as the 99% lower control limit (LCL) and 99% upper control 
limit (UCL) from the 144 months of historical data for the same period.  

The diet cost per metric ton middle value was the calculated average of the 144 histor-
ical monthly cost values from January 2010 through December 2021 for: 

 — Number two yellow corn as the primary dietary energy source 
 — 44% soybean meal as the primary dietary protein source 

Non-energy and non-protein ingredient cost estimated were obtained (Dr. Mike Tokach, 
Kansas State University, personal communication) and were adjusted across the 12 
year period using monthly US inflation rate data.  The fee for finished diet preparation 
and delivery (GMD) was obtained (Jon Hoek, Summit Smart Farms, personal commu-
nication) and was also adjusted across the 12 year period using monthly US inflation 
rate data. Typical grower-finisher pig diet formulations were obtained (Dr. Mike Tokach, 
Kansas State University, personal communication), and utilized the aforementioned 
ingredient and GMD costs to calculate an average diet cost per metric ton representing 
the 144 month period.  The diet cost lower and higher sensitivity matrix values used 
were calculated as the 99% lower  control limit (LCL) and 99% upper control limit (UCL) 
from the 144 months of historical data for the same period.  

The resulting calculated sensitivity matrix values for three levels of pig market price 
and three levels of diet cost with the nine combinations are shown in Figure 1.  

Figure 1:  Values utilized for a sensitivity analysis comparing combinations of pig market price per 
Kg and diet cost per 1000 kg and observed performance differences between experimental study 
Groups SoundTalks alert day zero (ST_G0) SoundTalks alert day 5 (ST_G5).  

Results
After the seeder pig dual challenge (Mycoplasma hyopneumoniae followed by PRRS 
virus), two respiratory outbreaks caused by swine A influenza virus (IAV-S) were doc-
umented during the study period. All pigs and pens were treated accordingly to study 
design. 

Contact challenged pigs from G0 had 12,7 and 20,4 grams higher ADG compared to 
those from G5 and G10 respectively. Similarly, contact challenged pigs from G0 had 
a 23.4% and 10.1% decrease in individual treatments when compared to G5 and G10 
respectively. Contact challenged pigs from G0 had a 0.26% higher and 1.22% lower per-
cent mortality compared to those from G5 and G10 respectively. All production vari-
ables were introduced into the SEI model and the resulting Benefit:Cost (B:C) ratio 10 
year time series is shown in Fig 1.
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Figures 2 and 3 show the 12 year (144 month) time series and overall frequency distribu-
tion of the estimated benefit:cost ratio based on the aggregate performance differences 
observed in the study; as well as monthly market price, diet cost and inflation data.  
Throughout the 144 month period from January 2010 through December 2021, based 
on a CTO of USD $0.254/pig marketed (inclusive of installation, hardware and software 
subscription for a single barn 4800 head grow-finish site) the mean monthly B:C ratio 
was 4.59, ranging from 2.80 to 8.12 and exceeding 2:1 for 144 of 144 (100%) months (G0 
vs G5).  For the same 144 month period, the 48 month rolling B:C Ratio ranged from 3.55 
to 5.27, exceeded 2:1 for 144 of 144 (100%) intervals (G0 vs G5). 

Figure 2:  Twelve year (January 2010 through December 2021) monthly Benefit:Cost ratio (green 
and blue dotted lines) as well as its 48 month rolling average (green and blue lines) for SoundTalks 
investment based on performance group differences. 

Figure 3:  Twelve year (January 2010 through December 2021) monthly Benefit:Cost ratio frequency 
distribution for SoundTalks investment based on performance differences between Alert Day 0 and 
Alert Day +5 intervention groups. 
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When a higher CTO of USD $0.303/pig marketed (inclusive of installation, hardware 
and software subscription for a smaller single barn 1200 head grow-finish site) is used 
for the same 144 month period, the mean monthly B:C ratio was 3.84, ranging from 2.35 
to 6.82 and exceeding 2:1 for 144 of 144 (100%) months (G0 vs G5).  For the same 144 
month period, the 48 month rolling B:C Ratio ranged from 2.98 to 4.42, exceeded 2:1 for 
144 of 144 (100%) intervals (G0 vs G5). 

Figure 4:  Thirty year (January 1992 through December 2021) monthly Benefit:Cost ratio (green and 
blue dotted lines) as well as its 48 month rolling average (green and blue lines) for SoundTalks 
investment based on performance group differences. 

Figure 5:  Thirty year (January 1992 through December 2021) monthly Benefit:Cost ratio frequency 
distribution for SoundTalks investment based on performance differences between Alert Day 0 and 
Alert Day +5 intervention groups. 
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Figures 4 and 5 show a 30 year (360 month) time series and overall frequency distribu-
tion of the estimated benefit:cost ratio based on the aggregate performance differences 
observed in the study; as well as monthly market price, diet cost and inflation data.  
When examining the entire 30 year (360 month) period for which monthly market 
price, diet cost and inflation rate data was available, (January 1992 through December 
2021), and based on a CTO of USD $0.254/pig marketed (inclusive of installation, hard-
ware and software subscription for a single barn 4800 head grow-finish site) the mean 
monthly B:C ratio was 4.03, ranging from 0.84 to 8.12 and exceeding 2:1 for 357 of 360 
(99.2%) months (G0 vs G5).  For the same 144 month period, the 48 month rolling B:C 
Ratio ranged from 3.26 to 5.27, exceeded 2:1 for 360 of 360 (100%) intervals (G0 vs G5). 

Figure 6 shows the results of the sensitivity analysis for the nine combinations of pig 
market price and diet cost.  The middle market price ($1.300) and diet cost ($249.34) 
generated a benefit:cost estimate of 4.56 where a denominator cost of $0.254 for Sound-
Talks was used, reflecting the technology and installation cost per pig marketed for 
a single-barn 4800 head grow-finish site. As would be expected, the lowest benefit:cost 
(4.19) occurred where the market price was lower ($1.247) and the diet cost was higher 
($264.59), and the highest benefit:cost (4.93) occurs where the market price was high-
er ($1.353) and the diet cost was lower ($234.09).  When a denominator cost of $0.303 
was used (reflecting the cost per pig marketed for a single-barn 1200 head grow-finish 
site), the middle market price ($1.300) and diet cost ($249.34) generated a benefit:cost 
estimate of 3.83, with the lowest benefit:cost (3.52) occuring where the market price 
was lower ($1.247) and the diet cost was higher ($264.59), and the highest benefit:cost 
(4.14) occuring where the market price was higher ($1.353) and the diet cost was lower 
($234.09) (Figure 7).  

Figure 6:  Sensitivity analysis of the Benefit:Cost for a 4800 pig site* comparing combinations of pig 
market price per Kg and diet cost per 1000 Kg and performance differences between experimental 
study Groups SoundTalks alert day zero (ST_G0) SoundTalks alert day 5 (ST_G5).  

*NOTE:  This matrix is based on a denominator cost of $0.254 for SoundTalks, reflect-
ing the technology and installation cost per pig marketed for a single-barn 4800 head 
grow-finish site.  
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Figure 7:  Sensitivity analysis of the Benefit:Cost for a 1200 pig site** comparing combinations of pig 
market price per Kg and diet cost per 1000 Kg and performance differences between experimental 
study Groups SoundTalks alert day zero (ST_G0) SoundTalks alert day 5 (ST_G5).  

**NOTE:  This matrix is based on a denominator cost of $0.303 for SoundTalks, reflect-
ing the technology and installation cost per pig marketed for a single-barn 1200 head 
grow-finish site.

Conclusions and Discussion 
A 48 month rolling average was used to allow evaluation of the B:C ratio across the 
estimated average lifespan of SoundTalks hardware. 

The results of this study and the economic analysis suggests that there can be a con-
sistent and long-term favorable economic impact based on aggregate performance dif-
ferences using a technology that enables earlier detection and treatment intervention.  

Earlier alerts of the onset of clinical disease episodes, in and of themselves, do not 
have a direct positive impact on the course of disease in affected pigs.  Alerts can only 
provide the producer the opportunity to take the most appropriate action to mitigate 
and resolve the developing clinical disease episode, i.e., knowledge requires informed 
action to generate value.  As soon as meaningful alerts are observed, only immediate 
and optimal interventions taken by the pig producer will enable capturing the value 
potential enabled by any detection technology that provides early alerts of disease ep-
isode onset.  
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Abstract
There are a number of instruments available commercially or semi-commercially to ob-
tain weight information frequently, including the Weight-DetectTM instruments (one of 
the available contactless monitoring devices developed and produced by PLF Agritech 
Pty. Ltd). However, the adoption rates of these tools are limited due to the unavailabil-
ity of reliable verification of their precision. Thus, a study was implemented to reliably 
assess the precision and reliability of Weight-DetectTM instruments under commercial 
conditions over an extended period of time. The Average Pen Weights (APWs) were 
predicted in a number of pens on commercial farms in Australia and in Europe using 
Weight-DetectTM instruments. At the same time, on these farms, manual weight-scales 
were used to obtain measurements of APWs. The predicted and measured APWs were 
compared using various statistical methods. Results from these long-term monitoring 
events demonstrated that the Weight-DetectTM instruments have average predictive 
errors lower than 3% that makes it possible to routinely monitor APWs on commercial 
farms. However, a number of factors, such as animal behaviour, camera placement and 
farm management will influence predictive precision. 

Keywords: PLF tools, machine vision, farm management, livestock weight estimation

Introduction
The main objectives for the management of modern farms housing meat producing ani-
mals such as pigs, are to convert feed to meat efficiently (as the main output) while ensur-
ing welfare friendly conditions for the animals and environmental suitability for the whole 
farm (Doeschl-Wilson et al., 2005; Backus et al., 1995; Krystallis et al., 2009). As farming is 
a business activity, efficiency is a key consideration. The amount and the speed of weight 
gain or the average daily gains (ADGs) achieved by pigs are the primary indicators of their 
growth efficiency (Honeyman et al., 2001; Hicks et al., 1998; Losinger, 1998). Thus, frequent 
monitoring of the average pen weights (APWs) and corresponding ADGs are desirable un-
der commercial conditions. Normally, on commercial farms pigs are only weighed a hand-
ful of times (2-4 times, depending on specific farm conditions) during their growth phase 
(as spot-checks) to gain an understanding of the shape of their growth curve (Banhazi et 
al., 2019)2019. However, more frequent measurements of APWs and ADGs would be desir-
able to identify periods of inefficiencies. Banhazi et al. demonstrated that on commercial 
farms there could be short periods of inefficiencies that can easily go undetected if pigs 
are only weighed occasionally as spot-checks (Banhazi et al., 2012a). These short periods 
of inefficiencies can significantly undermine the efficiency of the whole growth period, as 
their combined effects can be substantial (Banhazi et al., 2019)2019. Without continuous 
monitoring, the reasons for these short periods of inefficiencies will remain a mystery and 
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thus opportunities for improvements will never be identified (Hartung et al., 2017). Black 
et al. calculated that if ADGs are predicted reliably with an error margin of 5% or less, that 
could be used to improve the financial performance of pig production (Black et al., 2016). 

A number of so-called Precision Livestock Farming (PLF) technologies, including the 
eYeGrow system (Fancom BV, Panningen, The Netherlands), ProGrow (Skov, Roslev, 
Denmark) and OptiSCAN (Hölscher, Emsburen, Germany) are available commercially. 
PLF Agritech Pty Ltd., an Australian company that has developed the Weight-DetectTM 
weight prediction technology over the years demonstrated that such continuous weigh-
ing technology could potentially decrease the production related costs of pig farms by 
up to 30% (Black and Banhazi, 2013). However, the adoption rates of these tools are lim-
ited due to the unavailability of reliable verification of their precision. Thus, the need 
for a proper precision verification study was identified. As a result, a study was imple-
mented to reliably assess the precision of the PLF Agritech’s Weight-DetectTM instru-
ment under commercial conditions. It was hoped that a methodological evaluation of 
the predictive precision that can be achieved by such instrumentation, would enhance 
the adoption rate of similar PLF technologies as well. 

Material and methods
Long-term weight monitoring was carried out in five different grower/finisher buildings 
on two farms in Queensland, Australia and in three different grower/finisher buildings 
on three farms in Eastern Europe. The average number of pigs per study pens varied 
widely between approximately 15 to close to 200 pigs. The average pen weights (APWs) 
were predicted in a number of pens on these commercial farms using Weight-DetectTM 
instruments. Further information about the inner workings of the Weight-DetectTM 
instrument can be found in previous publications and relevant patents (Banhazi and 
Dunn, 2016; Banhazi et al., 2012b). At the same time, manual weight-scales were used 
on the same pens to obtain measurements of APWs. The pens monitored were locat-
ed in traditional grower-finisher building with natural ventilation systems installed. All 
experimental pigs were fed mash or pelleted feed and were kept on partially slatted 
floors. One building in Europe had straw bedding that was changed in every 2-3 days. On 
each farm a number of pens were selected and in each pen, Weight-DetectTM (PLF Ag-
ritech, Toowoomba, Australia) equipment was installed approximately in the middle of 
the pen at 2m height (Banhazi et al., 2011). Corresponding manual weighing procedures 
were undertaken on the farms in the same pens at varying intervals based on normal 
on-farm management procedures. The functionally of the Weight-DetectTM instruments 
has been described previously, so no additional description will be given here (Banhazi 
et al., 2012a; Banhazi et al., 2012b; Banhazi et al., 2011). All calculations were completed in 
ADAMS (Automated Data Analysis and Management System) which is a commercially 
operated, secure database maintained in Amazon cloud by PLF Agritech Pty. Ltd (PLFAg). 
The features of ADAMS enable PLFAg to automatically analyse the collected information 
and automatically generate and email periodic reports to selected users. 

Automated reports were emailed to the producers in a PDF format reporting on growth 
rate and environmental conditions of individual pens. In these reports, descriptive sta-
tistics have been used to convey the average, maximum, minimum values to producers 
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and other important parameters, such as ADG. The predicted and measured APWs 
were compared using descriptive statistical methods in this study.

Results and Discussion
APWs data predicted by the Weight-DetectTM instruments and corresponding manual 
data are shown in Figure 1. The descriptive statistics associated with the dataset is 
displayed in Table 1. 

Figure 1: Average Pen Weights (kg) recorded on the farms (combined dataset) during the period 
between 06/03/18 and 23/03/20. Manual scale measurements are depicted by the black bars while 
the corresponding Weight-DetectTM measurements are represented by the grey bars. During this 
study period 19 comparative measurements were undertaken.  

Table 1: Descriptive statistics associated with the measurement errors of Average Pen Weights (kg) 
recorded on the farms (combined dataset) during the period between 06/03/18 and 23/03/20.

Descriptive statistic Error (kg)a Error (% )b Comments 

maximum 5.96 7.57 Largest difference (between the measured and 
predicted weights) observed was above 7.5% 

minimum 0.5 0.50

Extremely small differences were observed that 
were below the expected 1-1.5 kg differences (i.e. 
that is normally due to feed, water consumption 
and due to the timing of faeces, urine release). 

average 2.11 2.55 Average and median values were quite different 
indicating a greater level of fluctuation in the 
differences median 1.2 1.89

a Difference between measured and predicted weights expressed in kilograms 
b Difference between measured and predicted weights expressed as percentage of body weights of pigs 

Good results have been obtained generally over an extended period of time, indicating 
the reliability of the Weight-DetectTM instrument (Black et al., 2016). However, through-
out the trial it was recognised (often anecdotally and not necessarily directly connected 
to the current study) that there are a number of factors influencing the precision of the 
weight predictions on farms generally. These influencing factors are discussed below. 
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Limiting factors of achieving the best precision 
A number of factors, such as (1) animal behaviour, (2) camera placement and (3) farm 
management will influence predictive precision. Animal behaviours will have influence 
on predictive precision as the precision is based on even sampling of the animals in 
the pen. If smaller or larger animals are disproportionally represented in the images, 
obviously the obtained APWs will be skewed in some way (Tscharke and Banhazi, 2013; 
Lind et al., 2005). Therefore, correct camera placement will be important in terms of en-
suring appropriate and even visual sampling of the animals. Contrary to the general 
belief this is not best achieved by placing the camera above the feeder, as previous 
studies demonstrated that placing the camera close to the feeders can actually in-
crease sampling skewedness (Tscharke and Banhazi, 2013). The best camera placement 
should be specific for each given pen. Therefore, the experience and practical knowl-
edge of installers will be crucial for ensuring even sampling of pigs.  The management of 
farms is also very important in terms of influencing the precision of the instruments. It 
is important that the team undertaking the monitoring is routinely informed about any 
management changes, such as removal/addition of pigs in the pens, any work tasks 
undertaken in the pens, as the disturbance of pen population could have a detrimental 
impact on precision (Korthals, 2001; Doeschl-Wilson et al., 2005). The disturbance of 
pigs in the pen will change the sampling rate and sampling distribution and thus will 
have an influence on precision. Thus, these matters will need to be taken into consider-
ation when explaining sudden changes in weights. Obviously, the addition or removal 
of pigs to the pen will have a very significant influence on the APWs generated by image 
analysis based systems, such as the Weight-DetectTM instruments. 

The importance of realistic expectations and correct interpretations of the results 
In addition, the correct interpretation of results obtained will influence their useful-
ness on farms. For example, if the animals are sold in a number of smaller batches at 
the end of the growth period, the associated sudden changes at the very end of the 
growth curve should not be interpreted as the ‘fault’ of the monitoring system or as 
a ‘fault’ of the management but as a normal consequence of disturbed pen population. 
In well managed pens we often seen a stabilization of weight after a number of pigs 
are sold and a sudden and significant weight gain that corresponds with the compen-
satory growth displayed by the animals that were perhaps disadvantaged by larger an-
imals. Once the larger animals are removed, a good growth rate is often displayed by 
the remaining pigs in the pen. However, in other pens, stability might not be achieved 
immediately after the partial removal of the pen population, so obtained data should 
be viewed and interpreted with caution. This does not mean that the weight prediction 
system is wrong, but this reflects the natural consequences of population disturbance 
that yet remains to be fully understood. 

The importance of communicating realistic expectations to end users cannot be over-
emphasised (Artmann, 1999). For example, it has been demonstrated before that even 
the timing of the release of urine and faecal materials can account for as much as 
0.5-0.7 kg fluctuation in body weight per grower pig (Banhazi, unpublished). In addi-
tion, the timing of feed and water intake can add another fluctuation in body weight. 
Thus, 1-2 kg differences in body weight are absolutely acceptable, indeed expected. 
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Any claims suggesting a greater level of precision that can be achieved consistently 
should be treated with caution and might be instead the result of fortunate coincidenc-
es.  However, the main benefit is definitely not the simple measurement of the body 
weight, but the documentation of the shape of the growth curve that gives producers 
an understanding of periods of inefficiencies. 

Other on farm experiences 
Most problems encountered on farms were related to the unreliability of internet con-
nections. It was surprising to see that in Australia and also in Europe the reliability of 
internet connection on most farms were variable (Gray et al., 2017). Internet problems 
were especially obvious in Australia and not just because the considerable distances 
and remoteness of many farms. In Australia, most livestock buildings are built using 
metal building components such as metal roofing and building frames. These metal 
building components tend to significantly reduce and interfere with internet signal 
strength within livestock buildings. In Europe, interference caused by metal building 
components are less of a problem, because more livestock buildings are built from 
bricks and mortar. Internet and connectivity issues on farms are serious problems and 
unfortunately not discussed extensively on public forums. Recent studies in Europe 
demonstrated that even larger companies struggle with maintaining reliable internet 
connections consistently in livestock buildings (Banhazi, 2021, unpublished). However, 
the lack of open discuss about these issues resulted in the development of unrealis-
tic expectations by many PLF technology users. Open discussions about connectivity 
problems on farms would results in achieving better connectivity on farm general-
ly. For example, discussing issues around appropriate antenna use on farms would 
potentially benefit PLF technology developers, providers and users. The most efficient 
antenna configurations that are not complicated to install, cost effective and able to 
enhance the reliability of on-farm connectivity are yet to be widely adopted. Due to the 
previously mentioned and serious connectivity problems experienced on farms; new 
Weight-DetectTM installations are only set up on farms that are able to guarantee locally 
enhanced internet connections or internet ‘hot-spots’. 

Conclusions
The Weight-DetectTM instrument proved to be able to collect information reliably on 
farms, but of course a number of other factors, such as placement of the camera, man-
agement of the farm and animal behaviour can all influence the results generated. In 
addition, proper interpretation and use of collected data cannot be overemphasised. 
However, if PLF tools, such as continuous monitoring of pen weights, are properly in-
troduced on commercial farms, the financial return on using such technologies could 
be significant. 
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Abstract
Automated recording of body weight (BW) can be a useful tool for continuous health, 
performance, and welfare monitoring in commercial pigs. Hence, we aimed to vali-
date a three-dimensional (3D) camera (iDOL65, DOL-sensors A/S, Aarhus, Denmark) for 
monitoring BW in conventional finisher pigs on two farms (F1:131 Yorkshire×Landrace 
pigs, 10-18 pigs/pen; F2:107 Landrace×Large White pigs, 9-11 pigs/pen). On each farm, 
BW data was recorded on one day. The camera was placed above the multi-partitioned 
feeder (F1) or individual feeding station (F2) and combined with a radio frequency iden-
tification system. Whenever a pig visited the feeding site, 3D images were taken and 
used to estimate BW. The individual estimated BW was calculated as the median of the 
outcome of all daily images. For each farm separately, the individual estimated BW was 
compared against the individual scale-based BW (F1 (average±SD):36±5 kg; F2:74±8 kg) 
in R. On Farm 1, concordance correlation coefficient (CCC) (0.85) and coefficient of de-
termination (R2=0.95) were high. The root mean square error (RMSE) was 1 kg. On Farm 
2, CCC (0.92) and R2 (0.94) were very high, and the RMSE was 1.9 kg. The camera’s BW es-
timation performance was high for both farms, especially in F2. Differences in camera 
set-up potentially influencing body boundary detection, and differences in body shape 
arising from different breeds may explain the better camera performance on F2 over 
F1. A further validation including a larger sample size and pigs at various development 
stages is necessary to confirm the use of this system in commercial farms.

Keywords: Sus scrofa, precision livestock farming, depth sensor, image analysis, 
animal welfare

Introduction
In pig production, the body weight (BW) of pigs is a crucial indicator of growth, con-
version efficiency, and readiness for market (Schofield et al., 1999; Wang et al., 2008). 
Typically, in commercial farms, pig weighing is performed manually, constituting a la-
bour-intensive and relatively stressful procedure to both pigs and stockmen (Brandl & 
Jørgensen, 1996). Alternatively, based on the high, positive correlation between body 
dimensions and body mass (Brandl & Jørgensen, 1996), earlier studies retrieved pigs’ 
body dimension from manual measurements (e.g., girth size, withers height; Petherick 
et al., 1983; Brandl & Jørgensen, 1996) and digital images (e.g., Schofield, 1990; Wang et 
al., 2008; Kashiha et al., 2014) to indirectly determine the BW of pigs. Whereas the im-
age-analysis-based BW estimation can be an efficient, non-invasive method, the out-
come can still be affected by the room lighting and the status of the pig skin (e.g., dark, 
stained, or dirty) (Condotta et al., 2018). To deal with these potential sources of errors, 
recent studies explored the use of depth sensors based on a structured infrared-light 
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system, which provide three-dimensional (3D) images. As 3D images can account for 
animal height, they may lead to more accurate BW estimates than two-dimensional 
(2D) images (e.g., Kongsro, 2014; Condotta et al., 2018; Pezzuolo et al., 2018; Fernandes 
et al., 2019). Yet, the methods proposed by the cited studies required physical changes 
in the farm, such as modifications in the feeding site or pen corridor, to accommodate 
the equipment. We therefore aimed to validate a commercially available 3D camera for 
continuous BW monitoring of individual finisher pigs kept under conventional hus-
bandry conditions requiring minimal physical intervention on-farm.

Materials and Methods

Animals, housing, and management
This study included 238 finisher pigs, of which 131 Danbred Yorkshire × Landrace pigs 
kept on the experimental farm of Department of Animal Science, Aarhus University, 
Foulum, Denmark (Farm 1; F1), and 107 Landrace × Large White pigs kept on a commer-
cial farm in Gronau, Germany (Farm 2; F2).

On F1, pigs were housed in a finishing pig unit including 8 identical pens (15 to 18 pigs/
pen in 7 pens and 10 pigs in 1 pen; ≥ 0.73 m2/pig) with the floor divided between one-
third solid, drained, and slatted flooring. Pigs were fed ad libitum with a commercial dry 
feed (14.8% crude protein; Svin Struktur E, DLG, Denmark), and the feeder containing 
three partitions were filled four times daily at 07:00 h, 11:00 h, 16:00 h and 20:00 h. Wa-
ter was accessible ad libitum in two drinking cups. All pens were equipped with wooden 
sticks and a rubber ball as minimum pen enrichment in compliance with European 
Union and Danish animal welfare legislation and enriched with 100 g straw/pig deliv-
ered at 08:30 h daily to ensure permanent access of unsoiled straw in the pen for 24 h 
after delivery (Pedersen et al., 2014). Artificial light was on from 0600 to 2100 h (182 lx).

On F2, pigs were housed in 10 identical pens (9 to 11 pigs/pen; ≥ 1.03 m2/pig) spread 
across five rooms, on fully slatted floors. Pigs were fed ad libitum with acommercial 
dry feed (15.3% crude protein, Select Delta 4, Royal Agrifirm Group, the Netherlands) 
using an IVOG® electronic feeding station (Hokofarm Group, The Netherlands). From 
a separate feeder, pigs could obtain fibre-rich feed ad libitum by manipulating a chain 
(chopped straw mixed with straw pellets, in compliance with German animal welfare 
legislation). Water was available ad libitum from two drinking nipples, and enrichment 
consisted of a wooden block, a chain with plastic rings and in some pens one or more 
hosepipes. Pens were naturally illuminated through windows.

Body weight recording
Two types of BW data were recorded at individual level: scale-based BW (gold standard) 
and BW estimated by a 3D camera (iDOL65, DOL-sensors A/S, Aarhus, Denmark; techni-
cal information available on https://www.dol-sensors.com/documentation/).

On F1, the scale-based BW was recorded on one day in September 2021, in the morn-
ing between 0800 and 1000h. Per pen, all pigs were moved into the corridor of the pig 
unit and individually walked into a calibrated digital weighing scale (MTW2-STACON, 
Schauer Agrotronic GmbH, Germany; accuracy: ±0.3 kg) once, which scanned the pigs’ 
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radio frequency identification (RFID) ear tag and recorded the individual BW (average 
± standard deviation (SD): 36 ± 5 kg) in an Excel document. On F2, the scale-based BW 
was recorded on one day in October 2021, in the afternoon between 1230 and 1600h. 
All pigs per pen were moved into the corridor of the farm, near a calibrated digital 
weighing scale (Welvaarts Weegsystemen type W-2000; accuracy: ±0.5 kg), individually 
weighted once, and data was entered by scanning the pig’s RFID ear tag and typing the 
BW (74 ± 8 kg) into the scanner.

Each pen was equipped with one 3D camera placed horizontally above the three-par-
titioned feeder (F1) or individual feeding station (F2) at an approximate height of 2.2 
m and worked in combination with a RFID system installed in the feeding sites (F1: 
one RFID antenna per feeder partition; F2: one RFID antenna per feeding station). Af-
ter being mounted, the camera self-calibrated as specified in its technical user guide 
(DOL-sensors A/S, Aarhus, Denmark; https://www.dol-sensors.com/documentation/). 
On F1, the RFID was configured to randomly switch between the three partitions and 
read once every second, hence each position could only be read once every 2 s. On F2, 
due to the feeding station’s construction, only one pig could eat, and consequently 
be detected by the RFID system, at a time. Throughout the day, the camera took a 3D 
image every 10 s. A YOLO-based algorithm developed and trained by DOL-sensors de-
tected whether a pig was present in the image and, if so, segmented out the individual 
pig. Segmented images were retained only if the pig was in standing position, close to 
the RFID reader and in full view (determined with the YOLO-based algorithm), and if 
there was no dirt on the image. For selected segmented images, a regression neural 
network developed and trained by DOL Sensors used the head-to-tail distance as well 
as the width and curve of the pigs’ ribs to estimate pig BW. Using the time stamps of 
the 3D camera and RFID system, each measurement could be prescribed to an individ-
ual pig. The median was taken of the weight estimates of all the images taken on each 
experimental day (≥ 30 images/pig, otherwise measurement would be discarded due to 
unreliable estimation) to obtain an estimation for daily weight (in kg). The number of 
images per pig ranged from 34 to 1107 on F1, and from 50 to 535 on F2. If multiple pigs 
were detected in a frame, only the BW estimated for the pig closest to the RFID antenna 
(F1: the pig with the head in the feeder partition; F2: the pig in the feeder) was automat-
ically maintained. If the closest pig to the antenna could not be determined, a dummy 
pig was recorded and the respective sample was manually discarded. Samples were 
also discarded if only an RFID reading or only a BW estimate was obtained, or if two 
pigs were registered to be in the feeder partition (F1) or feeding station (F2) simultane-
ously. Image acquisition, segmentation and selection, weight estimation, and removal 
of outliers, if any, were conducted by DOL-sensors using their confidential algorithm.

Statistical analyses
Statistical analyses were performed for each farm separately in R v.4.1.1 (R Core Team, 
2021). The agreement between the estimated BW and scale-based BW was assessed at 
individual level with concordance correlation coefficient (CCC) and Bland-Altman anal-
ysis (library SimplyAgree v.0.0.2; Caldwell, 2021), both controlled for pen. The interpreta-
tion of CCC values was based on the criteria proposed by Hinkle et al. (2003), indicating 
the level of agreement: negligible (0.0 to 0.3), low (0.3 to 0.5), moderate (0.5 to 0.7), high 
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(0.7 to 0.9) or very high (0.9 to 1.00). The Bland-Altman analysis indicates the mean dif-
ferences (bias) between the individual paired estimated weight and scale-based weight, 
as well as the lower and upper 95% limits of agreement (LoA; calculated as ±1.96 × SD 
from mean difference). The normal distribution of the differences was confirmed using 
histogram and QQ-plot. We prespecified an acceptable LoA of 10% of the average BW 
(Barrios et al., 2016) of each farm population (F1: ±3.6 kg; F2: ±7.4 kg). Additionally, the 
relationship between the two types of weight data was assessed with a mixed-effects 
linear regression (library glmmTMB v.1.1.2; Brooks et al., 2017) including the estimated 
BW as dependent variable, the scale-based BW as fixed effect, number of daily images 
per pig as covariate and pen as random effect. We prespecified an acceptable root mean 
square error (RMSE) of maximum 5% (Schofield, 1990). Model assumptions of normality 
and homoscedasticity were confirmed through graphical inspection of the residuals.

Results and Discussion
On F1, we found a high agreement between the individual estimated BW and the individu-
al scale-based BW (CCC: 0.85; 95% Confidence Interval (CI): 0.81 to 0.88). The Bland-Altman 
analysis (Fig. 1) revealed that BW was overestimated by the 3D camera in comparison with 
the scale with a mean difference of 1.2 kg (approximately 3.5% of the average BW) (95% CI: 
–0.3 to 2.8 kg). The LoA were outside the prespecified acceptable range with a lower LoA of 
–3.6 (95% CI: –8.2 to –1.6) kg and an upper LoA of 6.1 (95% CI: 4.1 to 10.7) kg. Moreover, the 
coefficient of determination was very high (R2 = 0.95), with an RMSE of 1 kg or 2.8%.

Figure 1: Bland-Altman plot of pairwise differences between 3D camera estimated BW values and 
scale BW values vs. the mean of the two methods on each farm. In each plot, the solid line indicates 
the mean difference, the dashed lines indicate the mean difference’s 95% confidence interval, the 
dotted lines indicate the upper and lower limits of agreement, and the dot-dashed lines indicate the 
limits of agreement’s 95% confidence intervals.

On F2, we found a very high agreement between the individual estimated BW and the 
individual scale-based BW (CCC: 0.92; 95% CI: 0.90 to 0.94). The Bland-Altman analysis 
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(Fig. 1) revealed that BW was underestimated by the 3D camera in comparison with the 
scale with a mean difference of –0.2 kg (approximately 0.3% of the average BW) (95% CI: 
–0.2 to 2.9 kg). The LoA were within the prespecified acceptable range with a lower LoA 
of –6.8 (95% CI: –11.0 to –4.7) kg and an upper LoA of 6.4 (95% CI: 4.3 to 10.6) kg. Moreover, 
the coefficient of determination was very high (R2 = 0.94), with an RMSE of 1.9 kg or 2.7%.

The performance of the 3D camera was high on both farms and was similar to or better 
than the BW estimation reported in earlier studies using alternative 3D cameras. For in-
stance, Kongsro (2014) and Condotta et al. (2018) reported a higher R2 (0.99) than F1 and F2. 
However, they also found higher RMSE (Kongsro, 2014: 3.38 kg, 4.8%; Condotta et al., 2018: 
3.01 kg, 4.9%) than our farms. In Kongrso (2014), 71 finisher pigs (37 Duroc and 34 Landrace) 
with a BW ranging from 29 to 139 kg were used, whereas Condotta et al. (2018) used 234 fin-
isher pigs (78 Landrace, 78 Duroc and 78 Yorkshire) sampled at four different development 
stages (approximate BW: 17.6 ± 2.9, 44.7 ± 4.8, 72.0 ± 7.5 and 100.6 ± 9.8 kg). Additionally, 
using finisher pigs (unknown breed) with an average BW of 120 kg, Fernandes et al. (2019) 
reported a R2 of 0.88 and a RMSE of 4.36 kg (3.6%), both values poorer than F1 and F2.

The indicators used in this study revealed that the 3D camera better estimated BW on 
F2 than on F1. We propose the following explanations for the reduced performance 
of the 3D camera on F1 compared with F2. First, the different feeding sites where the 
3D camera was mounted could have influenced the identification of individual pigs 
and estimation of their BW. On F2, the camera was mounted in an individual feeding 
station, so that the eating pig was well separated from other pigs and the respective 
image solely belonged to the eating pig. Whereas on F1, multiple pigs could have tried 
to access the same feeder partition and the camera may have had issues to take images 
of the actual eating pig (closest to the RFID antenna) and detect the respective pig body 
boundary without the presence of another pig’s body part. Such a challenge was re-
ported by Buayai et al. (2019) using a semi-automatic machine vision approach in com-
mercial finisher pigs whose 2D images were also taken from the top view of the feeder. 
Second, each farm used different pig breeds leading to potential differences in body 
conformity and consequent requirement for different algorithms for BW estimation 
(Schofield et al., 1999). Third, the digital weighing scale used on F1 had a lower accuracy 
compared with the weighing scale used on F2, which could have negatively influenced 
the comparison between the scale-based BW and the BW estimates.

Our findings indicate that the iDOL65 can estimate BW of finisher pigs with high pre-
cision and accuracy. Yet, the performance of the camera may be affected by equipment 
set-up and pig breed. Future work is needed to confirm the use of this system in com-
mercial farms and should involve the inclusion of a larger sample size, and pigs at 
different development stages within farm and set-up.

Conclusions
We conducted a validation of 3D camera that automatically monitors BW of conven-
tional finisher pigs. Our findings indicate a high agreement between the estimated BW 
and a gold standard represented by the scale-based BW. A further validation including 
a larger sample size and pigs at various development stages within farm and set-up is 
needed to confirm the use of this system in commercial farms.
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Abstract
The growth rate and feed consumption of piglets are significant indicators for the health 
of the animal and are of economic importance in pig production. New approaches, 
such as continuous automated real-time monitoring of animal behaviour and health, 
aim to meet the increasing requirements in pig production on productivity, profitabil-
ity as well as animal health and welfare. The Asserva System PigInsight is unique for 
automated feeding and weighing of small piglets at weaning age. Using RFID (radio-fre-
quency identification) ear chips, the system permits individual recognition and moni-
toring of daily feed consumption and body weight for each animal without causing any 
stress and extra labour. The aim of this study was to compare individual data recorded 
by the system with traditional pen-based feed consumption and manual individual 
weighing of the animals on 6 occasions over a 7-week trial period. Therefore, 84 healthy 
weaned piglets were allocated to 6 slatted floor pens with balanced mean body weight, 
sex ratio, age and relatedness among pens. All animals were fitted with RFID ear-tags. 
Feed (ad libitum, 12 g per demand) and water (ad libitum) were provided through two 
automated feeders and drinkers per pen. We verified that the system estimated body 
weight reliably (R2 = 0.986). During our verification period, a mean deviation of 0.2633 
kg +/- SE 0.1609 (n = 6 weighing occasions) between manual and automated weighing 
was recorded. The individually monitoring of body weight and feed consumption can 
be further developed for an early and automated detection of animal health issues.

Keywords: piglets, production monitoring, health monitoring

Introduction
The Food and Agriculture Organization of the United Nations (FAO) expects a globally 
increasing demand for food and feed by 70 % in the first half of this century. Crops, 
used for industrial purposes, will parallel this demand. At the same time, animal health 
(European Commission (EC) Directorate-General for Health & Consumers, 2011, e.g., 
transmissionable diseases, use of antibiotics and resistances) and animal welfare have 
become topics of concern and public attention (European Food Safety Authority (EFSA), 
2012). While farmers aim for a decent economic return, they are expected to manage 
a wide range of processes including animal health as well as animal welfare, product 
quality, biosecurity, and reduction of greenhouse gas emissions. The increasing re-
quirements in animal production on productivity, profitability as well as animal health 
and welfare can only be accomplished by using new technological approaches related 
to precision livestock farming and the continuous automated real-time monitoring of 
animal behaviour and health. 
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The growth rate and feed consumption of piglets are significant indicators for the 
health of the animal and are of economic importance in pig production. The tradition-
al approach to measure body weight and weight gain by repeated manual weighing, 
which is labour intensive, can induce stress to the animals that may impair the growth 
rate and in extreme cases even cause mortality (Grandin & Shivley, 2015; Faucitano & 
Goumon, 2018). New approaches, such as computer vision systems or automatic scales 
are alternatives that enable continuous automated real-time monitoring of animals, to 
gain insights in the growth rate and feeding behaviour with minimal human interven-
tion (Kongsro, 2014, Fernandes et al., 2019). 

The aim of this study was to validate a commercially available system that incorpo-
rates automatic scales, drinkers and feeders for piglets and fattening pigs (PigInsight 
by Asserva, France). The PigInsight system is especially unique for automated feeding 
and weighing of small piglets at weaning age. RFID (radio-frequency identification) ear-
tags permit individual recognition of each animal. The system allows for individual 
monitoring and digital recording of an animal’s feed consumption and thus helps to 
control the feed quantity during a day based on an individual feeding curve. Addition-
ally, animals are automatically weighed whenever entering the drinking station and 
their weight is recorded without any extra manual labour and handling stress for the 
animals. 

The aim of this study was to compare individual data recorded by the system with tra-
ditional pen-based feed consumption data and manual individual body weight meas-
urements on six occasions over a seven-week trial period.

Methods
The study was conducted in a commercial farm in Austria over a period of seven weeks. 
In total, 84 healthy weaned piglets were included in the study. The piglets (Austrian 
genotype Ö-HYB-F1) originated from a cross-bred dam (Landrace x Large White) and 
a pure-bred sire (Pietrain) and were four weeks (range: 26-28 days) old at weaning. The 
sex ratio was 50:50 and the body weight at trial start ranged from 6.07 kg to 8.75 kg. 

The weaned piglets were allocated to six slatted floor pens (3.02 x 2.30 m) in groups 
of 14 animals with balanced mean body weight, sex ratio, age and relatedness among 
pens. Additional to the regular ear-tags, all animals were fitted with RFID ear-tags to 
automatically monitor the feed consumption and body weight of the animals over the 
trial period in the digital system PigInsight (Asserva, France). 

Each pen contained two connected drinkers with an automatic weighing station and 
two automated feeders (PigInsight, Image 1). 

The two feeders were located parallel to the corridor wall and the two drinkers were 
placed parallel to the exterior wall. Mash feed based on a commercial diet suitable for 
this age and mass (ad libitum) and water (ad libitum) were provided whenever the animal 
entered an automated feeder and drinker. Side panels surrounded each weighing sta-
tion and feeder to prevent disturbance by other animals. When an animal entered the 
weighing stations, the RFID ear-tag was recognized by the radiofrequency identification 
antenna and the weight was recorded using two force sensors (precision ± 10 g). Each 
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automated feeder was composed of a trough with a specific sensor at the bottom to de-
tect remaining feed and a motor in the elevated feed hopper to provide the feed. The feed 
hopper was filled daily by the Spotmix feeding system (Schauer Agrotronic GmbH, Pram-
bachkirchen, Austria), which also recorded the daily amount of feed provided per pen. 

Image 1: Photo of the two PigInsight drinking/weighing stations (on the left) and the two feeding 
stations (on the right) per pen. At each station, two piglets can be served at a time.

When an animal entered the feeding station, the RFID ear-tag was recognized by the 
radiofrequency identification antenna and the feed distribution was triggered based 
on the recognition of the sensor inside the trough. When no feed was detected by the 
sensor, a new feed portion 12 g (± 2 g) was delivered to the trough. When remaining 
feed was detected by the sensor, no further portion was provided until the portion was 
consumed. The amount of feed recorded includes real feed consumption of the animal 
and wastage, which is considered part of the natural feeding behaviour of pigs.

Each pen contained organic and commercial pig toys for enrichment. Climate condi-
tions were computer-regulated according to standard recommendations for weaning 
piglets and recorded daily. Pigs were exposed to both natural light (via doors and win-
dows) as well as artificial light (12:12 light-dark cycle). 

In order to validate the system, the individual body weights of the animals were meas-
ured manually on days 1, 7, 21, 28, 35 and 49. The precision of the manual, mobile scale 
was 0.1 kg. Additionally, the feed consumption determined by the PigInsight system 
was compared with the daily amount of feed provided by the Spotmix system.

Data evaluation
Clinical observations regarding animal health issues (such as diarrhoea and lameness) 
as well as mortality were recorded daily. Body weight of each single animal was manu-
ally measured and recorded on day 1, 7, 21, 28, 35 and 49. The amount of feed provided 
per pen was daily recorded by the Spotmix feeding system. 

Trial data was subjected to statistical analysis using RStudio version 1.3.1093. Boxplots 
and individual value plots were used to visually inspect the data distribution, variabil-
ity and outliers. 
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Results and Discussion
During the study, four animals were excluded from three different pens within the 
first week of the trial, due to health issues. All remaining animals were included in 
the validation study. The animals visited the digital weighing stations on average 30 
± 10 times per day (mean ± SD). Compared to the first half of the trial, the number of 
visits were 2.29 times higher in the second half of the trial. The raw data can be highly 
variable, due to animals not standing on the scale entirely or in case of more than one 
animal entering the scale at the same time. The PigInsight system determined valid 
and invalid individual body weight measures per animal automatically based on for-
mulas incorporated in the software. All body weight measures per day and animal were 
additionally visually examined prior disregarding invalid data (i.e., unrealistically high 
or low values). For our validation, we calculated the daily individual body weight per 
animals based on the median of all valid individual body weight measures on the spe-
cific day. Hence, the automated measurements provided a value derived from multiple 
weighings during a 24-hour period, whereas manual weighings represented only a sin-
gle sample. Daily individual body weight determined by the PigInsight system during 
the study period and manually measured body weight on the six weighing occasions 
are depicted for four piglets in Figure 1. 

Figure 1: Exemplary depiction of the digital capture of daily individual body weight (left) and the 
manually measured body weight on the six weighing occasions (right) of 4 piglets (ID 13, 17, 25, 104) 
in one pen, housing a total of 14 piglets.

On all weighing occasions, the data derived by daily automated voluntary weighing 
was highly correlated to the manual weighing data (R2 = 0.986, p < 0.001). During our 
validation period, a mean deviation of 0.2633 kg ± SE 0.1609 (n = 6 weighing occasions) 
between manual and automated weighing was recorded, however, there was a different 
pattern across the six manual weighing occasions (Figure 2, Figure 3).
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Figure 2: Relationship between the digital (ASSERVA) and manual capture of daily individual body 
weight [kg] on the six manual weighing days (D) 1, 7, 21, 28, 35 and 49. The red slashed line represents 
equality on which all points would lie if the two meters gave exactly the same reading every time, to 
help gauging the degree of conformity between measurements.

Figure 3: Boxplots presenting the differences in the manual vs. digitally captured individual body 
weight of the piglets at the six manual weighing occasions.
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The box represents the interquartile range (IQR: 50% of data are found between Q1 to 
Q3). A line within the box indicates the median. The lines/whiskers outside the box ex-
tend by Q1 - 1.5 × IQR (25% of data) and Q3 + 1.5 × IQR (25% of data), respectively. Values 
that exceed this range are indicates as dots. The red rhombus indicates the mean of 
the group.

On the first day of the trial, the digital capture of daily individual body weight was on 
average 3.98 % higher than the manual body weight measurement. On day 7, the mean 
difference between the digital captured body weight and the manual body weight was 
only 0.25 %. On the remaining days, the digital capture of daily individual and body 
weight was on average 1.60 % to 3.14 % lower than the manual body weight measure-
ment. The observed deviations in manual and automated weighing can be attributed 
to the time of the manual body weight measurement and differences in feed and/or 
water intake as well as defecation during the day. As outlined by Stygar et al. 2018, body 
weight can fluctuate during a day from 0.9 to 1.4 kg in grower-finisher pigs. Automated 
systems that record frequent body weight measures per pig over the day are able to 
capture these daily fluctuations, whereas manual weighings at a certain timepoint are 
not. Automated measurements are considered superior to manual measurements due 
to important parameters for pig production, such as the average daily weight gain, be-
ing true measures and are not calculated values between manual weighing occasions. 

Figure 4: Exemplary depiction of the digital capture of daily individual feed consumption of 
4 piglets (ID 13, 17, 25, 104) in one pen, housing a total of 14 piglets. The individual average daily feed 
consumption (ADFI) per animal is shown as red dotted line.
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During the study, the animals visited the feeding stations on average 23 ± 5 times per 
day (mean ± SD). Compared to the first half of the trial, the number of visits were twice 
as high as in the second half of the trial. Daily individual feed consumption represents 
the sum of feed delivered to the animal throughout the day in the specific number of 
portions. Exemplarity daily individual feed consumption data for four piglets are de-
picted in Figure 4 and traditional pen-based measures are depicted in Figure 5.

Figure 5: Depiction of pen-based feed consumption, as provided by Spotmix, together with the 
calculated respective average daily feed intake (ADFI) 

Using data derived from the automated PigInsight feeding stations, feed derived cal-
culations, such as ADFI (average daily feed intake / consumption), is available on an 
individual level. The traditional pen-based data on feed consumption cannot take into 
account the individual variation of the animals held within a pen. Important economic 
parameters, such as average daily feed intake, can only be considered on a pen-level. 
Taking into consideration the feeding pattern per animal, early alerts that indicate 
potential health issues could be integrated in automated monitoring of the individual 
feeding behaviour of the animals. 

Conclusions
We verified that the system estimated body weight reliably. We conclude that digi-
tal captures of body weight and feed consumption can be considered superior due to 
several reasons. Firstly, voluntary weighing quantifies the animals’ weight during the 
whole day without causing any stress and extra labour. Secondly, important param-
eters, such as ADFI, are true individual measures and not calculated values. Thirdly, 
with the single animal being the experimental unit instead the pen, we can increase 
the statistical power. Finally, the bias of an animal being excluded from a pen during 
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a trial is erased. The individually monitoring of body weight and feed consumption can 
be further developed for an early and automated detection of animal health issues.
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Abstract 
While anecdotal evidence suggests that adoption of digital precision livestock farming 
(PLF) technologies in the beef sector lags behind other livestock sectors, such as dairy, 
in Canada, few formal studies exist on PLF adoption and use on Canadian beef farms. 
To address this research gap, a study was conducted involving Canadian beef feedlot 
farmers and veterinarians to understand their perceptions and experiences with PLF 
technologies. Data from 11 interviews and 24 web-based surveys were collected. Qual-
itative analysis was conducted to identify key themes in the data. The study found 
little adoption of recent real-time individual animal health and welfare monitoring 
technologies, and a general perception that these technologies were cost prohibitive 
for the beef industry. Instead, participants were more likely to adopt mature software 
and hardware technologies like productivity, data entry, and record-keeping software, 
and digital weigh scales and feeding systems. One feedlot-specific cloud-based soft-
ware application was being used by some participants. Study results highlight the need 
for feasible pricing models that reduce barriers of entry for reluctant adopters and the 
need for user-centric technology design to ensure PLF technologies better meet the 
needs and expectations of Canadian beef producers. 

Keywords: technology adoption, digital technologies, beef industry, survey study

Introduction
Due to increasing world population, the demand for beef and other meat-based proteins 
is increasing (Thomson, 2003). At the same time, beef farmers are facing ever higher 
operating costs, forcing many of them to increase their herd sizes to meet increasing 
demands and to ensure a higher return on investment (Berckmans, 2014). Precision 
livestock farming (PLF) promises to increase animal health and welfare outcomes, as 
well as optimize farm productivity (Banhazi et al., 2012). Although there has been wide 
adoption of certain PLF technologies, such as automated handling of feed, excrement, 
bedding, and ventilation (Hostiou et al., 2017), the adoption of other PLF technologies 
has been slower in certain livestock sectors. While studies have been done on technol-
ogy adoption in some Canadian farming sectors, such as crop (Duncan, 2018; Mitchell 
et al., 2020) and dairy (Duncan, 2018; Tse et al., 2018), to our knowledge, no studies have 
focused on the beef industry. Thus, little is known about adoption or use of PLF tech-
nologies in this livestock sector in Canada. 

There is a similar dearth of beef-focused PLF adoption studies outside of Canada. 
A study conducted in Brazil in 2011, found that beef farmers avoided technologies that 
lacked strong relevance and compatibility with their needs and goals, or did not provide 
significant overall advantages over alternatives (de Aragão Pereira & Woodford, 2011). 
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A recent Swiss study on technology adoption on ruminant farms, including beef cattle, 
found little uptake of technology on Swiss beef farms, with transponder collars (14%), 
automated calf feeders (13%), data transfer into herd management systems (11%), and 
digital weigh systems (9%) the most commonly used technologies (Groher et al., 2020). 

Interestingly, the Swiss study found only 1% adoption of electronic ear tags, which is in 
stark contrast to Canadian beef operations where, due to government traceability regu-
lations, all cattle must be fitted with radio frequency identification (RFID) ear tags when 
leaving their farm of origin (Canadian Food Inspection Agency, 2016). Since most cattle 
in Canada are born on a calf/cow (breeding) operation and then sold to a feedlot opera-
tion for the last 6-18 months of their lives to grow to market weight, most will be fitted 
with RFID ear tags before arriving at a feedlot. Many PLF technologies are designed to 
leverage RFID ear tags (e.g., digital weigh scales, activity tracking ear tags); thus, there 
seems to be significant opportunity in Canada to utilize this existing, mandated tech-
nology in the beef industry.

To fill the research gap in PLF adoption on Canadian beef farms we conducted a study 
involving online surveys and phone interviews of feedlot farmers and veterinarians in 
the province of Ontario, Canada’s third largest beef production region. The study find-
ings revealed little adoption of real-time 24/7 individual animal monitoring technolo-
gies, but some adoption of digital technologies that support record- keeping and report-
ing, animal weighing, feed mixing and measuring, and herd management was found. 

Materials and Methods
An online survey and phone interviews were conducted with beef farmers and veteri-
narians of Ontario, Canada between January and March 2020. Note, data collection was 
cut short when the COVID-19 pandemic hit Canada to respect the tremendous stress 
farmers were under to meet new public health mandates; however, findings still provide 
key insights into the needs, constraints, and expectations of feedlot farmers. The study 
methodology was reviewed and approved by our university’s research ethics office.

Study Context
Beef producers and veterinarians in the beef feedlot sector were recruited for the 
study. This beef sector was chosen because feedlot operations in Canada are highly 
controlled. Feedlot cattle are housed in indoor or outdoor pens, provided controlled 
high-yield diets, and monitored regularly for health and dietary issues. The controlled 
nature of these operations aligned well with current PLF capabilities, making them po-
tentially viable for PLF adoption. 

Different definitions of “technology” are used in the PLF literature. For clarity, this study 
focused on digital technologies, including desktop and laptop computers, mobile phones, 
software applications used for animal or farm management, automated or robotic feed-
ers, weight scales that read RFID ear tags, and automated environment controls.

Participant Recruitment 
Farmers were recruited for the online survey through email, postcards distributed at 
beef industry conferences, weekly bulletins from a beef industry association, and social 
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media channels (Twitter and LinkedIn). Survey participants had a chance to win one 
of five $40 random prizes. Twenty-four valid survey responses were received (demo-
graphics presented below). Nine farmers who completed the survey participated in fol-
low-up interviews and received $20 for participating. Two beef feedlot veterinarians 
who worked for large veterinary services that specialize in feedlot animal care in On-
tario were recruited for interviews. They received $20 for their participation.

Survey Design and Implementation 
The survey aimed to understand farmers’ perceptions of PLF technologies, their expe-
riences with these technologies, their needs and pain points, their current awareness 
of PLF technologies, and potential factors hindering their adoption of PLF technologies. 
The survey was designed in collaboration with industry and academic beef experts. The 
survey was implemented in the online survey tool Qualtrics1. Participants completed 
an informed consent section on the survey landing page before beginning the survey. 

Interview Design and Implementation
Interviews were used to provide deeper insights into survey data collected from farm-
ers, and to gather additional perspectives from veterinarians. Farmer interviews fo-
cused on the same themes discussed above for the survey design but used open-ended 
questions to allow for in-depth answers. Veterinarian interviews focused on perceived 
value, awareness, and perceived usability of PLF technology used on feedlots in Ontar-
io. Interviews were conducted over the phone after participants had submitted a con-
sent form via email. Interviews lasted 20 to 30 minutes. Interview audio data were first 
transcribed and imported into the NVivo2 qualitative analysis software tool. These data 
were coded using an open coding method (Corbin & Strauss, 1990), whereby the data 
were reviewed for key themes and then coded based on identified themes. 

Results and Discussion
We received 52 online survey submissions. After filtering for completeness, eligibility, 
and logical responses, we obtained 24 valid survey responses for analysis. Seventeen 
participants were male and 7 were female. Most participants (16/24) reported they were 
farm owners/operators, five reported they were herdsman/lead hand, two reported 
they were farm employees, one did not specify. Participants worked on a range of farm 
sizes: four had less than 100 cattle/year, six had 100-500 cattle/year, seven had 500-1000 
cattle/year, five had 1001-3000 cattle/year, and one had over 5000 cattle/year. Most par-
ticipants (13/24) had more than 10 years of beef farming experience, six had 5-10 years 
experience, and four had 2-5 years experience, one did not specify. 

Technology Currently in Use 
The survey probed the types of technologies farmers were using at a high-level, focus-
ing on the technological capabilities and perceived values of the technologies, rath-
er than specific technologies or brands being used. Eighteen (18/24) farmers reported 

1  https://www.qualtrics.com/

2  https://www.qsrinternational.com/nvivo/
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using technology on their farm. These farmers were further asked to select from a set 
of predefined benefits in response to the question, “How has technology improved the 
efficiency of your farming operations?”. Figure 1 shows the responses from the 15 farmers 
who responded; six producers selected all four benefits. As shown, farmers reported 
a variety of benefits from adopted technologies, with improved animal health as the 
most commonly reported benefit. 

Figure 1: Reported benefits of adopted technologies. Farmers could select multiple benefits; six 
farmers selected all four benefits.

The survey provided opportunities for farmers to identify general or specific technolo-
gies used on their farms in free-form comments. Farmer interviews revealed additional 
technologies. Table 1 summarizes the reported technologies. Business productivity and 
accounting software and general computing tools were reported most often, followed 
by specialized software for feedlot and herd management and hardware and software 
systems for feeding and weighing cattle.

Table 1: Summary of PLF technologies farmers’ reported using on their feedlots.

Reported Technologies in Use No. of 
responses Exemplar comments

General purpose computer, 
business software, mobile apps 8

“MS Excel”, ”Excel for record keeping”, “Quickbooks”, 
“Quip smart phone app”, “software”, “smart phone”, 
“computer system”, “Bluetooth”, “USB stick”, “laptop”

Specialty software for feedlot 
management 6 “Performance Beef”, “Performance Livestock Analytics”, 

“data based for cattle”, “cattle management system”

Feeding software, systems 6 “TMR” (total mix ration feed mixer system), “feed 
software”, “feeding”

Chute system w/ digital scale 
system that scans RFID tags 5

“digital scale TSI”, “chute system…ear tags 
automatically gets read”, “weigh system … has an RFID 
scanner”, “RFID readers and weight scales”

Animal identification and 
traceability technologies 3

 “RFID reader and computer system” (RFID: Radio 
frequency identification), “Gallagher” (HR3 hand-
held RFID reader)

Crop / Planting technologies 2 “Precision planting technologies”, “GPS on tractors for 
planting”, “Autosteer”

Environmental controls 1 “thermostat fans”
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Interviewed veterinarians revealed additional technologies used on Ontario beef farms, 
including “bunk scoring” camera systems used to manage the feeding trough (bunk) and 
smart ear tag systems that monitor cattle temperature (rarely used as discussed below). 

Overall, the data analysis found a gap between technologies being used on beef feed-
lots and more advanced PLF capabilities used in other livestock sectors in Canada. Most 
technologies reported by participants are mature software and hardware technologies. 
Few beef producers in the region use any 24/7 individual animal monitoring technol-
ogies. Only one producer, a client of an interviewed veterinarian, was reported to use 
such technology (smart ear tags). One veterinarian and one farmer reported these tech-
nologies were currently not cost effective for the beef industry, as Farmer 9 comment-
ed, “There’s lots of technology the dairy industry is using, like tracking animals in the pens or 
measuring feed per animal. I don’t think we are there yet. … it’s cost prohibitive.” (F9).

Usability 
The survey found that many farmers required some type of expert assistance to use 
their technologies (10/18; 55.5%). One farmer, who uses an automatic RFID ear tag read-
ing system, reported during their interview, “[M]anaging the data is where you need the 
expert assistance … The actual tool is easy to use but capturing the data and effectively making 
use of the data requires assistance.” (Farmer 4). 

Some surveyed farmers reported they stopped using a particular technology due to its 
poor usability or “lack of tech support” (Farmer 2). The importance of technology usability 
was underscored by the veterinarian interviews, as evidenced by the comment, “Ease of 
use is a big one… there are a lot of older generation farmers. If it is not intuitive and easy to use 
and implement, then it won’t get used.” (Vet A).

To motivate farmers’ use and adoption of a technology, its usability must be continu-
ously improved. User-centred design methods from the field of human-computer in-
teraction would help to create products that meet users needs and expectations (Sharp 
et al., 2019). 

Farmers Needs and Challenges
To understand farmers’ needs and pain points survey participants were asked to select 
from a list of potentially difficult aspects of their job. Figure 2 shows the list options and 
summarizes farmers’ responses (18 responses). As shown, record-keeping and report-
ing was the most reported pain point (16/18 farmers). It was selected by three times more 
farmers than any other aspects of their job, with individual cattle health monitoring 
(5/18) the next most reported pain point. Pain points identified by farmers in free-form 
text include marketing fed cattle and dealing with packers (slaughterhouses).

Farmer interviews revealed additional pain points, including marketing related tasks 
(4/9), barn chores (2/9), feeding related tasks (2/9), processing cattle (1/9), managing 
herd health (1/9), dealing with weather (e.g. flooding, freezing) (1/9), and meeting regu-
latory requirements (1/9). A distinction was made between time-consuming and stress-
ful tasks. Everyday barn chores, such as feeding and cleaning were reported as time 
consuming, whereas dealing with marketing and financial aspects were generally re-
ported as stressful. 
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The data analysis found that while most farmers find record-keeping, reporting, and 
other business aspects of farming (e.g., marketing) difficult, there were also a wide va-
riety of reported challenges and pain points. This finding underscores the need to con-
sider feedlot farmers’ unique and varied needs in PLF technology development. There 
was strong alignment between the reported pain points and capabilities of reported 
technologies in use. However, despite several farmers reporting animal health monitor-
ing being a challenge, no farmers reported using any technologies to facilitate with this 
task. This is consistent with previously mentioned reports of such technologies being 
cost prohibitive for beef farmers.

Figure 2: Farmer responses to survey question, “What are the most difficult aspects of your job?”.

Barriers to Adoption
To understand potential barriers farmers face in addressing their needs using technolo-
gy adoption, the survey asked farmers to select from a list of options in response to the 
question, “What are the barriers stopping you from automating or using technology to help man-
age the operations?”. Figure 3 shows the listed barriers and farmers’ responses (19 respons-
es). These findings are discussed below along with related data from the interviews. 

Figure 3: Survey responses to the question, “What are the barriers stopping you from automating or 
using technology to help manage the operations?”

Costs and Return on Investment. Finance-related barriers were the most common-
ly reported barriers on the survey. Fifteen of 19 farmers reported at least one of the 
three cost/money related barriers (technology costs, training costs, and/or return on 
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investment). Veterinarian interviews highlighted the financial stress regional beef 
farmers were facing, both from profits being less than they used to be and from the 
closure of a large local processing plant (due to public health concerns) that was having 
wide-scale impacts on the local beef industry.

Despite farmers and veterinarians agreeing that cost was an adoption barrier, some 
farmers reported several large technology expenditures (e.g., $150,000 (CAD) for a new 
total mixed rations (TMR) feed mixer), suggesting that cost effectiveness (return on in-
vestment) may be the actual factor in some cases limiting technology adoption. The in-
terviews supported this assertion through discussions of whether a farmer would “get 
back” (Vet A) a technology investment over time or whether a technology cost would 
“outweigh the cost of labour and probably maintenance and repair.” (Farmer 3). 

The interviews revealed other financial factors related to technology adoption, includ-
ing the relatively short time cattle remain on a feedlot (commonly 6-18 months) and 
the relatively small size of Ontario feedlots (compared to feedlots in western Canada). 
These factors underscore the need for feedlot farmers to minimize up-front and per 
animal costs. 

Relevance of the Technology. Five surveyed farmers reported relevance of the technology 
as a barrier to adoption. The interviews revealed some technologies do not meet On-
tario farmers’ needs due to regional climate or farming practices, as illustrated by the 
comments, 

“Technology seems to come out with … a trial and you invest in it and then you find it’s either not 
safe, not cold safe, or winter safe. Then they upgrade it and the second or third evolution of the 
technology is … when it would be wise to buy … [when it] is more ‘farm ready’”. (Farmer 4), and 

“There is a lot of research [on technologies for the beef industry] out there, a lot of it comes from 
the West and sometimes it doesn’t fit in Ontario.” (Vet B). 

One veterinarian reported some dairy PLF technologies are not relevant due to different 
animal handling practices in beef farming that lead to different health and welfare con-
cerns. Overall, this highlights the need to design PLF technologies to suit the unique, 
and varied farming practices within each farming sector, and across farming regions.

Other Factors. Four surveyed farmers reported set-up time (to install/train/etc.) and 
two farmers reported complexity of technology as barriers that prevented them from 
adopting certain technologies. Both responses support the importance of the usability 
of PLF technologies. An additional barrier reported in free-form comments was “Access 
to internet”, referring to the lack of reliable cellular or high-speed internet services in 
some rural areas, limiting the relevance of some internet-based technologies. 

Conclusions
Our study of digital technology adoption in the Canadian beef industry revealed the 
use of mature business and general-purpose computer technologies and mature feed-
lot technologies (e.g., precision feed mixers and digital weigh scales), that have been 
around for many years. Only a few participants reported using more recent PLF tech-
nology, including a feedlot-specific cloud-based precision record-keeping and reporting 
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mobile application that supported herd and feed management. Cost and return on in-
vestment were revealed to be key factors in technology adoption on beef farms. Feasible 
pricing models, such as monthly subscription services, were found to be attractive to 
feedlot farmers. The findings also underscore the need for more usable, relevant tech-
nologies that better meet the unique and varied farming practices of feedlot farmers. 
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Abstract 
Precision livestock farming (PLF) technologies have been identified as important tools 
to improve the sustainability of dairy production systems due to perceived econom-
ic, social and environmental benefits. However, there is still limited information re-
garding the level of adoption of PLF technologies and the factors associated with PLF 
technology adoption in pasture-based dairy systems. The current research aimed to 
address this knowledge gap by using a nationally representative survey of dairy farms 
in a pasture-based dairy system. Firstly, we established the adoption rates of nine PLF 
technologies, and secondly, we determined the factors associated with the adoption of 
different PLF technology clusters (reproductive, grass, milking management technolo-
gies and automatic calf feeders). Four binomial logistic regressions were conducted to 
determine the factors associated the adoption of each PLF technology cluster. The re-
sults found that adoption rates varied widely, with the most adopted PLF technologies 
being those related to the milking process. Overall, PLF technology adoption is mostly 
influenced by herd size, proportion of hired labour and the age of farmers. However, the 
magnitude and direction of the influence of the factors in technology adoption differ 
depending on the type of PLF technology being investigated.  

Keywords: precision livestock farming technologies, technology adoption, pasture-
based dairy systems

Introduction
Livestock farmers are currently facing several challenges. On the one hand, it has been 
estimated that the worldwide demand for animal products will increase by 70% by 2050 
(Berckmans & Guarino, 2017). On the other hand, consumers have shown an increased 
concern in animal production system practices related to animal welfare, zoonotic 
disease transmission, use of medical treatments and environmental impacts (Bew-
ley, 2017). To satisfy current market demand, livestock farmers are urged to increase 
productivity but in a sustainable manner (Cavaliere & Ventura, 2018). Additionally, in-
creasing herd sizes and decreasing workforce availability is challenging dairy farmers 
and their capacity to monitor and manage their herds efficiently (Hostiou et al., 2017; 
Gargiulo et al., 2018). In this context, Precision livestock farming (PLF) has been widely 
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identified as an important approach to improve the economic, social and environmen-
tal sustainability of dairy production systems (Lovarelli et al., 2020). This arises from 
the expectation that PLF technologies will increase farm efficiency, reduce costs, im-
prove product quality, improve animal health and welfare and reduce the environmen-
tal impacts of dairy farms (Bewley, 2017). Additionally, PLF technologies are expected 
to improve the quality of life of farmers by reducing labour needs or increasing the 
time they spend with their families (Stone, 2020). Despite PLF technologies potential 
benefits, there are still doubts about their actual value to dairy farmers (Steeneveld et 
al., 2015), especially on pasture-based dairy systems, where there are less specialised 
PLF technologies available and perceived demand for technologies compared to indoor 
dairy systems (Shalloo et al., 2021). 

Estimating adoption rates and understanding adoption decision making constitutes 
the first step to evaluate the impacts of PLF technologies on all aspects of dairy farms 
and to explore the limited adoption rates in some contexts. Previous studies have in-
vestigated the adoption of precision livestock farming technologies on pasture-based 
dairy systems (Edwards et al., 2015; Gargiulo et al., 2018; Dela Rue et al., 2020; Yang et al., 
2021) and indoor dairy systems (Borchers & Bewley, 2015; Jelinski et al., 2020), finding 
varying levels of adoption. However, these studies are mostly based on voluntary online 
surveys, which suggest a selection bias towards dairy farmers that already use comput-
ers and internet (Gargiulo et al., 2018), or phone surveys that are not representative at 
the national level.

Additionally, previous studies of the factors associated with PLF technology adoption 
on pasture-based dairy systems have focused on labour-saving (or automation) and 
data-capture technology groups (Dela Rue et al., 2020; Yang et al., 2021). There is limited 
published evidence on the factors affecting the adoption of PLF technology clusters 
related to areas of dairy farm management such as dairy cow reproduction, grassland 
management or milking management. The current paper contributes to filling these 
knowledge gaps by using a nationally representative survey of dairy farms in a pas-
ture-based system to first, establish the adoption rates of PLF technologies, and sec-
ondly, to determine the factors associated with PLF technology adoption. 

Material and methods

Data
The analysis was based on farm-level data collected from the 2018 National Farm Sur-
vey (NFS). The NFS is conducted annually in Ireland by Teagasc, as part of the Farm Ac-
countancy Data Network (FADN) of the European Union. A statistically representative 
sample of approximately 900 farms is selected randomly each year (Dillon et al., 2018). 
Each farm is assigned a weighting factor so that the results of the survey represent the 
national population of farms (approximately 93,000 farms). Farms are categorised into 
one of six farming systems based on dominant farm enterprise: dairy, cattle rearing, 
cattle other, sheep, tillage and mixed livestock (Dillon et al., 2018). 

The 2018 NFS included an additional survey that asked dairy farmers about their use of 
different PLF technologies. The PLF technologies included in the survey were individual 
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cow activity sensors, rising plate meters, automatic washers, automatic cluster remov-
ers, automatic calf feeders, automatic parlour feeders, automatic drafting gates, milk 
meters, as well as use of PastureBase Ireland (an Irish grass management decision sup-
port tool). 

Additional to the 2018 NFS original variables, we created four PLF technology clusters 
variables by grouping technologies based on their level of associations with each other, 
and the area of dairy farm management in which they are used. The PLF technology 
clusters were reproductive management technologies (grouping adopters of individual 
cow activity sensors, automatic drafting gates or both), grass management technolo-
gies (grouping adopters of rising plate meters, PastureBase Ireland or both), milking 
management technologies (grouping adopters of automatic washers, automatic par-
lour feeders, automatic cluster removers, milk meters, or altogether) and automatic 
calf feeders in a separate group by themselves.

Statistical analysis 
Adoption rates of PLF technologies were retrieved from the 2018 NFS data and are pre-
sented as percentage of adoption. 

Four binomial logistic regression models were applied to determine the factors associ-
ated with the adoption of each PLF technology cluster. The outcome binary variables in 
each situation were the adoption of the reproductive management technologies clus-
ter, grass management technologies cluster, milking management technologies cluster 
and automatic calf feeders. The explanatory variables were herd size, farm family in-
come (FFI), proportion of hired labour, age, number of household members, agricultural 
education (categorical variable of three levels, “no agricultural education” as reference 
category, “medium agricultural education” and “high agricultural education), region 
(categorical variable of three levels, “north-west region” as reference category, “mid-
east region” and “south-west region”) and discussion group membership (categorical 
variable of two levels, with “no discussion group membership” as reference category). 
We also included squared herd size, squared farm family income and squared age in 
the model to test for a non-linear effect of these variables. Significance was determined 
if P < 0.05.

Results and Discussion

PLF technologies adoption rates
Table 1 shows the percentage of adoption of each PLF technology. The results showed 
that adoption rates varied widely depending on the type of PLF technology, ranging 
from 6% of rising plate meters to 52% of automatic parlour feeders. 

Irish dairy farmers most commonly adopted PLF technologies around the milking pro-
cess (automatic parlour feeders, milk meters, automatic washers and automatic cluster 
removers). Similar results were reported in other countries with pasture-based dairy 
systems (Edwards et al., 2015; Gargiulo et al., 2018; Dela Rue, 2020) and indoor systems 
(Borchers & Bewley, 2015), although with differences in technology adoption rates. This 
might be because the milking process is physically demanding and time-consuming, 
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accounting for the majority of labour required on pasture-based dairy systems (Dem-
ing et al., 2018). Therefore, the benefits of using this type of precision technology are 
greater (Edwards et al., 2015) and quickly perceived by dairy farmers (Groher et al., 2020) 
in an environment of scarce and costly labour.

Table 1: Adoption rates (%) of PLF technologies in Irish dairy farms

PLF technologies PLF technology 
cluster

Adoption 
rates (%)

Rising plate meters Grass management technologies 6

PastureBase Ireland (PBI) Grass management technologies 24

Individual cow activity sensors Reproductive management technologies 7

Automatic drafting gates Reproductive management technologies 8

Automatic washers Milking management technologies 27

Automatic clusters removers Milking management technologies 25

Milk meters Milking management technologies 29

Automatic parlour feeders Milking management technologies 52

Automatic calf feeders Automatic calf feeders 8

No technologies 30

Factors associated with the adoption of different PLF technology clusters 
Table 2 shows the results of four binomial logistic models, one per PLF technology clus-
ter. As reported by other studies of precision technology adoption in pasture-based 
dairy systems (Gargiulo et al., 2018) we found that herd size is positively associated with 
the adoption of all PLF technology clusters (P<0.01). Additionally, we found age has both 
a negative association with the odds of adopting reproductive and grass management 
technologies and a positive association with the odds of adopting milking manage-
ment technologies and automatic calf feeders. Specifically, for a one unit increase in 
age, the odds of being a technology adopter of reproductive and grass management 
technologies decreased by 10% (P<0.01) and 19% (P<0.01), respectively; while the odds 
of being an adopter of milking management technologies and automatic calf feeders 
increased by 7% (P<0.01) and 18% (P<0.01), respectively. This might be explained be-
cause milking management technologies require significant capital investments (Yang 
et al., 2020) and for younger dairy farmers this capital may be more difficult to access. 
Additionally milking management technologies have been commercially available for 
longer than reproductive and grass management technologies, therefore older dairy 
farmers may be more familiar and aware of the benefits of these technologies.

Dairy farms with higher proportion of hired labour have higher odds of being adopters 
of grass management technologies, milking management technologies and automatic 
calf feeders, but lower odds of being adopters of reproductive management technol-
ogies. Specifically, for a one unit increase in the proportion of hired labour, the odds 
of being a technology adopter increased about 5 fold (P<0.01) for grass management 
technologies, 83% (P<0.01) for milking management technologies, and 61% (P<0.01) for 
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automatic calf feeders. This may be explained because labour has been identified as 
the second highest costs on pasture-based dairy systems (Deming et al., 2018). Addi-
tionally, improving labour efficiency and reducing hired labour are one of the most 
important drivers for technology adoption, with farmers investing more in automation 
(or labour saving technologies) than others (Gargiulo et al., 2018; Dela Rue et al., 2020; 
Yang et al., 2021).

Table 2: Results of the binomial logistic regression models by PLF technology cluster 

Variables

PLF technology clusters

Reproductive 
management 
technologies

Grass management 
technologies

Milking 
management 
technologies

Automatic calf 
feeders

Herd size 1.05*** 1.03*** 1.05*** 1.05***

Herd size ^2 1.00*** 1.00*** 1.00*** 1.00***

FFI 1.00*** 1.00*** 1.00*** 1.00***

FFI ^2 1.00*** 1.00*** 1.00*** 1.00***

Hired labour 0.63** 4.94*** 1.83*** 1.61**

Age 0.90*** 0.81*** 1.07*** 1.18***

Age^2 1.00*** 1.00*** 1.00** 1.00***

Household 1.13*** 1.03 0.92*** 0.84***

High ag. edu. 3.69*** 1.15 0.99 1.25**

Medium ag. edu. 1.44** 1.22*** 1.01 0.30***

Mid-east region 0.68*** 1.20** 1.65*** 1.48**

South-west region 0.23*** 1.87*** 1.21*** 6.88***

Discussion group 2.62*** 7.22*** 0.89** 0.65***

Constant 0.04*** 2.43** 0.01*** 0.00***

Log likelihood - 3,188.9 -5,944.9 -7,182 -2,987.6

AIC1 6,405.8 11,917.8 14,392 6,003.2

*** P < 0.01, ** P < 0.05

The number of household members has a significant negative association with the odds 
of being an adopter of milking management technologies and automatic calf feeders, 
while it has a positive association with the odds of being an adopter of reproductive 
management technologies and no association with grass management technologies 
adoption. Specifically, for a one unit increase in the number of household members 
the odds of being an adopter of milking management technologies and automatic calf 
feeders decreased by 8% (P<0.01) and 16% (P<0.01), respectively. This suggests a greater 
availability of household members to work on milking tasks and calf care, and thus less 
need to invest on these labour saving technologies. 

1  AIC = Akaike Information Criterion
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As reported by other studies (Pierpaoli et al., 2013), farmer’s education is an important 
factor associated with precision technology adoption. The results showed that dairy 
farmers with high-levels of agricultural education are about 4 times (P<0.01) more 
likely to adopt reproductive management technologies compared to farmers without 
agricultural education, however this association is smaller on automatic calf feeders’ 
adoption and there is no association with grass and milking management technologies 
adoption. This may be explained due to this type of technologies requiring users to 
have a greater knowledge to interpret data (Dela Rue et al., 2020).

There are also geographic regional differences in the adoption of PLF technology clus-
ters. Dairy farmers of the south-west region of Ireland have higher odds of adopting 
grass management technologies, milking management technologies and automat-
ic calf feeders. This might be explained because the south-west region of Ireland has 
a greater proportion of dairy production with free draining soils, therefore an advan-
taged region in terms of productivity and profitability compared to the mid-east and 
north-west regions (Lapple et al., 2012; Shalloo et al., 2004; Hanrahan et al., 2018).

Finally, we found discussion group membership has a positive and significant asso-
ciation with the odds of adopting reproductive and grass management technologies, 
however a negative association with the odds of adopting milking management tech-
nologies and automatic calf feeders. This may relate to the age of discussion group 
members, who are on average younger than non-members (Hennessy & Heanue, 2012) 
and more willing to adopt new precision technologies (Pierpaoli et al., 2013), such as 
individual cow activity sensors, rising plate meters or PBI.

Conclusions
The current study reports the first assessment of PLF technology adoption rates on pas-
ture-based dairy farms in Ireland, which can be used as a baseline for future research 
on PLF technology adoption trends. Additionally, the study determined several factors 
associated with the adoption of PLF technology clusters in pasture-based dairy sys-
tems. Overall, we found that herd size, proportion of hired labour, and age influenced 
the adoption of all PLF technology clusters; while factors such as number of household 
members, agricultural education and discussion group membership influenced the 
adoption of some PLF technology clusters. However, the magnitude and direction of the 
influence of the factors in technology adoption differed between PLF technology clus-
ters. Thus a more nuanced understanding of PLF technology adoption in specific farm 
management areas, which we have provided in this study, is likely to be important in 
understanding the broader ongoing transformation of the dairy sector.
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Abstract
Economic viability is a fundamental precondition for the practical adoption of innova-
tions in livestock farming. While precision agriculture bears the potential for a dras-
tic reduction of manual labour and resource use, the economic potential of precision 
livestock farming (PLF) is limited by biological, ethical and ecological boundaries. At 
the same time, PLF solutions often require complex sensor systems and evaluation 
methods that increase their cost and lead to long amortisation times. A paradigm shift 
- from incorporating animals as passive factors that just have to tolerate management 
procedures to actively collaborating agents - could help to overcome this dead centre. 
Farm animals have sensory and cognitive abilities that are not matched by current 
technical systems. Their inclusion could reduce the cost and complexity of technical 
solutions and thereby may open up new areas for process automation. The key to un-
locking these abilities is the establishment of bidirectional communication between 
animals and machines using automated learning procedures. This would enable the 
animals to indicate their needs in a way that is better discernible by machines and in-
versely would allow them to better adapt their behaviour in response to signals given 
by machines. As a side effect, this more cooperative livestock farming would occupy 
the animals with biologically relevant tasks and simultaneously improve the control-
lability and predictability of their husbandry conditions. It could thus directly improve 
animal welfare and therefore has the potential to increase the revenue per animal if it 
becomes an element of welfare product labels.

Keywords: operant conditioning, cooperative livestock farming, animal welfare, PLF 
adoption

Introduction
The economic gains from cost reductions due to increased efficiency, increased prod-
uct quality and reduced manual labour can be assumed to be the driver for the practical 
adoption of solutions from precision agriculture. Selective spraying has the potential to 
reduce the use of pesticides by 80% and more (Oberti et al., 2016). New weed detection 
systems that guide autonomous mechanical weeding robots may eliminate the need 
for herbicides altogether and at the same time reduce manual labour (McAllister et al., 
2019). New technologies open up the opportunity to automate the handling of special 
crops and fruits with autonomous harvesters and autonomous pruning robots (Tinoco 
et al., 2021). This technology also enables selective harvesting to ensure optimal ripe-
ness and size of the products (Kootstra et al., 2021). 

Does precision livestock farming bear the same potential? Existing examples for suc-
cessful applications of PLF usually generate much lower economic benefits. Reductions 
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reported from improved ventilation control are about 30% of the heating costs (Van 
Wagenberg and Vermeij, 1998). Increased productivity from improved pig health due to 
air filters is in the range of 4% for the farrowing rate and 2% from reduced sow mortal-
ity (Alonso et al., 2013). Automatic milking systems can increase milk yield by 5-10% 
(Veysset et al., 2001) and reduce workload by more than 30% (Shortall et al., 2016). Devices 
for oestrus detection increase net return in the range of 1-2% (Rutten et al., 2014). Devices 
for lameness detection in cattle (which are not practically relevant by now) could in-
crease the net return by 4% to 25% depending on the prevalence and severity of lameness 
(Kaniyamattam et al., 2020). Selective feeding depending on body condition can reduce 
feed costs by 6% in pigs (Monteiro et al., 2017) and 7% in broilers (Moss et al., 2020). 

Amortization times reported in the literature cited here are in the range of 3 to 10 
years. Given the limited lifespan of electronic devices in a farm environment, this 
amortization time seems to represent an upper limit for the economic feasibility of 
PLF solutions. Hence, the main inhibiting factor for the adoption of new PLF applica-
tions in practice appears to be that they are too complex and costly compared to the 
economic gains that can be achieved. The prospects for economic gains in livestock 
farming are limited in various ways. They are limited by biology as feed conversion 
efficiency and growth rates may already be close to their biological maximum. For ex-
ample, the increased metabolic activity required for faster growth leads to increased 
bodily heat production which already resulted in a higher susceptibility to heat stress 
in poultry (Gous, 2010). Similar results were found for milk yield in cattle (Jones and 
Stallings, 1999). Likewise, the litter size in pigs grew already beyond biological limits 
especially with regard to sufficient milk supply of the piglets (Rutherford et al., 2013). 
Therefore, solutions aiming to increase productivity cannot be expected to create 
large economic effects.

Economic gains are also limited by ethics. As long as the animals are affected, there is 
not much room for cost reductions. The main animal-related cost factors space, feed 
supply and heating or cooling are already subject to economic optimisation. Drastic 
cost reductions in this area can be expected to give rise to similarly drastic animal 
welfare issues (Dawkins, 2017). There is also not much room for productivity increase 
e.g. by genetic methods. Breeding for high productivity and fast growth can lead to 
severe welfare issues in the parent generation of breeding animals. This already led to 
trimming practices in fowl (Fiks and De Jong, 2007) and higher prevalence of abnormal 
bone development in pigs (Kadarmideen et al., 2004). Therefore, solutions aiming to 
reduce production costs at the expense of the animals or increase productivity cannot 
be expected to be socially accepted. Economic gains are furthermore limited by ecology. 
Cost factors like manure, air pollution and land use are to a large extent externalised 
and represent a major issue in climate change and the preservation of biodiversity 
(Bowles et al., 2019). Therefore, solutions aiming to intensify livestock farming cannot 
be expected to be socially accepted.

The present work discusses other options for how PLF solutions can become economi-
cally viable and how this may create synergy effects with regard to animal welfare. This 
conference paper is partly based on hypotheses previously published in Manteuffel et 
al., (2021).
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Reducing cost and complexity of PLF
The fundamental approach of PLF is to use sensors, automata, artificial intelligence, 
and robots to monitor the state of the animals at the level of individuals and to auto-
mate management tasks by utilizing methods from systems engineering (Wathes et 
al., 2008). This is supposed to “create innovations replacing the eyes, ears, and nose of 
the farmer” (Norton and Berckmans, 2018). These solutions incorporate animals mainly 
passively, e.g. by measuring their health status or by predicting their biological status 
in terms of growth or oestrus and so forth. 

Allowing the animals a more active role by enabling bidirectional communication be-
tween animals and machines opens up opportunities to reduce the cost of PLF solu-
tions and to significantly enhance the automation of management procedures. Through 
communication, the animals could be enabled to indicate their inner states and cur-
rent needs in a way that is more easily discernible by technical equipment. This bears 
the potential to reduce the cost and complexity of technical solutions because it may 
render sensors and evaluation logic unnecessary if the animals can provide their own 
sensory information and evaluation results. At the same time, communication may 
make the ‘intention’ of the equipment easier to interpret for the animals so that they 
are better able to react appropriately. This could facilitate process automation because 
it enables the animals to cooperate in the realisation of this intention and may make 
manual intervention by humans unnecessary. 

Stimulus-controlled operant conditioning is a method that enables such bidirectional 
communication. Numerous studies show that many captive animals can be automat-
ically conditioned to perform operant behaviour. Animals can be conditioned to use 
joysticks (Croney and Boysen, 2021) touch a screen (Rivalan et al., 2017), push levers 
(Ernst et al., 2005), perform simple movements such as approaching or avoiding a target 
(Horback and Parsons, 2019), but also more complex action sequences (Poddar et al., 
2013). At the same time, animals can identify various stimuli. They are able to recognize 
and react to olfactory signals (Erskine et al., 2019), abstract visual cues (Langbein et al., 
2009), individual acoustic signals (Ernst et al., 2005), temporally related events (Balsam 
and Gallistel, 2009), and even their own bodily signals (Dirksen et al., 2021). 

Here, conditioning should not be misunderstood as a sort of deterministic program-
ming. The procedure must provide a clear motivation for the animals to behave in the 
intended way and it is the animal that decides whether this motivation is sufficient in 
comparison to other motivating factors. Therefore, operant conditioning can be inter-
preted as a behaviour economic preference test (Dawkins, 1983), for the strength of an 
animal’s motivation not to behave as intended. This has to be taken into account in 
any practical application especially if not reacting as intended involves negative con-
sequences for animal welfare.

CLF and animal welfare
The ability to perform positively motivated behaviour (Bracke and Hopster, 2006) and 
an environment that is both predictable and controllable (Bassett and Buchanan-Smith, 
2007) are considered to be major factors for good animal welfare - besides fundamental 
requirements such as good health conditions and adequate basic services. Cooperative 
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livestock farming may contribute to animal welfare if it enables the animals to occupy 
themselves with biologically relevant tasks that are positively motivated. 

For example, sows do selectively choose between cooling systems (Barbari and Conti, 
2009). Hence, cooling is under hot conditions sufficiently motivating for sows to per-
form operant behaviour. This could be used in a PLF solution to make the animals 
autonomously operate cooling devices in order to achieve a cooling rate that is aligned 
to the animals’ individual needs on the one hand and enables cognitive occupation on 
the other hand. Furthermore, the number of activation attempts provides information 
about the severity of the heat stress as perceived by the animals. This could be a guid-
ing parameter for a demand-driven activation of barn-wide cooling mechanisms which 
would then require no rumen boluses, ear-tags or cameras (Islam et al., 2021). Similarly, 
animal operated actuators that improve air quality (Jones et al., 1998) may be a cost-ef-
fective alternative to solutions based on dust and ammonia sensors (Banhazi, 2009). 

Once CLF solutions are accepted as measures that improve animal welfare, their instal-
lation could become an element of product labels for animal-friendly housing condi-
tions and thereby could generate additional revenue for the farmers.

Paths to practical applications
The concept of cooperative livestock farming dates back to Kilgur (1978). Early exam-
ples of stimulus-controlled operant conditioning in livestock farming are electronic 
feeding stations and automated milking systems (Jago and Kerrisk, 2011; Vier et al., 
2016). Recent examples for practical use cases are virtual fencing (Lomax et al., 2019), 
latrine training in pigs (Tillmanns et al., 2022) and cattle (Dirksen et al., 2021) as well 
as signal feeding (Kirchner et al., 2012). So far, these recent examples are mainly pilot 
studies that were performed in experimental settings using improvised equipment. 
Their broad application requires an automation of the conditioning procedures.

In general, two main scenarios have to be considered for the training. In the first case, 
the stimulus is motivating itself. In this case, the training only needs to create a link 
between the reward and the operant behaviour. Examples are electronic feeding sta-
tions or future animal operated cooling systems. In the second case, the stimulus is not 
motivating to perform the intended operant behaviour. A link between an additional 
motivation and the behaviour has to be learned. An example is latrine training. Here, 
the latrine use is rewarded by additional food and the animal has to learn that the 
urge to urinate means that food is available at the latrine. To perform the training, the 
system must know the ground truth for the parameter that the animal is ought to dis-
tinguish. This is not different from any other supervised learning procedure. Thus, the 
latrine training requires sensors to identify the animal and the urination behaviour. It 
has to be performed in multiple steps. One option is to associate the reward with an 
individual signal (similar to Manteuffel et al., 2011). In a second step, a sensor must 
detect the discharge and immediately initiate the emission of the reward signal. This 
creates an association between the urge to urinate and the availability of the reward. 
An open hypothesis is that the animal are then able to approach the latrine before uri-
nation by anticipating the reward. After the training is finished, it should be no longer 
necessary to identify the animal or emit a signal. All that is needed would be to detect 
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the discharge at the latrine and provide a reward in return. This example shows that 
CLF does not eliminate the need for sensors altogether. It merely restricts the need for 
complex sensor systems to the training period. 

The practical utilisation of rewards in group-housed animals requires a sufficient num-
ber of devices and protection mechanisms to ensure the accessibility of the reward for 
animals of low social rank and to avoid stress from increased resource concurrence 
(Manteuffel et al., 2010). In addition, a universal method for assessing the learning pro-
gress is required to make the training procedure universally applicable under different 
conditions. This aspect of CLF is discussed in Manteuffel et al. (2021).

Conclusions
CLF may increase the economic viability of PLF solutions by reducing their cost and 
technical complexity through the incorporation of animal abilities. In result, control 
mechanisms may be adjusted more directly to the individual needs of the animals 
and thus bear the potential to create more adequate husbandry conditions at reduced 
costs. At the same time, CLF could enable the animals to occupy themselves with bio-
logically relevant tasks that make their environment better predictable and controlla-
ble. In result, CLF could become an accepted way to improve animal welfare and there-
by additionally increase the revenue from process automation. However, this requires 
the restriction to positive motivations and means to safeguard equal feasibility of all 
behavioural options for all animals in a group. In addition, CLF solutions have to in-
corporate the fact that the animals may decide not to perform the intended operant 
behaviour if they are sufficiently motivated.
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Abstract
Since 2007, the ‘pasture milk’ recommendation has grown further in Europe. It requires 
the cows to spend a minimal duration on pasture (> 6h). Our objective was to devel-
op and test an algorithm that estimates the time dairy cows spend outside the barn 
(T-Out) thanks to an automatic detection of the barn and therefore of the pastures. With 
an analysis of cows’ locations local density distribution, we identified a local density 
threshold to discriminate the cows’ locations that are on pasture from the cows’ loca-
tions that are in the barn. By using the DBSCAN algorithm (Hahsler et al., 2019), which 
allow to identify clusters of arbitrary shape from noises, we identified a unique “barn” 
cluster. We defined T-Out as the sum of locations labelled “on pastures” multiplied by 
the time interval between location acquisitions (11 min). We tested the solution (GPS 
sensors + algorithm) on 2 experimental farms in 2019 (2 datasets) and 2020 (1 dataset). 
Farms were equipped with 8 and 9 GPS sensors. The T-Out reference was recorded by 
a RFID antenna at the barn entry or manually by the farm staff. On experimental farms 
the estimations of the T-Out were accurate with RMSEs between 17 min/d to 53 min/d 
regarding the dataset. The estimation of the T-Out using GPS sensors seems promising 
to objectify the “pasture milk”. However, the solution (GPS sensors + algorithm) needs 
to face on farm conditions to evaluate its reproducibility with a variety of farm systems 
and quality of GPS data.

Keywords: grazing time, geo-tracking, dairy cattle, density-based clustering

Introduction
Naturalness has been identified as a key request formulated by citizens worldwide 
(Schuppli et al., 2014; Delanoue et al., 2018) about their expectations regarding dairy 
cattle production. They ask for more transparency about livestock production (Frewer 
et al., 2005). To face the reduction in dairy products consumption, several actors of the 
dairy branch across Europe developed a label, which certifies that cows spend enough 
time outside the barn. This specification asks to reach a minimum daily and yearly du-
ration of access to pastures with a minimal accessible land area for a minimal percent-
age of the herd. This specification is variable across dairies in France and is commonly 
verified with farmers’ manual notes and audits made by independent organisms. 

Different sensors are already providing animals’ locations to farmers. They are based 
on a global navigation satellite system (GNSS) coupled with a telecommunication tech-
nology. Those sensors are mainly used to monitor the animals’ locations and to track 
them in large area. From this locations data, different services have been created like 
alerts when animals are leaving a delimited grazing area or virtual fencing (Aquilani 
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et al., 2022). Studies have indicated that those sensors can also be used to monitor 
animals’ health and welfare when coupled with other technologies as accelerometers 
(Aquilani et al; 2022) but have not been developed so far. Those sensors seem to have 
the potential to provide data all along the production chain with the development of 
new applications. 

For analysing locations’ data, density-based classification seems promising to detect 
location clusters. DBSCAN is one of the most used density-based clustering and is im-
plemented on R (Hashler et al., 2019). The DBSCAN algorithm classifies in a same cluster 
points that are density-reachable, i.e., that the number of points in an Eps neighbour-
hood is superior to a minimum number of points chosen, minPts (figure 1). DBSCAN 
classification results in points classified as core or border of a cluster or noise (figure 1). 
The DBSCAN algorithm have been used to detect hikers’ stop area and their impact on 
the wildlife (Kerouanton et al., 2017). The use of this algorithm to detect automatically 
when cows are in the barn seems promising.

Figure 1: (Hashler et al., 2019): Concepts used in the DBSCAN family of algorithms. Eps = a user-
specified radius, minPts = a user-specified density threshold. (a) shows examples for the three-point 
classes. A point p is classified as: a core point if at least minPts points are within a radius Eps around 
p, a border point if p is not a core point but is within the Eps radius of a core point, and a noise points 
otherwise; (b) illustrates the concept of density reachability and density-connectivity.

The aim of this project was to develop an algorithm able to discriminate when cows are 
on pastures from when they are inside the barn to ensure the grazing time traceability. 
This paper presents the algorithm developed, and its performance to predict grazing 
time.
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Material and methods

Experimental design
To ensure the traceability of dairy cows on pastures, we monitored the time spent out-
side by dairy cows on 2 farms. Three trials were performed, one in 2019 in the farm 
A and two in 2019 and 2020 in the farm B (Table 1). The farm A is the Derval experi-
mental farm (Chambre d’agriculture Pays de la Loire, Derval, France) located in western 
France (Latitude: 47.69; Longitude: -1.68). The cows are milked by an automatic milking 
system (AMS). Among the 70 lactating cows, 8 were equipped with GPS sensors. The 
cows had a free access to the pastures most of the day. They were pushed back in the 
barn at 6:00 pm and were able to leave after their milking from 9:00 pm on: one cow 
left the barn after milking on average every 6 min after 9:00 pm. The grazing system of 
the farm A was composed of 7 paddocks with an average of 4-5 days spent per paddock 
(figure 2). The farm B is the Poisy experimental farm (Chambre d’agriculture Auvergne-
Rhône Alpes, Poisy, France) in the French Alps (Latitude: 45.93; Longitude: 6.07). On 
the 85 lactating cows, 9 cows were equipped with GPS sensors for the trial B-2019 and 
9 others for the trial B-2020. The cows’ access to pastures was controlled by farmers 
on the farm B regarding the grass growth and weather conditions, and was therefore 
changing from day to day. On the farm B cows had a day paddock and a night paddock 
with 3-4 days spent per paddock (figure 2). 

Table 1: Description of the experimentations 

Trial Name A-2019 B-2019 B-2020

Farm Name A B B

Trial period (dmy) 03/04/2019 – 
05/05/2019

19/07/2019 – 
31/08/2019

22/07/2020 – 
16/09/2020

Number of cows in the herd 70 85 85

Number of cows equipped with GPS sensor 8 9 9

Trial duration (days) 37 36 48

Access to pastures Mostly free Limited Limited

Figure 2: Grazing system of the farm A (left) and the farm B (right). Each white polygon represents 
a paddock. The scale is provided by the dashed white arrow. 
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GPS data and gold standard acquisition 
In all trials, a part of the herd (table 1) was equipped with a GPS mounted collar (Digi-
tAnimal, Spain). The GPS sensors recorded the locations and transmitted them by the 
Sigfox network every 11 minutes in average. The GPS sensors have no cash memory, 
the locations are sent on time or lost if there is no network coverage.

In trial A-2019, the 8 cows equipped with GPS sensors were also equipped with an RFID 
pedometer (Nedap, the Netherlands). An antenna placed in the corridor between the barn 
and the exit to pastures recorded the passage of each cow equipped with a pedometer 
and was used to calculate the reference T-Out (T-Outref). In the trials B-2019 and B-2020, 
the farm staff have recorded manually the time the cows spent outside (T-Outref). 

Estimation of the time spent outside from the gps data
An algorithm has been developed to automatically detect the barn, based on the hy-
pothesis that when processing all the data of a sufficient time window, the density of 
geotracking positions of the cows would be higher when cows are in the barn than 
on pasture. This clustering method was developed with the DBSCAN package avail-
able in R (Hahsler et al., 2019). The DBSCAN algorithm was used to identify a unique 
“barn” cluster. For this reason, we hypothesized that within a radius called Eps and 
for an appropriate time window called T, there will be a binomial distribution of the 
local density of the geotracking positions (figure 3). Thus, the step 1 of the algorithm 
defines a threshold which discriminates the local density of the geotracking positions 
from pastures (left peak in the figure 3) to those from the barn (right peak in the figure 
3). This threshold will be the minPts parameter of DBSCAN in the next step. Data are 
divided in segments of T days, and the step 1 is replicated on each segment. Thus, the 
algorithm has 2 parameters to be defined: Eps and T. They were defined after testing 
a combination of Eps (from 0.0001° to 0.0008° every 0.00005°) and T (7, 14, 21, 28 days) 
and selected on the RMSE of the algorithm’s estimation. 

Figure 3: Binomial distribution local density of the geotracking positions within an eps radius.  
eps = 0.0005° on the plan latitude/longitude. Data are from 8 GPS sensors from the farm A on 
a segment of 7 days. The dashed line represents the local density threshold defined by the algorithm 
to discriminate pasture local density to barn local density. 
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Figure 4: Representation of the geotracking positions after labelling as “barn” (black dots) or as 
“pastures” (white dots). Data are from 8 GPS sensors from the farm A on a segment of 7 days (same 
data than in the figure 3). 

Parameters were defined in the farm A as Eps = 0.0005° and T = 7 days and in the farm 
B as Eps = 0.0003° and T = 14 days. Then in the step 2, for every segment of T days, the 
algorithm uses the DBSCAN algorithm to identify the barn cluster with the Eps chosen 
by the user at the previous step and minPts = the local density threshold identified by 
the step 1. The geotracking positions are then labelled “barn” if they are in the cluster 
or “pastures” if they are not (figure 4). In the step 3, the algorithm applies kinetics cor-
rections to missing data: if there was more than 17 minutes and less than 36 minutes 
between two successive geotracking positions labelled as “pastures”, new data were 
added as “pastures” positions. This step is based on the hypothesis that most of the 
time a cow will not have time for making the round trip to the barn in less than 36 min. 
The time spent outside (T-Out) was then estimated daily as the number of positions 
labelled as “pastures” per the day multiplied by the theoretical interval between two 
successive GPS records that is 11 min. 

Statistical analysis 
The quality of T-Out estimation was characterized by the estimation of the root mean 
squared error (RMSE). The concordance between the estimation by the algorithm and 
the reference method were assessed with a bland Altman plot. 

Results and Discussion
In the farm A (A-2019), the average T-Out estimated with the algorithm (675 ± 221 
min/d) was similar to the average of the reference T-Out (T-Outref, 676 ± 217 min/d). In 
the farm B, the daily average T-Out estimated with the algorithm was slightly higher 
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in 2019 than the reference and slightly lower in 2020 (figure 6): T-Out = 1156 ± 58 min/d 
vs. T-Outref = 1132 ± 31 in 2019 (B-2019); T-Out = 829 ± 349 min/d vs. T-Outref = 835 ± 
377 in 2019 (B-2020). The estimation of T-Out on a daily scale was achieved with RMSE 
of 17 min/d (A-2019), RMSE of 53 min/d(B-2019), and RMSE of 50 min/d (B-2020). The 
T-Out estimation was worse when cows spent more than 800 min/d outside and less 
than 250 min/d (figure 7). At the full experimental period, the estimation of the T-Out 
is very accurate because the over-estimation of the T-Out when cows spent a lot of 
times in the barn balanced the under-estimation of T-Out when cows spent a lot of 
times outside (figure 7). Moreover, the estimation difference averaged zero between 250 
min/d and 800 min/d of time spent outside (figure 7). The over-estimation when cows 
spent a lot of time inside the barn could be explained by a lower geotracking position 
accuracy indoor. This lower accuracy would create false positive “pastures” labelled 
positions and would increase the estimated T-Out. In the other hand, little time spent 
in the barn might break the binomial distribution seen in the figure 3. Indeed, without 
a peak of distribution relative to the barn (high local density peak, figure 2), the cluster 
detection in the algorithm would be less specific to the barn. This issue happens when 
there is more missing GPS data within the barn than outside the barn. In the B-2019 
dataset, the small variability of T-Out could explain the slope bias of the linear regression 
(figure 6) while having a similar RMSE than the dataset B-2020. 

Figure 5: Correlation between the estimated and reference time spent outdoor (T-Out). One point 
represents the T-Out estimated for one collar for one day in the dataset A-2019 (N= 143, black 
triangle), in the the dataset B-2019 (N= 252, dark grey square) and in the dataset B-2020 (N= 432, 
grey plus). The black dashed line is the first bisector (Y = X).  
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Figure 6: Correlation between the daily average estimated and the daily average reference time 
spent outdoor (T-Out). One point represents the average T-Out per day in the dataset A-2019 (N= 37 
d, black triangle), in the the dataset B-2019 (N= 36 d, dark grey square) and in the dataset B-2020 (N= 
48 d, grey plus). Linear regressions are the black dashed line for the A-2019 dataset, the dark grey 
dashed line for the B-2019 dataset, and the grey line for the B-2020 dataset. The thin grey dotted line 
is the first bisector (Y = X).

Figure 7: Bland-Altman plot of the time spent outside (T-Out) between reference T-Out and 
estimated T-Out on the combination of the three datasets. The middle dashed line indicates the 
average difference between the reference method and the estimation by the algorihm, the bottom 
and the top line represent 2 SD from the average difference. 
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The density-based classification is accurate on these datasets. Due to the variety of 
barns, grazing systems and its stocking rates more research is needed to study its re-
producibility. Our algorithm is based on the optimization of 2 parameters (Eps, T), trade-
offs of the parameters should be found regarding the stocking rates and the shortest 
distance to the barn from the paddocks. Other kinetics corrections (trajectory correc-
tions) might increase the estimation by correcting the location bias. Our methodology 
seems particularly dependent of GPS accuracy and signal coverage, particularly when 
the sensors are indoor. The deployment of the solution (GPS sensors and density-based 
classification) in 22 commercial farms will be presented in the part II of this communi-
cation by Nicolas et al. (2022). It seems that in many French farms there are too many 
missing data due to poor connectivity to apply this algorithm (Nicolas et al; 2022).

Conclusions
A GPS embedded sensor combined with a density-based classification can be used to 
automatically identify the number of days dairy cows spend on pasture. The estima-
tion is less accurate when cows spend very short time in the barn or very short time in 
pastures. Further validation on different systems and with more cows will be required 
prior to a commercial use, as well as the development of complementary services to 
make it useful for farmers.
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Abstract
In recent years, the application of sensor systems in livestock farming has increased 
noticeably. Tracking systems for dairy barns are of great interest in the context of smart 
farming to enable a continuous digital monitoring of the cows’ movements, their indi-
vidual behavioural patterns and the derived health status. In order to assess and vali-
date the various number of different commercial systems, the CattleHub team specified 
a portable reference system for indoor tracking in livestock farming: OpenCattleHub. The 
system is defined to work in a ‘plug and play’ manner with portable, battery-powered 
UWB-based ‘satlets’ that can be freely arranged in a new environment. Besides easy 
handling by non-engineers, the focus is on high accuracy in x-y-coordinates and up-
date frequency with full data availability including covariance matrices. Thereby, bat-
tery life is subordinate as it suffices to run the system for trials of approx. 1 – 2 weeks 
duration. The application lies in the scientific area: Apart from evaluating commercial 
systems, new applications of tracking systems can be identified and demonstrated. 
The OpenCattleHub tag is open for possible attachments of further sensors and has high 
scalability with an almost unlimited number of active tags.

Different trials have been conducted with a preliminary functional prototype to vali-
date the systems specified properties and behaviour in a sports hall and under barn 
conditions with static and dynamic experiments. The results presented are promising 
with a high precision in the static trials (3.7 cm / 7.0 cm) and an overall accuracy of 
67.0 cm (sports hall) and 75.3 cm (barn).

Keywords: tracking, indoor locating, dairy cow, reference system, validation

Introduction
In the context of Agriculture 4.0 and growing herd sizes, assistance systems gain in-
creasing importance in livestock farming. Sensor systems used for animal monitoring 
have the potential to support farmers in their daily caretaking by providing meaning-
ful data. They allow a continuous surveillance leading to a larger database for deci-
sion making. Besides taking a burden of the farmers’ workload and responsibility, also 
animal welfare benefits from advantageous decisions. Indoor tracking systems are of 
special interest as they monitor the animals’ movements and behavioural patterns 
together with a spatial component. Thus, saving time while searching for individual 
animals, but also enabling more sophisticated data analysis and derived information. 
The resulting applications are manifold.
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In cattle farming, various indoor tracking systems (e. g. CowLocator1, CowView2, and 
CattleData3) are available for dairy barns. They apply different radio technologies and 
methods for deriving positions which differ in localization accuracy, power consump-
tion as well as functionality. In order to assess and validate these systems, the Cat-
tleHub team specified a portable reference system for indoor tracking in livestock 
farming: OpenCattleHub. To meet the requirements of a comprehensive and objective 
evaluation of tracking systems, OpenCattleHub focusses on high accuracy of x-y-coor-
dinates and easy handling by non-engineers. Literature studies have shown that such 
a reference system for comparative analyses of commercial tracking systems in barn 
environments is not yet available.

In the following, the concept of OpenCattleHub will be introduced together with vali-
dation results of a preliminary functional prototype. Different trials have been carried 
out in a sports hall and under barn conditions without animal presence. Thereby, static 
and dynamic measurement series have been conducted. 

Material and methods

OpenCattleHub
The specified OpenCattleHub tracking system consists of anchors (‘satlets’) with known 
positions and mobile transponders. The satlet infrastructure shall be mounted at 
a height of around 3.5 m. With that, the antenna beam covers a maximum area and 
the satlets can be distributed sparsely in the environment (up to 20 – 25 m distance 
between the satlets). The satlets do not need any special geometric order or specific 
points of installation. Also the height can be varied and does not need to be uniform, so 
that the system can be adapted to any indoor setting, for example a barn or a hall. The 
transponders can be located inside the area spanned by the satlets.

The localization technique is reverse TDoA (Time Difference of Arrival). That means 
the satlets transmit their timing data to the transponder – like GPS satellites to GPS 
receivers. Instead of satellite signals, OpenCattleHub uses ultra-wideband signals (UWB) 
for indoor localization. The transponders are configured to calculate their location on-
board based on the received timing data with a resolution of 10 cm. Similar to GPS, the 
timing information can be delivered to uncountable devices. At the moment, the only 
restriction is the backlink, i. e. the data transmission from the transponders to a data 
collection centre. For the functional prototype, this backlink is implemented via Blue-
tooth and its limitations in range and data rate. A RaspberryPI single board computer 
was used as data collection centre. The data collection centre supervises the infrastruc-
ture’s behaviour. In addition, it collects and saves the position data transmitted by the 
transponders for further analysis.

1  Nedap Livestock Management, https://www.nedap-livestockmanagement.com/dairy-farming/solutions/ 
nedap-cowcontrol/cow-locating/

2  GEA Farm Technologies, no longer distributed

3  CattleData GmbH, www.cattledata.de
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A test design for static and dynamic transponder localization was developed, which 
was initially evaluated in an empty sports hall that can be easily characterized in terms 
of radio frequency properties. These experiments were used to study the handling, the 
potential influencing factors and the performance limits of OpenCattleHub. In a second 
series of experiments, the system was tested in a dairy barn.

During the trials, the transponders’ software was specified to calculate more de-
tailed data. In the beginning, the position estimation was updated as often as possible 
(7.5 – 11.5 Hz). This was changed for the barn trials to synchronize the calculation of 
the position with the infrastructure’s transmit rounds at 4 Hz. Moreover, a threshold of 
40 cm was introduced to suppress jumping locations without transponder movement. 
This functionality was deactivated for the barn trials.

The functional prototype satlets used for the experiments were supplied with energy 
by rechargeable power banks. With this concept, the satlet infrastructure runs autar-
chic for several days, long enough for the performed measurement series and trials of 
1 – 2 weeks.

Conducted trials
The trials have been conducted first in a sports hall (SH) and second in barn environ-
ment (BE). Both sports hall and free-stall barn were located at the Saxon State Office 
for Environment, Agriculture and Geology in Köllitsch (Germany). The sports hall had 
an area of 20.00 × 10.54 m² of which a trial field of 12.00 × 5.00 m² and later the whole 
area was equipped with six satlets. Inside the barn, the pen of one performance group 
(22.80 × 10.20 m²) was used as experimental site. Six satlets span an antenna field of 
24.50 × 18.05 m² as shown in Figure 1. The barn trials have been conducted without 
animal presence in order to keep disturbing factors low.

At both experimental sites, static and dynamic experiments were carried out. For the 
static measurement series, 65 (SH) resp. 24 (BE) measuring positions were selected cov-
ering the whole antenna field and all functional areas of the pen. At each measuring 
point an OpenCattleHub transponder was positioned immobile for a specified duration. 
In the sports hall, the satlets were installed at a height of 0.50 m and the transponder 
was placed on ground level for 30 – 120 s resulting in 225 – 1380 location estimations. 
In the barn, the satlets were installed at a height of 2.74 – 3.57 m. The transponder was 
positioned on two tripods adjusted at a height of 0.75 m and 1.45 m corresponding to 
the transponder height when mounted on the collar of lying and standing cows respec-
tively. The duration was increased to 210 s due to rougher conditions resulting in 840 
location estimations.

Each static measurement series was repeated at least three times on three different 
days. In addition, trials have been conducted in the sports hall with different arrange-
ments of the satlets in order to investigate the effect of the satlets and their environ-
ment. To this end, four satlets were successively rotated clockwise in one experiment 
while keeping the measurement positions unchanged. In a further experiment, the 
whole antenna field including measurement positions was turned by 180° inside the 
sports hall.
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For the dynamic measurement series, the OpenCattleHub transponder was attached to 
a baseball cap and carried by a human along predefined routes. Different vertical and 
horizontal routes were investigated at three velocities: slow (approx. 0.7 m s-1), medium 
(approx. 1.0 m s-1), and fast (approx. 1.5 m s-1). Each route was repeated at least three 
times consecutively during one measurement series. In the sports hall, the satlets were 
moved to a height of 2.47 m for these trials.

Figure 1: Experimental setup of the barn trials (left). Static measurement positions are indicated 
with red diamonds, routes of the dynamic measurement series with blue lines. The functional 
prototype transponder and its dimensions are depicted on the right.

Statistical analysis
For each static measurement series, the parameters Difference Root Mean Squared 
(DRMS), precision, and offset were calculated following Maalek & Sadeghpour (2013). 
Thereby, the precision measures the spreading of the obtained locations (2D standard 
deviation) whereas the offset characterizes the difference between the average meas-
ured location and the actual location. Finally, DRMS combines both aspects. In expec-
tation, 63.2 % of the measured locations lie in a radius of 1 DRMS around the actual 
location and 95.0 % in a radius of 1.73×DRMS (R95).

For the dynamic measurement series, the sideways deviation and offset (orthogonal 
to the direction of movement) was calculated as well as the percentage of measured 
locations inside a band of ± 10, 30 and 50 cm.

ANOVA with post hoc Tukey tests were performed to compare different measurement 
groups. The statistical analysis was carried out with Python at a significance level of 
p < 0.01.
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Results and discussion

Static measurement series
The results of the static trials are similar for both settings. In the sports hall, the over-
all accuracy is 67.0 ± 36.6 cm (DRMS) with a precision of 3.7 ± 8.6 cm and an offset of 
66.4 ± 36.4 cm. For the barn trials, the overall accuracy is 75.3 ± 39.0 cm (DRMS) with 
a precision of 7.0 ± 3.2 cm and an offset of 74.8 ± 39.4 cm. In either case, the precision is 
high (< 10 cm deviation) and the DRMS is dominated by the offset. The precision values 
of the measurement series in the sports hall are significantly smaller compared to the 
barn. This may be due to the threshold of 40 cm for new positions that was active dur-
ing the sports hall trials and fewer disturbance factors in the empty hall.

In the sports hall trials, the offset in x- and y-direction differed for each measurement 
series with a restart of the system. This difference between measurement series (SD 
44.7 cm in x- and 46.2 cm in y-direction) was greater than the difference between the 
measurement positions (SD 7.4 cm in x- and 6.1 cm in y-direction). Therefore, there was 
no effect of the transponder’s location inside the antenna field.

Apart from the varying offset, there was no significant difference found when rotat-
ing the satlets. The mean measured locations for the rotation trials – corrected by the 
mean offset of the respective measurement series – are depicted in Figure 2. The turn 
of the experimental setup by 180° had no effect either.

Figure 2: Impact of successive clockwise satlet rotation (left) and turn of the experimental setup by 
180° (right). Depicted are the mean measured locations (corrected by offset in the left diagram) for 
13 consecutive measurement positions each.

In the barn, the offset was more stable but differed significantly in y-direction for trial 2 
causing a significant difference in offset and DRMS, too. The parameters DRMS, preci-
sion and offset for the trials in barn environment are listed in Table 1. Figure 3 shows 
the mean measured positions.



 Precision Livestock Farming ’22 607

Table 1: Parameters DRMS, precision and offset for the trials in barn environment. Different letters 
indicate significant differences.

Parameter 
[cm]

Tag height Trial

0.75 m 1.45 m 1 2 3

DRMS 74.4 75.8 66.6a 93.1b 65.7a

Precision 7.7 6.7 8.1 6.1 6.3

Offset 73.7 75.3 65.5a 92.7b 65.3a

Offset (x) -36.7 -42.8 -44.8 -58.2 -19.4

Offset (y) 38.8 24.0 11.7a 47.1b 26.1a

Figure 3: Mean measured positions in the static barn trials.

No significant differences have been found for the parameters tag height, functional 
area and precision. The reproducibility of the trials is high and the precision is similar 
in all three trials. There is a significant difference within the offset in x-direction in all 
three repetitions which decreases from left (44.2 cm) to right (-145.6 cm) inside the pen. 
Consequently, the offset and the DRMS also differ significantly.

The experiments show that in the pen the position estimations in the middle of the 
antenna field are more accurate than at the edges as can be seen in Figure 3. So far, the 
authors did not find an appropriate explanation for this effect yet.

Similar results for static measurement series have been achieved at a different re-
search station under barn conditions with the same version of OpenCattleHub used in 
this study (DRMS 50.7 cm, precision 4.6 cm, offset 50.5 cm; Sporkmann et al., 2022). 

Dynamic measurement series
The movement of each route could be tracked with the system.

In the dynamic sports hall trials, the average sideways deviation was 15.7 cm on aver-
age for vertical and 21.4 cm for horizontal routes. Although the deviation was higher 
at a velocity of 1.5 m s-1 this difference was not significant. The offset varied between 
-64.1 and 14.5 cm (mean: -19.0 cm). The percentage of the measured locations inside 
the ± 50, 30 and 10 cm band around the actual routes is listed in Table 2 for the different 
velocities. Figure 4 shows the measured positions for the vertical routes.

Table 2: Percentage of measured locations inside a ± 50, 30 and 10 cm band at the different velocities 
for the dynamic sports hall trials.

band slow velocity medium velocity fast velocity all

± 50 cm 97.1 95.0 84.1 92.1

± 30 cm 83.8 76.6 67.4 76.0

± 10 cm 41.3 41.1 29.0 37.1
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Figure 4: Measured locations for dynamic measurement series in the sports hall. Five vertical routes 
at low velocity are shown with their ± 50 cm band and four repititions each (left). On the right, the 
third route is depicted in a shifted representation so that the measured positions of each repitition 
(1 – 4) are visible.

In the barn, the sideways deviation of the movement was 28.8 cm on average. This de-
viation increased slightly with increasing velocity from 26.8 cm (slow) to 32.5 cm (fast) 
but not in the same extent for the four routes. The sideways deviation was highest 
for the two routes H1 and V2 traversing the pen’s upper right corner (as shown in Fig-
ure 5). The offset varied between the four routes. For the horizontal routes it amounts 
to 29.6 cm. The vertical routes show the same varying offset in x-direction found in 
the static barn trials: 74.3 cm for route V1 at the pen’s left side and -106.6 cm for route 
V2 at the pen’s right side. For the horizontal routes, 90.3 % of the measured locations 
lie inside the ± 50 cm band around the actual route (30 cm band: 63.9 %, 10 cm band: 
15.7 %). Due to the high offset in x-direction, only 18.3 % of the measured locations of 
the vertical routes lie inside the ± 50 cm band around the actual route.

Figure 5: Measured locations for the dynamic measurement series at medium velocity in the 
barn with three repetitions each. Actual routes and ± 50 cm bands are indicated in black and grey 
respectively.
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Conclusions
The conducted trials show that the OpenCattleHub tracking system is very stable as the 
low precision values indicate. The high and varying offset is a problem as it dominates 
and increases the DRMS. When this challenge can be solved, the resulting system is 
very precise and therefore suitable for comparative studies of commercial tracking sys-
tems. Such systems for dairy cows have accuracies of 0.5 – 1.2 m according to the man-
ufacturers and confirmed in studies (CowView: < 0.50 m, Veissier et al., 2017; SmartBow: 
1.22 – 1.80 m, Wolfger et al., 2017).

The dynamic measurement series show that movements can be tracked with the sys-
tem with few deviations to the side. This enables the possibility to open up further new 
use cases for practical applications apart from validation.

As a next step, trials will be conducted with OpenCattleHub tags attached to the collars 
of dairy cows.

Finally, cows will be equipped in comparative studies with both a commercial tracking 
system and OpenCattleHub. In analysing the differences between the measured loca-
tions, the accuracy of the commercial tracking system can be derived when taking into 
account the accuracy parameters of OpenCattleHub. 

Acknowledgements
This work was financially funded by the German Federal Ministry of Food and Agricul-
ture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany, 
granted by the Federal Office for Agriculture and Food (BLE; grant number: 28DE108A18).

References
Maalek R. and Sadeghpour F. (2013) Accuracy assessment of Ultra-Wide Band technology in tracking 

static resources in indoor construction scenarios. Automation in Construction 30, 170–183.

Sporkmann K., Neeland H., Engels C., Trilling M., Wegener M., Wagner M., Pache S. and Büscher W. 
(2022) Evaluierung eines Funktionsmusters für ein Tracking-Referenzsystem in der Rinderhal-
tung, submitted.

Veissier I., Mialon M. and Sloth K. (2017) Short Communication: Early modification of the circadian 
organization of cow activity in relation to disease or estrus. Journal of Dairy Science 100, 3969–3974.

Wolfger B., Jones B.W., Orsel K. and Bewley J.M. (2017) Technical note: Evaluation of an ear attached 
real time location monitoring system. Journal of Dairy Science 100, 2219–2224.



610 Precision Livestock Farming ’22

Is it possible to identify individual animal faces with state-of-the-art 
computer vision algorithms?

A. Parmiggiani1, D. Liu1, T. Norton1

1Division M3-BIORES: Measure, Model & Manage Bioresponses, Catholic University of Leuven, Kasteelpark 
Arenberg 30, 3001 Heverlee, Belgium
tomas.norton@kuleuven.be

Abstract
Individual animal identification allows producers to keep records on an animal’s health 
history, geographical origin, dietary background, and a host of other important manage-
ment information. In the field of computer vision the identification and verification of 
human and faces are two major issues where Deep Learning models have proven to be 
successful. The question remains: how performant these methods when trained on ani-
mal images? This study focused on the development of a Deep Learning based algorithm 
for this task. Using photos of cattle faces a similar procedure developed for human face 
recognition was developed. The algorithm comprised of (1) face detection, which allowed 
the models to focus on the bounding box around the cattle’s head, (2) face alignment 
based on facial landmarks, to standardize the position of the head, and (3) a CNN model 
(called Arcface), which employs L2-regularization of the feature vector and a loss func-
tion designed to maximize of the angular margin between classes and thus separating 
individuals in the feature space. The resulting pipeline can be used for animal verifica-
tion when a current picture of the animal and another picture from an alike animal are 
compared. When there is no prior knowledge on the identity of the animal, the same 
pipeline can be utilized to rank images based on similarity and therefore match with the 
closest result. To train the models involved in the cattle face recognition, a dataset of 9182 
pictures of 3200 individual cattle was collected with the help of CattleTracs® software. 
This method can lead to a faster way to track down the outbreak of a disease or facilitate 
verification of intentional or unintentional miss-labelling of the animals.

Keywords: face recognition, cattle identification, arcface loss, deeplearning, precision 
livestock

Introduction
The accurate and reliable identification of individual animals is required in many pre-
cision livestock farming applications. From animal breeding and selection to precision 
feeding and disease control, animal identification can be considered a fundamental tech-
nology. In the field of animal identification, there have been different proposed solutions, 
which can be grouped into three categories: body modification, attached hardware and 
software based. The first method consists in modifying the animal body in a unique way 
so that it can be recognized in the future and includes practices like hot iron branding 
(Adcock et al., 2018), ear notching and ear or lip tattooing. These practices are by far the 
most invasive and can lead to severe medical issues for the animal. The fact that they’re 
considered in violation of the animal welfare legislation in different countries, makes 
them obsolete and not suitable for being adopted across borders. Identification using 
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attached hardware, such as ear tags and RFIDs, is by far the most used method for rec-
ognizing individuals, as they are generally less invasive. One of the major drawbacks of 
this approach is the fact that what is identified is the piece of hardware itself and not the 
animal and this can leave room for fraud, replication and lost ids. These inconveniences 
are being addressed by an increasingly popular method in the world of precision live-
stock and modern-day farming, known as animal recognition via software applications 
and in particular computer vision models. The fast-paced development in deep learning 
models and technologies has enabled the deployment of online pipelines able to perform 
a wide range of tasks. With respect to animal identification, researchers have investigat-
ed different algorithms to study and recognize different features on the animal body, the 
iris pattern the retina vascular network, and in the case of cows the muzzle print. Just 
recently an analogue to human face recognition has been applied to cattle faces (Xu et 
al., 2022) although to a limited dataset. Similarly, this study aims to leverage the work 
done in the field of human face detection, alignment and recognition to build and train 
a deep learning pipeline using our own dataset. This will allow us to answer the question 
if it’s possible, and within which limits, to identify the same cow using a picture of its 
face without relying on special equipment like in the case of the iris recognition or on 
a specific type of cow like in the case of the muzzle print.

Material and methods

Experimental data
The dataset has been collected throughout different farms in Oklahoma and consists 
of 9182 images of 3200 different cows. Each animal has one to three pictures of its face, 
and when possible, from different angles. This dataset has been gathered by farmers via 
the CattleTracs® smartphone application that guides the user on how to take the pic-
tures to produce a well-defined image. This dataset has also undergone a cleaning step 
in which we removed images from different cows that were labelled as being the same.

Labelling

Figure 1: Example of key points on the cattle face. Key points include inner and outer corner of both eyes, 
nose tip, mouth corner, upper and lower lip. In blue the ground truth and in red the model prediction.
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To train the face recognition model, images have been structured in different folders, 
one corresponding to each animal, with the id label was set as the folder name. The 
face recognition model used 2038 images for training and 908 to validate the model. 
A dataset with labelled key points has also been created for the face alignment model. 
The labelling has been done using COCO Annotator1 producing JSON annotation files. 
We used 277 images in the training dataset and 152 in the testing dataset.

Face Alignment

Figure 2: The architecture of the model used to regress the key points on the cow’s face. 

To align the face of the cow in a standard position we used a model to regress key 
points on the cattle face. This model is composed by a backbone, for which we used 
a ResNet34 and a graph neural network that outputs the regressed points. A resized 
image (224x224) of the cattle face is passed through a ResNet34 to extract a 7 x 7 x 512 
feature tensor. To construct the graph every vector of dimension 512 is considered as 
a node and it is connected to its most similar vectors. This graph pass through a graph 
convolutional layer with a ReLU activation function, then flattened and passed through 
a linear layer that output the regressed coordinates of the nine key points. The idea be-
hind this architecture is to create a 7 by 7 grid of vectors, with similar vectors referring 
to similar areas in the image. The vectors are then used as nodes of a graph and each of 
them is connected with the 10 most similar vectors. The graph convolutional layer then 
aggregates information amongst similar areas of the image e.g., the eyes. The resulting 
features are flattened and passed through a fully connected layer to output the x and 
y coordinates of the nine key points. To optimize this neural network, we used a loss 
function composed by two terms the smooth L1 loss from each point to its target and 
the smooth L1 loss of the 9 by 9 matrix of relative distance between the points. This last 
term was added to have a faster convergence and robustness to mislabelling.

1  Coco Annotator, author Justin Brooks, https://github.com/jsbroks/coco-annotator/, 2019.
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Face Recognition
We used a deep convolutional neural network (DCNN) to extract feature vectors corre-
sponding to the cattle face. The architecture of this feature extractor is MobileNet, and 
the output vector is compared with vectors from the same cattle and from different 
ones to calculate the loss. To maximize the margin between classes and minimize in-
tra-class distance we used an Additive Angular Margin Loss (ArcFace)(Deng et al., 2018). 
To calculate this loss we first apply L2 normalization to the vector and the weights of 
the last fully connected layer. All feature vectors are projected on the unit hypersphere, 
such that the dot product between weights and the vector give the cosines �y that are 
then used in the ArcFace loss function:

 (1)

Results and Discussion
The training of the recognition model presents a couple of challenges that need consid-
eration. The first challenge was studying the false positives (FP) and false negatives (FN) 
rates testing the model in a range of similarity thresholds, that impose how similar two 
feature vectors must be to be considerate as originated from the same animal. We used 
a FP-FN plot (Figure 3) with different thresholds to see their rate of change and their 
optimal combination at a threshold of 0.18. 

The second challenge is given by the fact that we have a heavy imbalanced set of pic-
tures of different cows with respect to pictures of the same cow. This would lead the 
model to be biased and classify any picture as a different cow (Huang et al.). This is over-
come by validating on a random number of cows each epoch and balancing same-cat-
tle comparison and different-cattle comparison. Once we have minimized the ArcFace 
loss over this balanced subset of the validation dataset, we apply early stopping. The 
validation is done over the whole validation dataset. In Figure 4 and 5, the histograms 
of cosine similarity of the feature vectors in the random subsample, and on the whole 
validation set respectively. 

Figure 3: False positive and false negative plot using different similarity threshold.
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Figure 4. Distributions of cosine similarity between same cow images (genuine) and different cow 
images (imposter) in the random subset of the validation set.

Figure 5: Distributions of cosine similarity between same cow images (genuine) and different cow 
images (imposter) in the entire validation set.

The results on this dataset are encouraging. Using different similarity threshold, we 
constructed plots to analyse different metrics like F1-score, precision and recall.

Further study is needed though as recent testing on this model showed like training on 
smaller datasets with fewer animals leads to severe overfitting or again training using 
only animals with the same uniform colour impacts the results. It will be interesting to 
use 3-D information to see if this lack of variation in colour can be compensated by the 
three-dimensional structure of the face and include this feature in the identity vector. 
This could be accomplished by taking different pictures from different angles to con-
struct a key-point mesh or point cloud representation of the animal face.
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Figure 6: F1-Scores corresponding to different thresholds, maxing out at 0.57.

Figure 7: Precision-Recall curve with marked the 0.57 threshold derived by the F1-Score curve.

Conclusions
This paper proposes an automatic and non-invasive method of identification for cat-
tle faces. Based on the work done for human face recognition, we developed a similar 
pipeline and trained on a large dataset collected by farmers. Future improvements for 
this research will be to use 3-D features of the cattle face, using pictures from different 
angles to construct the feature vector, this can provide important information in cases 
where the cows are uniformly coloured and don’t present any distinctive feature.
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Abstract
Physiological parameters of high-yielding dairy cows react sensitively under heat 
stress conditions. However, the severity of heat stress is difficult to quantify. The pres-
ent study aimed to determine the critical threshold of the temperature-humidity in-
dex (THI) based on physiological parameters of lactating Holstein-Friesian cows under 
a continental climatic zone in Germany. Data were collected from 139 cows (1st to 8th 
lactation) housed in a loose naturally ventilated barn, on three randomly chosen meas-
urement days per week. The following physiological parameters were measured: respi-
ration rate (RR), measured hourly in standing and lying cows; heart rate (HR) and rectal 
temperature (RT), both measured twice daily. In addition, the ambient temperature and 
relative humidity of the barn were recorded every 5 min to calculate the current THI. 
The data of the physiological parameters were linked to the THI, and the heat load 
thresholds were determined using the broken-stick model. Considering the increases 
in the physiological parameters, our study provided reliable data to determine heat 
load thresholds for lactating high-yielding dairy cows in a moderate climatic zone. The 
heat load threshold could be determined for RR in standing (THI = 70) and lying cows 
(THI = 65) as well as for HR (THI = 72) and RT (THI = 70) in standing cows. According to 
the study, measures should be taken to reduce heat stress in high yielding dairy cows 
when THI is above 65.

Keywords: heat stress, respiration rate, heart rate, rectal temperature

Introduction
The issues regarding the sensitivity of high-yielding dairy cows to high temperatures, 
associated with negative effects on their performances, have been frequently report-
ed in the literature (Galán et al., 2018). The heat load of cows is commonly assessed 
using the temperature-humidity index (THI), determined with a combination of am-
bient temperature and relative humidity (NRC, 1971; Schueller et al., 2013). Although 
most studies consider THI 72 to be a reliable heat stress threshold (Armstrong, 1994; 
Bohmanova et al., 2007), a THI between 70 and 74 is reported by Mader et al. (2006) to 
be a potential heat stress condition for cattle. Several studies have shown that THI 
predictions are currently underestimating the severity of heat stress on physiological 
responses in dairy cows (West et al., 2003; Zimbelman & Collier, 2011). Physiological 
parameters, such as respiration rate (RR), heart rate (HR) and body temperature, have 
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been demonstrated as adequate and timely indicators of heat stress in dairy cows (Cos-
ta et al., 2015a; Hoffmann et al., 2020; Kadzere et al., 2002; Moallem et al., 2010). Among 
which body temperature have long been used as a heat load indicator (Brown-Brandl et 
al., 2005; Galán et al., 2018; Gaughan et al., 2000).

The aim of the present study was to determine the heat load threshold of THI in rela-
tion to physiological parameters, such as respiration rate (RR), heart rate (HR) and rectal 
temperature (RT), of lactating Holsteins-Friesian cows under moderate climatic zone 
conditions. Thus, it is assumed that the body postures of the cows have an effect on the 
heat load thresholds based on physiological parameters in dairy cows.

Material and methods

Animals, Housing and Management
The present study was conducted on a dairy experimental farm in Groß Kreutz, Germa-
ny (coordinates: 52°23’47.4”N, 12°46’02.8”E, approximately 56 km west of Berlin, 32 m 
above sea level). The climate of this region is predominantly continental. The measure-
ments were carried out in a naturally ventilated barn with loose housing system. The 
detailed barn design is described by Heinicke et al. (2018) and by Hempel et al. (2018). 

The data were collected from June to September 2015 and from January to December 
2016. The herd in the experimental barn consisted of 51 Holstein Friesian dairy cows 
from the first to eighth lactation. They were milked by an automatic milking system 
(Lely Astronaut A4, Maassluis, the Netherlands) and had an average daily milking pro-
duction of 41.08 ± 6.72 kg. 

Physiological parameters
The physiological parameters (RR, HR, RT) of the cows were carried out between 0700 
h and 1500 h (GMT + 0100 h). The RR was visually observed hourly by counting right 
thoracoabdominal movements for 30 seconds and multiplying the value by two (i.e., 
breaths per minute, bpm). Cow body posture (i.e., standing vs. lying) was documented 
during the data collection. The HR was measured in standing cows twice a day using 
a stethoscope (Littmann, 3M, Neuss, Germany) between the fourth and sixth intercos-
tal space in the breastbone region for fifteen seconds and multiplying the value by 
four (i.e., heartbeats per min, hpm). Immediately after the HR counting, the RT was 
measured in standing cows using a veterinary digital thermometer (Microlife VT 1831, 
Microlife Corporation, Taipei, Taiwan) and measurements were obtained directly from 
the rectal wall. 

The datasets were collected during the experimental period with up to three measure-
ment days per week. Every measurement day, the same group of 30 cows were random-
ly selected from the herd. Occasionally, some cows were replaced by others among the 
week measurements due to management decisions (e.g., health status, low milk yield, 
dry period stage). Therefore, a total of 139 lactating cows were included during the en-
tire experimental period. 
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Environmental data
Ambient temperature (AT) and relative humidity (RH) of the air in the barn were re-
corded every 5 min with eight data loggers (EasyLog USB 2+, Lascar Electronics Inc., 
Whiteparish, England) positioned at eight locations inside the building at 3.4 m above 
the floor. The temperature-humidity index (THI) was calculated according to NRC (1971) 
as follows:

THI = (1.8 × Tdb + 32) - (0.55 – 0.0055 × RH) × (1.8 × Tdb - 26),                    (1)

where Tdb is the dry bulb temperature in °C, and RH is the relative humidity in %.

The THI of all measurement points was averaged afterwards with one average THI val-
ue of the barn per time unit (every 5 min).

Statistical Analysis
In order to determine the heat load thresholds for each physiological parameter we 
used a broken-stick regression model. The physiological parameters were linked to 
the THI values from the start of every five-minute interval for the analysis. The bro-
ken-stick regression of the THI indicated a specific breakpoint at which the physio-
logical parameters begin to change. We classified each physiological parameter over 
a THI breakpoint range of 42 to 77 in steps of one and identified the best predicted bro-
ken-stick regression according to the Akaike information criterion (AIC) (Akaike, 1974). 
The THI breakpoint was determined as the threshold regarding the AIC of “smaller is 
better”. All analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 

Results and Discussion
The heat load threshold of THI for RR was determined for each body posture (standing 
or lying) during the data collection. Figure 1 shows the AIC values of the broken-stick 
regressions from the THI breakpoint 42-77. The results showed two different heat load 
thresholds for RR regarding the body posture. The best fit for the RR of standing cows 
was found at a THI threshold of 70, while the model fit for cows in lying position result-
ed in a lower heat load threshold at a THI of 65. The RR values of these breakpoints were 
37 bpm and 39 bpm for standing and lying cows, respectively (Fig. 2).

This THI threshold for lying cows is in accordance with Spiers et al. (2004), who used 
Holstein cows and considered thermoneutral conditions within the range of 62.5 – 65.8 
THI conditions. The THI threshold determined for lying cows in our study is lower than 
the threshold found by Heinicke et al. (2018) with a THI of 67 regarding the activity traits 
in dairy cows. In addition to the influence of THI in cows, individual animal factors, 
such as body posture, influence the response to heat load (Kadzere et al., 2002; Pinto 
et al., 2019) and suggest that lying cows may develop heat stress earlier and at a lower 
temperature threshold than standing cows, as also mentioned in a previous study by 
Berman (2005).

According to Wang et al. (2018), the lying cows decrease approximately 42% of their 
body surface area in dissipation; hence, standing cows are more exposed to airflow and 
increase the wind convection.
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Figure 1: Relation between the Akaike information criterion (AIC) values of the broken-stick models 
for respiration rate of cows in a standing (solid line) or lying position (dash line), with a temperature-
humidity index (THI) between 42 and 77. The predicted broken-stick model according to AIC (smaller 
is better) indicates a THI breakpoint of 70 for standing and of 65 for lying cows.

Figure 2: Determined broken-stick model for respiration rate of dairy cows in a standing (solid line) 
or lying position (dash line) dependent on temperature-humidity index (THI).

Following the same procedure as for RR, the HR and RT were examined as follows: 
the estimated model showed the best fit for a heat load threshold of 69 THI for HR, 
at which the HR started increasing linearly from 81 hpm. In a previous study carried 
out in Brazil with Holstein dairy cows, the HR (mean 76, values range: 62 to 91 hpm) 
demonstrated an increase point at 72 THI (Dalcin et al., 2016), higher than that observed 
in our present study. The fact that the animal may be highly nervous directly affects the 
HR during the measurement (Costa et al., 2015b; Dalcin et al., 2016). In addition, cows 
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under chronic heat stress tend to decrease the HR due to the internal heat generation 
reduction (Kadzere et al., 2002).

The model with the best fit for the determined heat load threshold for RT was at a THI 
of 70, and the RT of the cows tended to increase with THI > 70 (breakpoint) starting at 
38.4 °C. 

Our results demonstrated a distinctly lower RT on the broken-stick of the THI thresh-
old in comparison with the data observed (39.0°C) by Spiers et al. (2004) in cows under 
thermoneutral conditions (THI ≤ 65). Heat stress conditions lead to an increase in the 
RT from 38.5 to 40.4 °C with THI values of 55 and 84, respectively (Garner et al., 2017; 
Wheelock et al., 2010). The THI threshold 70 for RT in the present study is in accordance 
with Du Preez (2000), who assessed body temperature and RR in dairy cows with THI 70 
as the heat stress threshold. In contrast, the results of Dalcin et al. (2016) demonstrate 
a THI threshold of 72 for RT in high-producing dairy cows. This different effect of the 
latter study may be related to the different climate, in which this experiment was per-
formed (mesothermal), with a THI between 72 and 87. 

In further studies, more animal individual effects, especially the lying body posture, 
should be considered in the analysis of RT to assess heat load. Lying cows may have 
a heat load earlier than standing cows (Berman, 2005), and straw bedding increases the 
thermal discomfort of the animals (Angrecka & Herbut, 2017; Pinto et al., 2019). 

Conclusion
Based on the present study, it is recommended that heat protection measures should be 
initiated in high-yielding dairy cows at a THI of 65. The lowest observed THI threshold 
was 65, indicating changes in cows’ physiological responses. In addition, it is strong-
ly recommended to consider animal individual differences in the analysis in further 
studies evaluating heat load thresholds.
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Abstract
A common method to measure the respiration rate (RR) in cows is to count the flank 
movement visually. This method is time-consuming and labor-intensive. Thus, we de-
veloped a sensor device to measure the RR continuously and automatically. The pres-
ent investigation was a pilot study to test the usability of the new developed RR sensor 
in dairy cows. Data were continuously collected from six lactating Holstein Friesian 
cows. The system consisted of a differential pressure sensor, a microcontroller and 
software to analyze the data. A halter positioned the sensor on the jaw and a flexible 
silicone tube connected one port of the pressure sensor with the left nasal cavity. The 
experiment was carried out on two days and one night. During the data collection cow 
body posture (standing vs. lying) was documented and videos of the flank movements 
were made for the visual counting of RR. The results showed a positive correlation be-
tween visual and automatic counted RR (in breaths per minute, bpm) in lying (r=0.98) 
and standing cows (r=0.99). Ongoing studies with an evolved RR sensor (n=20) during 
summer showed the influence of heat stress on RR. With increasing temperature and 
temperature humidity-index (THI≥68) the RR increased from 35±0.99 to 75±1.39 bpm 
(MW±SE). The RR of lying cows was higher than that of standing cows. In conclusion, 
the results of the study showed that a continuous RR measurement is possible without 
disturbing the cows. In addition, the investigation of RR is a suitable method to detect 
heat stress in cows.

Keywords: heat stress, respiration rate, sensor, cow, THI

Introduction
The measurement of the respiration rate (RR) is an essential tool to monitor the health 
or stress status of individual animals. Therefore, it is an important method in research 
and veterinary practice. There are different influencing factors on the RR value like 
excitement, forced activity, pregnancy, high milk yield and pathological conditions 
(Gaughan et al., 2000; Knickel et al., 2000), but especially heat stress is known to lead to 
an increase in RR (Hoffmann et al., 2020; Pinto et al., 2019). If changes in RR can be de-
tected early, targeted measures can be taken to alleviate the stress load on the animal 
and thus increase the animal welfare on the one hand and prevent performance losses 
on the other hand.
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The most common method to measure the RR in calves and cows is to count the flank 
movement visually (Milan, 2016). However, this method is time-consuming, labor-in-
tensive and not constantly possible. The continuous measurement of the RR is difficult 
to implement and can be physically strenuous, what can lead to miscounts. Further-
more, the constant presence of a person can cause additional stress and hence un-
intentionally affect the RR of the animal. Such disturbances as well as non-specific 
flank movements, which are not caused by respiration, can falsify the measurements 
(Eigenberg et al., 2000). Different methods have already been developed in the past to 
measure the RR automatically, but so far without satisfactory results regarding contin-
uous measurements. One method is a device that monitors temperature changes near 
the nostrils with a thermistor (Milan, 2016). Another system consists of a belt, which is 
attached around the chest of animals and measures thoracic movements (Eigenberg et 
al., 2000), and one more idea is a system to measure RR via a laser distance sensor dur-
ing milking (Pastell et al., 2007). The objective of this study was to develop a device and 
mounting hardware for continuous RR measurement in cows. Therefore, the sensor 
data were compared with the reference method of visual counting in order to evaluate 
whether the sensor was able to count the RR reliably.

Material and methods

Animals and Housing
The study was conducted during two days at the Educational and Experimental 
Center for Animal Breeding and Husbandry (LVAT Groß Kreutz, Germany, coordinates: 
52°23’47.4”N, 12°46’02.8”E) during January 2018. Six Holstein Friesians cows were used 
in this study. On the first day, data were taken during the day and night (one cow 0800 
h to 0800 h the following day and two cows 0800 h to 1800 h) and on the second day 
during the day (three cows 0800 h to 1800 h). For each examination day, three different 
cows were used for data acquisition. The dairy cows were housed in a free-stall barn, 
equipped with 51 lying cubicles (straw-lime mixture) and were part of an existing herd 
of 51 cows on average. The animals differed in their stage of lactation (1st to 5th lacta-
tion) to ensure that the sensor device works at different ages and lactation stages. The 
animals were able to move freely in the barn during the experimental study so as not to 
restrict their natural behavior. Water and a total mixed ration were freely available. The 
State Office for Occupational Safety, Consumer Protection and Health (LAVG Branden-
burg, Germany) approved the experimental animal study under the study number 
2340-1-2018.

Respiration rate sensor
The prototype of the new developed device to measure RR (Figure 1) consisted of a dif-
ferential pressure sensor, a microcontroller and software to analyze the data. A halter 
positioned the sensor on the jaw, fixed on the right side of the head. A flexible silicone 
tube connected one port of the pressure sensor with the left nostril and ended in the 
nasal cavity. The other port of the sensor was left open and hence exposed to ambient 
pressure. Through a flexible silicone tube, the nasal exhalation pressure was trans-
mitted to the pressure sensor, and the microcontroller converted the incoming analog 
signal from the pressure sensor to a digital signal. Thus, the incoming pressure (mbar) 
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at the sensor increased at the beginning of the exhalation, which was characterized 
by an increase in the breathing curve (sampling rate 100 Hz). At the beginning of the 
inhalation, the pressure at the sensor decreased and a negative pressure was generat-
ed, which resulted in a drop of the breathing curve (Figure 2). A power bank (capacity 
2600 mAh) secured the power supply and the data transmission to a server occured via 
a wireless local area network (WLAN).

Figure 1: Respiration rate sensor (prototype)

Data collection
At the beginning, the test animals were stationed at the feeding fence to be equipped 
with the sensor. After a short acclimatization time of 30 min, the data were recorded. 
The RR data were logged continuously over the investigation period without interrup-
tion. During the observations no restrictions on the behavior of the animals were obvi-
ous. Cow body posture (standing vs. lying) was documented during the data collection 
and video recordings (Samsung Galaxy Note 10.1, Seoul, South Korea) were made regu-
larly for the visual counting of RR afterwards. For each body position and each cow, at 
least two data flows with a total duration of one minute each were used and included in 
the validation. A Light Emitting Diode (LED) fixed to the sensor signaled the beginning 
of each minute during the video recordings. The LED signal was also used as a marker 
in the data flow so that the recordings could be assigned. In addition, the time of the 
recordings was synchronized with the time of data acquisition. The generated data 
were saved and graphically displayed in Excel. The breathing pattern was counted vis-
ually (peak counting method) for a fixed period of one minute each. An increase and 
subsequent decrease of the curve corresponded to one breath (Figure 2). Independent 
of the sensor data, one person counted the RR visually by use of the videos. For this 
purpose, according to the time stamp of the sensor data, the RR was counted from the 
video recordings for one minute. The flashing LED indicated the beginning and end of 
counting. One breath was defined as the right-sided or left-sided lifting and compres-
sion of the abdomen.

Further development for heat stress measurements
In ongoing trials, we already developed the RR sensor further, so that it can be fixed on 
the nose of a cow without the halter (Fig. 3). A battery gave the power supply here. This 

Figure 2: Pressure difference curve measured 
with respiration rate sensor
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evolved RR sensor was used in 20 dairy cows from April to September 2019 to measure 
the influence of heat stress on the RR over a longer time period. The LAVG Brandenburg 
(Germany) approved the heat stress study with dairy cows under the study number 
2340-8-2019. During the trial period, the ambient air temperature and relative humidity 
were recorded every 5 min using eight data loggers (EasyLog USB 2+, Lascar Electronics 
Inc., Whiteparish, UK) positioned 3.4 m above the floor in the barn. 

Based on these values, the temperature humidity-index (THI) was calculated according 
to NRC (1971) as follows:

THI = (1.8 × Tdb + 32) - (0.55 – 0.0055 × RH) × (1.8 × Tdb - 26), 

where Tdb is the dry bulb temperature in °C and RH is the relative humidity in %.

Figure 3: Further developed respiration rate sensor

Statistical analyses
The statistical evaluation was performed by JMP (12.0.1, Cary, North Carolina) with a sig-
nificance level of α=0.05. To assess the strength of the statistical relationship between 
the RR generated by the sensor data and the visual observation data, a Bravais-Pearson 
correlation analysis was conducted. To describe the agreement between the visual ob-
servation and the sensor data, a matched pairs analysis was performed, which includes 
a Tukey mean-difference plot and the results of a paired t-test. The results are present-
ed as mean-difference plots, also known as Bland-Altman plot (Bland & Altman, 1999).

Results and Discussion
The test animals had an average RR of 29 bpm during the pilot trial period with a stand-
ard deviation of 10 bpm. This is in accordance with Knickel et al. (2000), who give 25-
35 bpm as the reference range for adult cows. The difference between the two paired 
measurements (sensor data and visual counting data) are shown in Figure 4. The hori-
zontal line illustrates the mean difference, with the 95% confidence interval (CI) above 
(dotted line).
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Figure 4: Difference between respiration rate (RR) during standing (a) and lying (b) counted by the 
RR sensor and visual observation compared with the mean of both methods. Data (each in RR/min) 
represent recordings of 1 minute each (95% confidence interval of a: -2.01 to -0.78; b: -1.35 to 0.95; 
mean difference of a: -1.4; of b: -0.2)

The correlation analysis for RR during standing showed a high correlation coefficient (r) 
and a high coefficient of determination (R2) (r=0.99, R2=0.99, n=20). The differences plotted 
were not homogeneous and normally distributed (Figure 4a). The differences represent 
a strong one-sided shift. The mean difference of -1.4 during standing showed that the 
sensor counted 1.4 breaths more per minute than the visual counting. The CI of the 
mean difference was -2.01 and -0.79 breaths (P < 0.0001). The results during standing 
showed that there is a significant difference between automatic and visual counting. 

During lying the results of the correlation analysis showed a high correlation coeffi-
cient (r) and coefficient of determination (R2) for the RR (r=0.98, R2=0.96, n=15), as well as 
a homogeneous and normal distribution of differences during lying in the mean-differ-
ence plot (Figure 4b). The mean difference of -0.2 during lying showed that the sensor 
counted 0.2 more bpm than visual counting. The CI of the mean difference was -1.35 
and 0.95 breaths (P=0.71). The results for lying showed no significant difference be-
tween the automated and visual counting methods. 

However, in this context it is important to clarify that the one-sided shift of the differ-
ences, mainly in the standing position, should be considered. This is probably due to 
shallow breathing or difficulties in counting due to short-term limb movements during 
standing, which may have resulted in a partial counting of the RR. With repeated anal-
ysis of the video recordings or direct observations beside the animals, these missing 
breaths could be identified. In accordance, Milan et al. (2016), who also used the nasal 
cavity to measure RR, showed both fewer breaths (n=4) and more breath (n=1) counted 
by the sensor (thermistor) in comparison to visual counting, whereby no differentiation 
between lying and standing position was done. It should also be considered that count-
ing inhalations and exhalations may be a more precise approach compared to counting 
flank movements, which can be triggered by other causes.
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Ongoing studies with the evolved RR sensor during summer showed the influence of heat 
stress on the RR. With increasing air temperature and temperature humidity-index (THI ≥ 68) 
the RR increased from 35 ± 0.99 to 75 ± 1.39 bpm (MW±SE). The RR of lying cows was higher 
than that of standing cows. Our own research confirmed findings of previous studies that 
various factors in addition to THI, such as body position and milk production, can influence 
the susceptibility of dairy cows to heat stress (Gaughan et al., 2000; Berman, 2005).

The animals of the pilot study (n=6) and of the ongoing trial (n=20) showed a high level 
of acceptance to the sensor. There was no obvious outward impairment in behavior 
and health.

Conclusion
The investigations for the validation of the RR sensor have shown that the measurement 
of the RR by a pressure difference sensor provides reliable data. Continuous measure-
ments are possible and can replace visual observations. Overall, it was found that the RR 
sensor did not disturb the animals’ behavior during the study and their health was not 
affected. Abnormal behavior, such as a violent defensive reaction or restlessness, could 
not be detected. RR is well suited as a heat stress indicator because it is very sensitive 
as well as timely in indicating a stress response and can be measured individually. The 
measurement results have also shown that with rising THI the RR increased. In addition, 
lying cows had a significantly higher RR under heat stress than standing cows.
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Abstract
Heat stress in dairy cattle is an ongoing challenge that is expected to be exacerbated 
by climate change and continual selection for higher yield. Numerous studies have 
attempted to develop heat stress indices based on regression of meteorological param-
eters and animal responses or to select the “appropriate” index from the literature. De-
spite these efforts, a universal index remains elusive and many of the existing induces 
have been shown to be inadequate for precision farming in times of climate change. 
Recently, mechanistic heat-balance models for assessing the thermal balance of the 
animal with its surroundings have seen a resurgence of interest. Nevertheless, little 
effort has been made so far to apply such models systematically to identify conditions 
of potential heat stress. The present work adopts an existing model from the literature 
to identify conditions of heat accumulation (thermal imbalance) and heat strain (body-
core temperature rise) for typical Holstein dairy cows. It is shown that the onset of heat 
accumulation and heat strain strongly depends on the air temperature and speed, but 
hardly on humidity. 

Keywords: heat stress, thermoregulation, mechanistic model, critical temperature

Introduction
Heat stress remains a challenge to both productivity and animal welfare in dairy farm-
ing, particularly in precision farming of high-yield cattle in times of climate change. 
Most studies of heat stress in dairy cattle focus on statistical relations between mete-
orological parameters such as temperature, humidity, wind speed, solar radiation, and 
animal responses such as body temperature, respiration rate, milk yield. The typical 
result through regression analysis of such relations is a “heat stress index” and cor-
responding heat stress criteria. A recent review Ji et al. (2020) lists as many as 20 such 
indices for dairy cattle. Nevertheless, and despite more than 60 years of research, a ver-
satile index remains elusive. 

An alternative, possibly complementary, approach to statistical indices is the use 
of mechanistic models of heat generation and dissipation for assessing the thermal 
balance of animals and identifying conditions of potential stress. Examples include 
the work of McArthur (1987), Ehrlemark and Sällvik (1996), Turnpenny et al. (2000a,b), 
McGovern and Bruce (2000), Thompson et al. (2014), Li et al. (2021). Despite its funda-
mental robustness, the heat-balance approach has attracted much less attention than 
the statistical approach and its application remains limited. Very few studies deal with 
the application and assessment of heat-balance models. The papers by Bloomberg and 
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Bywater (2007) and van der Linden et al. (2019) are two examples. Even fewer attempts 
have been made at systematic application of a heat-balance model to identify con-
ditions of potential heat stress and to develop relevant indices and/or thresholds ac-
cordingly. Furthermore, aside from the simplified general model by Turnpenny et al. 
(2000a,b), no effort has been made to address the implementation gap, particularly to 
facilitate implementation in predictive-model control of the barn climate.

A general shortcoming of the heat-balance models is lack of validation against exper-
imental data. Turnpenny et al. (2000b) observed that the limited data available on the 
partition of heat loss, heat generation and the thermophysical characteristics of the 
livestock hinders further development and refinement of heat-balance models. Two 
decades later, that limitation remains the case, although some recent studies (Yan et 
al., 2021; Zhou et al., 2021) have attempted to address the validation gap. Mechanis-
tic models have also been criticized as unsuitable for use in precision farming due to 
complexity and presence of many parameters that often need to be re-evaluated or 
adjusted for each application (Wathes et al., 2008). Nevertheless, the present day’s com-
putational power has removed practical barriers to wider application of mechanistic 
models. 

The present paper proposes a framework for systematic application of mechanistic 
heat-balance models to predict conditions of potential heat stress in dairy cattle and 
derive improved heats stress criteria. An existing model from the literature is utilized 
to identify the onset of heat accumulation and heat strain in terms of the standard 
meteorological parameters. Recommendations for further establishment and wider 
application of mechanistic models are presented.

Model description
The general heat-balance model by (Turnpenny et al., 2000a) was adopted. In this mod-
el, the total heat dissipation from the animal, Ge, is estimated based on the thermo-
dynamics of heat and mass transfer between the animal and its environment, and 
compared with the thermoneutral metabolic heat generation rate, M. Thermal balance, 
i.e. Ge=M, is assessed as a prerequisite of thermoneutrality. 

Cattle dissipate bodily heat through respiration and from the skin. The total heat dissi-
pation rate on a flux (per unit skin surface area) basis can be written as:

The first term on the right-hand side represents convective heat transfer from the hair-
coat to the ambient air while the second term represents the net long-wave radiant 
exchange at the external surface of the haircoat, with  in both terms denoting the 
resistance to heat transfer in [s/m] and ρcp J/(m3K) a constant; Sabs is the absorbed solar 
radiation; Er is heat loss through respiration; and Ec is the latent heat loss from the skin, 
normalized by the skin surface are, As. 

The sub-models for heat transfer from the animal and thermoregulatory responses 
were also adopted from Turnpenny et al. (2000a,b), with a few exceptions, as outlined 

𝐺𝐺𝐺𝐺e =
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐p 

𝑟𝑟𝑟𝑟H
(𝑇𝑇𝑇𝑇c − 𝑇𝑇𝑇𝑇a) +

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐p 

𝑟𝑟𝑟𝑟R
(𝑇𝑇𝑇𝑇c − 𝑇𝑇𝑇𝑇r) − 𝑆𝑆𝑆𝑆abs + 𝐸𝐸𝐸𝐸r + 𝐸𝐸𝐸𝐸c 
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below. More details about the model implementation and the sub-models are available 
in a recent publication (Foroushani and Amon, 2022).

Ambient conditions
Ambient conditions are defined in terms of pressure, p [kPa], temperature, Ta [°C], mean 
radiant temperature, Tr [°C], relative humidity, RH [%], wind speed, u [m/s]. Since heat 
stress in naturally ventilated barns is of main interest to the present study, the direct 
solar irradiation was assumed to be zero (Sabs=0). For simplicity, it was assumed Tr=Ta.

Thermoregulation 
The thermoregulatory responses are iteratively adjusted to find the conditions of ther-
mal balance, i.e. Ge=M, following the “principle of least metabolic cost” (Mount 1974; 
Turnpenny et al. 2000a). This means that, for given boundary conditions (Tb, Ta, RH, u), 
thermoregulation is simulated by:

 — Decreasing the tissue resistance to heat transfer (vasodilation) until thermal bal-
ance is achieved (Ge=M).

 — If the minimum tissue resistance is not sufficient for thermal balance, i.e. Ge<M, the 
cutaneous latent heat loss (sweating) is increased until thermal balance is achieved.

 — If the maximum sweating rate (physiological or environmental) is not sufficient to 
maintain Ge=M, heat will accumulate in the body and the body-core temperature 
will increase. The corresponding ambient conditions signify conditions of potential 
heat stress. 

As discussed below, the respiration rate is independently calculated as a function of 
the ambient conditions (Ta, RH), using empirical correlations. 

Convective heat loss 
The convective resistance, rH, was estimated using an empirical correlation for cattle 
(Wiersma & Nelson 1967). Since air is hardly ever still in naturally ventilated barns, only 
forced convection was considered. 

Latent heat loss from skin
Heat loss through the evaporation of sweat on the skin is a crucial thermoregulatory 
mechanism. The maximum latent cutaneous heat flux is a major determinant of the 
onset of heat stress. There is a physiological limit on the sweating rate, dictated by wa-
ter availability and the activity of sweat glands. Moreover, as discussed by Turnpenny et 
al. (2000b), extremely high humidity may suppress Ec below the physiological limit due 
to low evaporation potential. In other words, there is also an environmental limit on Ec. 
As pointed out by McArthur (1987) Ec,max is normally physiologically limited. Here, the 
a phsysiological limit of Ec,max =120 W/m2 was assumed, in accordance with Turnpenny 
et al. (2000a), which in the conditions of interest to the present study (Ta ≤ 40°C, RH < 60%) 
prevails over the environmental limit. 

As suggested by McArthur (1987), the evaporation of moisture from an animal’s body 
can take place below the skin surface. In cold, for instance, when the sweat glands are 
inactive and the skin surface is dry, there is water vapour loss by diffusion through the 
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skin, i.e. Ec,min>0. Following McArthur (1987), it was assumed Ec,min=0.04Ec,max. This base-
line was implemented in the model by initializing Ec at 0.04Ec,max.

Respiratory heat loss
The inspired air was assumed to be at the ambient conditions and the expired air was 
assumed to be saturated at a temperature calculated based on the empirical correla-
tion proposed by Stevens (1981). Notably, Stevens’ results show that the exhaled air is 
not at the body temperature, contrary to the assumption made in many studies, e.g. 
McArthur (1987) and Turnpenny et al. (2000a,b). The respiration rate and tidal volume 
were similarly calculated using correlations proposed by Stevens (1981). Respiratory 
heat loss was then calculated based on an energy balance between the inspired and ex-
pired air with the enthalpy of air calculated using the standard psychrometric relation 
for moist air and the density of dry air estimated using the ideal gas model. 

Animal shape and size
The size characteristics were chosen to represent a typical, high-yield Holstein cow: 
m = 670 kg, As = 7.04 m2, dt = 0.5 m. A haircoat length of l = 9 mm was chosen to represent 
the summer conditions. Given that l is small, the difference between the skin surface 
area and the haircoat surface area as well as the effect of the haircoat on the curvature 
of the outer surface were ignored. 

Metabolic heat generation and body temperature
The metabolic heat flux, M [W/m2], was calculated based on the regression proposed by 
van Knegsel et al. (2007) for daily heat production in lactating cows, converted to an av-
erage flux based on the skin surface area. Metabolic heat generation was assumed con-
stant at the thermoneutral rate. In reality, the metabolic rate declines with prolonged 
exposure to heat, thereby increasing the animal’s tolerance to heat stress. This decline 
is associated with a decrease in food intake and in thyroid gland activity. See the paper 
by McArthur (1987) for details. 

The thermoneutral body-core temperature was assumed constant at Tb = 39°C.

Heat stress threshold 
As pointed out by West (2003), the term “heat stress” is used rather loosely to signify 
the climate, climatic effects or the animal’s response. A relatively concrete definition 
has been suggested by Lee (1965), where heat stress is defined as “the conditions that 
displace the animal’s thermoregulation system out of the thermoneutral zone”, and 
heat strain as “the displacement or deviation of the physiological, behavioral or pro-
ductive parameters from the corresponding base values in the thermoneutral zone”. 
Nevertheless, Lee’s definitions are still qualitative; in order to adopt the definitions in 
a numerical framework, critical thresholds must be established for heat strains, e.g. 
rise in the body-core temperature or respiration rate or drop in the daily milk yield. 
The establishment of those thresholds, ideally based on independent physiological or 
productive considerations, is a challenging, multifaceted task that calls for dedicated 
studies in the future. Here, an increase of 1°C in the body-core temperature was as-
sumed as critical heat strain.
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In order to apply the present steady-state model to identify this threshold, experimen-
tal data on the relation between Tb and Ts were used. As shown in Figure 1, past a cer-
tain threshold, Tb increases linearly with Ts in order to maintain a minimal tempera-
ture difference (in this case ~3 °C) and allow heat dissipation through the body tissue. 
Therefore, the critical strain ΔTb=1°C was approximated as an identical rise (1°C) in Ts 
above equilibrium (see Results). 

Figure 1: Body-core temperature vs. mean skin (trunk) temperature. Data from Worstell and Brody 
(1953)

Results and discussion
Figure 2 shows sample results obtained from running the heat-balance model at con-
stant u and RH, and for various values of Ta. Two main outputs are to be observed: 1) Ge 
and specifically its magnitude relative to M; Ge<M means the endogenous heat cannot 
be fully dissipated and will start to accumulate in the body, eventually causing stress, 
and 2) Ts and specifically its intersection with the Ts=34°C line, which represents the el-
evated Ts corresponding to ΔTb=1°C (the horizontal segment of the Ts curve corresponds 
to equilibrium at maximum vasodilation).

Figure 2a, for instance, suggests that, for u=2 m/s and RH=40%, the thermoregulatory 
responses are sufficient to maintain the heat balance up to Ta ≈ 20°C. In other words, 
increasing Ta to ~20°C, vasodilation and sweating can reduce the overall heat transfer 
resistance between the body core and the ambient to compensate for the reduction in 
Tb – Ta. Beyond that point, it takes roughly another 6°C increase in Ta for critical heat 
strain (ΔTb=1°C) to occur, as indicated by Ts=34°C. 

The effect of air speed can be seen by comparing Figure 2a, 2b and 2d; higher air speed 
enhances convective heat loss from the skin, thus shifting the onset of heat accumula-
tion to a higher Ta. In other words, vasodilation (reflected by the rise in Ts) and sweating 
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(reflected by the rise in Ec) are triggered, and therefore exhausted, at higher Ta, meaning 
Ge=M can likewise be maintained at higher Ta. Consequently, critical heat strain also 
occurs at higher Ta.

Figure 2: Equilibrium heat fluxes and skin temperature of a typical Holstein dairy cow 
(m = 670 kg, dt = 0.5 m, l = 9 mm) as a function of the ambient temperature at various air speeds 
and relative humidity, estimated based on the heat-balance model of Turnpenny et al. (2000a,b)  
[M: metabolic heat generation, Ge: total heat dissipation, Ec: cutaneous latent heat loss, Er: respiratory 
heat loss, Ts: skin temperature.]

Most notably, Figure 2 suggests that humidity has little effect on the onset of heat accu-
mulation and critical heat strain. Comparing Figure 2b and 2c, representing moderate 
(RH=40%) and extremely high (RH=90%) relative humidity, the various heat fluxes are 
virtually identical up to Ta27°C, well beyond the onset of heat accumulation (Ta15°C in 
both cases). The adverse effect of excessive humidity (RH=90%; Figure 2c) on heat dis-
sipation becomes apparent only at Ta27°C, some 12°C above the onset of heat accumu-
lation and 4°C above the onset of critical heat strain. This observation is in agreement 
with the conclusion by Turnpenny et al. (2000b). The thermodynamics of thermoreg-
ulation can explain this seemingly surprising result. The ambient humidity could af-
fect the latent components of heat loss, namely latent heat loss through respiration 
and though the evaporation of sweat. Nevertheless, as discussed above and shown in 
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Figure 2, heat loss through the evaporation of sweat is usually physiologically limited, 
i.e. not suppressed by RH. Moreover, although Er is a function of RH, it is by far domi-
nated by Ec. Therefore, the adverse effects of RH are not a determinant of the onset of 
heat stress.

Finally, Figure 2 shows how reliance on indices such as the temperature-humidity in-
dex, THI (NRC, 1971), as predictors of heat stress/strain is inadequate and possibly mis-
leading. Comparing Figure 2a, 2b and 2d, it is seen that the THI thresholds for the onset 
of heat accumulation and critical strain both depend on, u. Note that THI is shown on 
the upper horizontal axes.

Figure 3 shows thresholds for heat accumulation and critical heat strain at RH=40% 
and as function of u. The onset of heat accumulation was calculated as the ambient 
temperature at which Ge falls to 99% of M. The onset of critical heat strain was calcu-
lated as the ambient temperature at which Ts=34°C. As discussed above, RH does not 
influence the onset of heat accumulation or critical heat strain. The results shown in 
Figure 3 therefore represent general trends, regardless of RH. 

Figure 3: Critical temperature for the onset of heat accumulation (Ge = 0.99M) and critical heat 
strain (ΔTb = 1°C) [RH = 40%]

Conclusion
Mechanistic heat balance models are an alternative, and possibly complementary, ap-
proach to the statistical heat stress indices that have dominated dairy science for the 
past six decades. In the present work, an existing model from the literature was used 
to assess the thermal balance of a typical high-yield Holstein cow under various com-
binations of temperature, humidity and air speed. The results highlight the effect of 
air speed on heat dissipation from the body and consequently on the onset of heat 
strain. It was shown  that, depending on the air speed, bodily heat accumulation can 
start at temperatures as low as ~15°C or as high as ~25°C. Also depending on the air 
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speed, critical heat strain, here defined as 1°C increase in the body-core temperature, 
occurs at ambient temperatures 5-8°C above the onset for heat accumulation. Notably, 
the onset of heat accumulation and critical heat strain does not depend on humidity. 
In order to further establish the mechanistic approach, future work will focus on val-
idation against experimental data, refining thermophysiological definitions for heat 
stress/strain and the incorporation of productivity (lactation) and diurnal metabolic 
heat cycles in the model.
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Abstract
PLF devices are being increasingly adopted in the dairy sector, including automat-
ic milking systems and monitoring tools for animals and environmental conditions. 
As a consequence, a great amount of data concerning individual animals are available 
and could be effectively used for the calibration of numerical models for the prediction 
of production trends. Besides, the machine learning approaches represent extremely 
promising solution in PLF and their application in dairy cattle farming would increase 
the sustainability and the efficiency of the sector. The study aims to define, train, and 
test a model developed through machine learning techniques, adopting a Random For-
est algorithm, with the main goal to assess the trend in daily milk yield of individual 
cows in relation to environmental conditions. The model has been calibrated and tested 
on the data collected on 91 lactating cows of a dairy farm, located in northern Italy, and 
equipped with an automatic milking system and thermo-hygrometric sensors during 
the years 2016–2017. In the statistical model, the daily milk yield is evaluated as a func-
tion of the days in milk and daily average temperature-humidity index in the same day 
and in the previous five days. In this way, extreme hot conditions inducing heat stress 
effects can be considered in the yield predictions by the model. The average relative 
prediction error of the milk yield of each cow is about 2% of the total milk production.

Keywords: livestock sustainability; precision livestock farming; heat stress; random 
forest; machine learning method

Introduction
PLF devices are being increasingly adopted in animal production and in particular in 
livestock farming, including monitoring tools for animals and environmental condi-
tions (Tassinari et al., 2021). As a result, a large amount of data on individual animals is 
accessible, which may be efficiently used to calibrate numerical models for forecasting 
production trends. The availability of data recorded in real time about the environmen-
tal conditions of the barn and the production performances of individual cows in the 
dairy cattle sector represents a quantitative knowledge base with a huge potential for 
further informatics and electronic tools development, able to achieve optimal condi-
tions of animal welfare and more sustainable productions, in addition to improvements 
in milk quality and production efficiency (Lovarelli et al., 2020). Automatic Milking Sys-
tems (AMSs), in particular, are becoming increasingly popular since they give farmers 
with extensive information about health conditions and characteristics related to the 
milk produced, which is useful for optimizing output (John et al., 2016). Moreover, in 
technological farms, data concerning different parameters of behavior and activity of 
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cows, animal health, and welfare are collected from different sensors (e.g., individual 
cow data recording system, activity tags such as pedometers or neck collars, ear tags 
for rumination monitoring, automatic concentrate feeders), and used for the ordinary 
management (Halachmi et al., 2019), management of systems (Vitali et al., 2021) and for 
design or retrofitting of livestock buildings (Bovo et al., 2022).

Several studies have indicated that properly storing collected data in structured da-
tabases is a vital first step in developing numerical models that can define individual 
cows’ circumstances and performance (Bonora, Benni, et al., 2018) and to quantify the 
effects of particular thermo-hygrometric conditions on milk production (Bonora, Pas-
tell, et al., 2018). The welfare of dairy cows exposed to heat waves is becoming increas-
ingly relevant in a climate change scenario. Furthermore, the response of cow activity 
to heat load was recently studied (Heinicke et al., 2021). Heat load was found to be 
more sensitive in advanced lactation cows than in early lactation cows. Furthermore, 
multiparous cows had weaker activity responses than primiparous cows. Individual 
cow-related characteristics and heat load amount were found to be major contributors 
in prediction models based on animal vulnerability to heat stress (Benni et al., 2020). 
Applied statistical methods used in the literature (Piwczyński et al., 2020) showed that 
milking frequency, lactation number (parity number), the month of milking, and type 
of lying stall represent important factors responsible for the monthly milk yield of 
dairy cows in farms with AMS. In this context, Machine Learning (ML) algorithms have 
already been used in some areas of dairy research, particularly to predict data, and they 
represent a promising tool for developing and improving decision support for farmers 
(Cockburn, 2020) in order to increase milk yield and animal welfare while reducing the 
resources required, thereby increasing the sector’s sustainability (Strpić et al., 2020).

More research is needed to determine how elements affecting animal welfare and cow 
performance might be integrated with barn interior conditions. To this end, continu-
ous and real-time monitoring of the animals and the barn’s environmental parameters 
contributes to an understanding of the individual cows’ welfare conditions (Bovo et al., 
2020): it can provide valuable information for barn management and the prevention of 
problems related to the cows’ longevity, productivity (Bovo et al., 2021) and milk quality.

The study aims to define, train, and test a model developed through machine learning 
techniques and, in particular, by adopting a Random Forest (RF) algorithm, having the 
main goal to assess the trend in daily milk yield of a single cow in relation to environ-
mental conditions. The model can be applied as a regression tool or as a predictive tool.

Materials and methods

The case study
The model has been developed based on the data collected on 91 lactating cows of a dairy 
farm, located in northern Italy and equipped with an AMS and two thermo-hygromet-
ric sensors acquiring information on the environmental conditions, during two entire 
years—i.e., 2016 and 2017. The study dairy farm is located in the municipality of Budrio, 
about 15 km NE of Bologna (Italy). The region is characterized by hot summer seasons 
with a high percentage of humidity;, considering the warmer months of the year (i.e., 
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June, July, and August), the average of the daily maximum temperature typically ranges 
from 27 to 29 ◦C, with daily average relative humidity, for the same period, from 75% to 
85%. The rectangular layout of the barn is 51 m long and 23 m wide, with the longitudinal 
axis SW–NE-oriented, a ridge height of 8.52 m, and gutter heights of 4.95 m on the NW 
side and 6.65 on the SE side. It consists of a hay storage area on the SE side, a resting area 
in the central zone of the building, and a feeding area with a feed delivery lane on the 
NW side (see Figure 1). The resting area has a partially slatted floor and hosts 78 cubicles 
with straw bedding. Two blocks of head-to-head rows are in the central part of the resting 
area, while another row runs along the entire length of the barn close to the storage area. 
Milking is performed by an AMS “Astronaut A3 Next” (Lely, Maassluis, The Netherlands) 
placed at the SW extremity of the barn. Mechanical ventilation is controlled by three high 
volume low speed (HVLS) fans with five horizontal blades which were activated by a tem-
perature-humidity sensor situated in the middle of the barn at about 3 m of level. Lactat-
ing cows are fed with a total mixed ratio kept available along the feeding lane.

(a)

(b)

Figure 1: Plan layout (a) and picture (b) of the milking area of the cattle barn adopted as the study 
case. The triangles represent the locations of the temperature-humidity sensors.
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During the period of the study, the robot was programmed to ensure a particular num-
ber of daily visits for each cow depending on her productivity and her expected opti-
mal milk yield per visit, with a minimum of two and a maximum of four daily visits as 
constraints. Animals with fewer than two visits in one day were signaled by a warning, 
while the cows which have been milked four times in one day can only pass through 
the AMS box without being milked and fed further. 

The data of the various milking events recorded by the AMS were downloaded, togeth-
er with the cow tags and the DIM in a large dataset. Then, the daily milk yields were 
calculated for each cow. The dataset was then filtered by eliminating the exceptional 
events (e.g., daily milk yields of cows with mastitis or other factors that can influence 
animal production). This allowed us to create a cleaned dataset for each cow, collecting 
the time series of the milk yields during the monitored period. The cow datasets con-
sidered in the study ranged from 100 to about 550 milk daily yields.

Statistical Model
The general statistical model used to determine the effect of environmental conditions 
on milk yield at the single animal level has the general form of Equation 1:

yi,j = DIMi,j + THIi,j + THIi,j-1 + THIi,j-2 + THIi,j-3 + THIi,j-4 + THIi,j-5 + ei,j                                (1)

where yi,j is a test-day milk yield for cow i at day j; DIMi,j denotes the effect on milk yield 
of the DIM of cow i at day j; THI i,j is the effect on milk yield for cow i of the daily average 
THI at day j; THIi,j−1—THIi,j−5, respectively, represent the effect on milk yield for cow i of 
the daily average THI at day from j−1 to j−5; eij represents the random residual effect, 
a priori assumed to be independently and identically distributed as N(0,se

2), where se
2 is 

the residual variance. In particular, several statistical models have been tested also 
considering a longer period, starting from 10 days before testing. Then, it was gradually 
reduced to 5, removing one day at a time with the value of the average relative error 
that remained almost unchanged (modifications lower than about 0.1%). Only with the 
removal of the THI value of the fifth day before testing did the average error increase 
significantly, thus leading to the decision to consider a preceding period of 5 days. To 
predict the heat stress effects at the level of a single cow, seven different features (i.e., 
predictors) have been used as input data to the Random Forest algorithm and the da-
taset of each animal has been divided into data for the training phase and data for the 
testing phase.

The Random Forest technique, an ensemble learning method that creates predictions 
by averaging over the predictions offered by numerous separate random models, was 
used to do regression analysis on the acquired data. In this work, the algorithm was 
adopted for regression purposes by using the Scikit-Learn Python library to establish 
the random forest model (RFM) best fitting the data values of each cow. 

A significant advantage of the RFMs is the possibility of assigning a score to each fea-
ture composing the input of the statistical model. The scores are representative of the 
importance of the different features in the model output (i.e., the prediction). A func-
tion of the scikit-learn library allows users to produce the ranking of the features and 
the evaluation of various scores.
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Two of the most important parameters for the application of RFMs are the size of each 
tree (i.e., number of nodes) and the number of trees adopted. If the parameters are too 
large, overfitting problems could appear, while if the values are too small for the com-
plexity of the data, the model is not able to converge to a suitable solution. In this work, 
for the first parameter, a self-expanded criterion, it was assumed that the nodes num-
ber expand by itself when the number of samples is bigger than 2, while the number of 
trees has been set equal to 1000.

The dataset of each selected cow was divided into two portions: one used for the train-
ing phase and the other for the validation, and a specific RFM was obtained for each 
animal. The RFM has been developed for the assessment of the daily yield (the depend-
ent variable) starting from the values of the independent variables.

Numerical analyses
The numerical analyses adopted have been realized with the objective to train and test 
a RFM for the assessment of continuous time series values, with the main aim to obtain 
a model for the assessment of future productive trends of cows under different climat-
ic conditions. In this scenario, the dataset of each cow was divided into two groups: the 
initial 80% of the data were used for the training while the last 20% were used to test 
the model accuracy and reliability (see Figure 2). In this case, for each cow, a continuous 
series of daily milk yields was obtained from the model and compared to the real one.

Figure 2: Division of the datasets for the numerical analyses

Results and Discussion
In this paper, the Random Forest model was used to assess future milk yields. As far as 
the average accuracy related to single cow is concerned, in Figure 3, the median accu-
racies ± standard deviation of the 91 cows are reported in ascending order. The figure 
highlights that for the 91 cows considered in the study, having data numerousness 
higher than 100 days, the median accuracy for the different animals ranges between 
62% and 91%. For 74 cows out of 91, i.e., 81% of the considered animals, the median ac-
curacy is higher than 75%. the average (out of the cows) median accuracy of the predic-
tions is equal to 81.91% (equivalent to a relative error Er = 18%), whereas the standard 
deviation of the median accuracy is 13.02% confirming a generally good accuracy, even 
if it is rather scattered.

As a confirmation of the good accuracy of the models, Figure 4 displays the distribution 
of the relative error Er on the sum of the daily yields over the period of tests. For 80% 
of the animals, the Er value is included in the range ±10%, with an average value of the 
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cows equal to 1.85%. This means that, if we sum the daily yield of each cow for the test 
days (68 days on average), the relative error in the assessment of the total milk produc-
tion is lower than 2%.

Figure 3: Median accuracy ± standard deviation for each of the 91 cows of the study. The values are 
sorted ascendingly.

Figure 4: Distribution of the relative error Er on the sum of the daily yields over the test days.

Lastly, the boxplot diagram of the different importance scores is reported in Figure 5 
for the whole dataset containing the 91 investigated cows. The DIM has the highest 
importance scores, with a median score of 0.29. Then, THI0, i.e., the average THI of the 
day to predict, has a median of score equal to 0.13, whereas the other features (THI-1–
THI-5) have comparable median scores ranging from 0.093 to 0.11. Moreover, the feature 
with highest median importance score value (DIM) is affected by the highest variability 
in the score values, i.e., it presents the highest values of Coefficient of Variation (CoV).
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Figure 5: Boxplot diagram of the importance score of the different features for the whole dataset.

Conclusions

The study aimed to define and test a Random Forest-based model for the assessment 
of the daily milk yield of a single cow. The model has been applied to the data collected 
in 2016 and 2017, in a dairy farm, located in northern Italy, and collected both produc-
tive data from the automatic milking system and environmental data from two ther-
mo-hygrometric sensors. The results in the paper showed that the model can detect 
the drop in the cow’s milk yield due to extreme hot conditions inducing heat stress 
effects. In fact, the average relative error of the predictions, is about 18% on a single 
daily yield, whereas it becomes just 2% if the total milk production in the test days is 
considered. The results confirm the RFM can represent a reliable and viable tool for the 
evaluation of productive scenarios of dairy cows in presence of heat stress. This could 
help to develop decision support for farmers to increase both milk yield and animal 
welfare and, on the other hand, to reduce the resources needed, so to increase the sus-
tainability of the dairy sector.
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Abstract
Two key measurement goals of precision livestock farming (PLF) are capturing contin-
uous real-time data and maximizing the granularity of measurement to the most de-
tailed level possible to support optimal operational decision-making. Two disease chal-
lenge studies were conducted in a single research barn from September 2020 through 
July 2021. All pens were equipped with individual water meters to measure daily water 
usage and ambient temperature. From September through December 2020, the cool-
est zone was Fan_Out with a -3.6oC temperature deviation from the warmest Middle_In 
zone, with deviations staying consistent throughout the period.

Keywords: ambient temperature zones, pen level water 

Introduction
Most measurements tracked in growing pig production are done at the group level 
and represent the entire feeding period.  In contrast, two key measurement goals of 
precision livestock farming (PLF) should be capturing continuous real-time data and 
maximizing the granularity of measurement to support optimal operational in-process 
decision-making.  

Two potential influences on post-weaning live pig performance are ambient tempera-
ture and water availability/quality.  Temperatures levels and fluctuations within the di-
rect animal environment can impact pig performance (Rauw et al., 2020).  Water usage 
can be an indicator of both animal related problems (e.g., sickness during detected and 
undetected disease events), water quality problems, water availability problems and 
water wastage problems (Brumm, 2006).  

Typically, indicators of both internal environment ambient temperature and water us-
age are measured at the barn level or room (airspace) level.  However, measurement at 
these high levels – while certainly of some usefulness (versus not measuring) – do not 
support sufficient problem detection timing, sensitivity and precision.  

Continuous water usage measurement at the barn/room level is useful for detecting 
deviations from the expected range.  While useful, barn/room-level water usage meas-
urement does not direct the barn manager to the pens and drinkers that are the source 
of the problem(s).  Further, substantial detection sensitivity can be lost when the unit of 
data is a barn or room value to the extent that any specific pens where the water usage 
is abnormally high or abnormally low go undetected because their abnormal devia-
tions are offset by the aggregate normal variation in all of the other pens that comprise 
the barn or room data values.  
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An even greater value can be captured from continuous measurement of water usage 
at the pen level. Pen-level water usage measurement can be used not only to identify 
when unusual water usage deviations are occurring (either too high or too low) in a barn 
or room, but it can also clearly direct the barn manager to the specific pens where those 
water use deviations originate.  This increased level of detailed information enables 
faster and more precise detection of a problem’s location, leading to a faster and more 
accurate diagnosis of the cause(s), and an active and more precise resolution of the 
problem(s) that are more easily identified.  

In similar fashion, continuous ambient temperature measurement at the barn and 
room level are useful for detecting when there are deviations from the expected range 
of air temperature that is expected for pigs at a particular age/weight during various 
seasons and their corresponding external environment characteristics (e.g., tempera-
ture, relative humidity, wind speed, wind direction).  However, rather than presuming 
a single value adequately represents an entire airspace or barn, continuous ambient 
temperature measurement at a more granular zone and pen level hold the potential to 
provide substantially richer information, substantially better (earlier, more specific and 
precise) problem (abnormal deviation) detection and clearer diagnosis – thus enabling 
greater effectiveness of intervention, problem resolution; as well as prevention.  

To describe and characterize both water usage and ambient temperature at more gran-
ular (pen and zone) levels, the occasion of two consecutive disease challenge studies 
was used to incorporate a layer of pen-level water usage and ambient temperature 
monitoring on top of the study primary protocol execution.  

Materials and Methods 
The research barn is located in the upper Midwest region of the US and has a South 
(inlet curtains) to North (tunnel fans) orientation.  A schematic of the research barn’s 
interior layout and external directional orientation is shown in Figure 1.  The outside 
walls are solid with built in windows (i.e., not curtain-sided).  Ceiling air inlets located 
over the alleyway in each room and outside pit wall fans provide air flow during periods 
of minimum-to-low ventilation.   Tunnel ventilation is generated using a curtain-style 
inlet on the South wall and a bank of large tunnel fans on the North wall during periods 
requiring higher ventilation rates.  Manure is stored in a dep pit under a fully slatted 
floor. The pits are pumped (emptied) approximately twice per year – once in the late fall 
(after crop harvest) and once in the spring (prior to crop planting).  

As part of two different disease challenge studies spanning from September 2020 
through July 2021, 72 pens across two rooms were equipped with individual water me-
ters to measure pen-level daily water usage, water temperature and ambient temper-
ature. This full array of temperature sensor-equipped water flow meters enabled the 
capture of daily data values with pen-level data granularity.  The water meters stored 
the data in built-in memory and on a weekly basis the data were read wirelessly and 
uploaded to a central database.  

For the ambient temperature analysis, the research barn was partitioned into 12 distinct 
zones (six zones per room).  Each zone covered six pens per zone.  Zones represented 
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varying combinations of proximity to inside walls, outside walls, tunnel air inlet cur-
tains, tunnel exhaust fans and room (airspace).  To create separate and distinct zones 
in the barn, there were 13 animal pens left empty (i.e., contained no pigs) plus one 
alleyway and the floor scale area (Figure 1).  

Figure 1: Detailed schematic of the large research barn layout and directional orientation.  

For the water usage analysis, water data from each of the 72 pens were recorded by 
the water meters continuously and stored as a daily value (liters per pen per day).  To 
account for changes in the number of pigs over time in each pen throughout the two 
studies (e.g., from mortalities and removals), a continuous pen-level inventory was cal-
culated and used as the denominator to calculate a standardized measure of “Liters per 
Pig per Day” (LPD) for each pen.  

Continuous external environmental data (e.g., temperature, relative humidity, wind 
speed, wind direction) were also obtained from the nearest US national network weath-
er station.  External weather station data was recorded approximately four times per 
hour.  

For the first study, the average starting pig weight was 40 kg on September 22, 2020 and 
the average study ending pig weight was 116 kg on December 22, 2020.  
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Results and Discussion 

Ambient Temperature  
The external weather environment was typical for the Upper Midwest US. Figure 2 
shows the daily average external temperature (Celsius) and average percent relative 
humidity based on data from the weather station nearest to the research barn from 
September 1, 2020 through December 31, 2020.  Figure 3 shows the daily average wind 
speed (kilometers/hour) and wind direction.  

Figure 2: Daily average external temperature and average percent relative humidity from the 
weather station nearest to the research barn from September 1, 2020 through December 31, 2020.  

Figure 3: Daily average wind speed (kilometers/hour) and average wind direction (360 degrees*) from 
the weather station nearest to the research barn from September 1, 2020 through December 31, 
2020. (*NOTE:  North = 0 & 360, East = 90, South = 180, West = 270) 

The daily average external temperature generally trended downward throughout the 
period of Study 1 with several cycles of falling and rising temperatures as weather 
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patterns moved through the area (Figure 4).  The inside temperature also trended down 
over the study period as the study pigs aged and gained weight, showing a much less 
variable inside temperature average, maximum and minimum throughout the study 
period – an indication that the barn ventilation management was relatively consistent.  

Figure 4: Daily average external temperature (Celsius) from the weather station nearest to the 
research barn compared to daily inside temperature average, maximum and minimum from 
September 22, 2020 through December 22, 2020.  

Figure 5: Average temperature deviations from the overall barn average inside temperature for the 
entire period of Study 1 from September 22, 2020 through December 22, 2020.  
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From September 22, 2020 through December 22, 2020, deviations of the average tem-
perature from the overall barn average were calculated for each of the 12 Zones (Figure 
5). The coolest zones were the Fan_Outside zones of both the East and West airspaces, 
with the warmest zones being the Middle_Inside and Fan_Inside zones.  When compa-
rable zones from both airspaces were combined (Figure 6) the coolest zone was the fan 
end/outside wall (Fan_Outside) with a -3.6oC temperature deviation from the warmest 
Middle_Inside zone. Relative ambient temperature deviations held relatively consist-
ent over the period (Figure 7).  

Figure 6: Average temperature deviations of Zone Types from the warmest Zone Type, Middle_In for 
Study 1 from September 22, 2020 through December 22, 2020.  

Figure 7:Time series of ambient temperature (Celsius) among six Zone Types (7 day rolling average) 
from September 22, 2020 through December 22, 2020.  
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Based on this ambient temperature analysis, it is evident that use of an array of ambient 
temperature sensors assigned to all defined zones in a swine barn enable the continuous 
monitoring and assessment of ambient temperature variation throughout the rooms 
and barn.  Further work and analysis are needed to assess to what extent that these 
zone temperature deviations may affect growing pig health, welfare and performance.  

Water Usage 
Figure 8 displays the time series of pen-level daily water usage (liters per pig per day) 
for the 72 pens in Study 1 over the 90 day study period.  During this period, pigs grew 
from a starting average weight of 40 kg to an average ending weight of 116 kg and would 
be expected to consume an increasing volume of water per pig over that same period.  
This was generally the case, although the impact of the controlled disease challenges 
can be seen (as expected) in the first one-third of the study period.  

Figure 8: Time series of descriptive statistics of pen-level daily water usage (liters per pig per day) 
across 72 pens over a 90 day period for pigs from 40 kg to 116 kg body weight.  

Figure 8 shows a substantial deviation of the maximum pen-level water usage above 
not only the mean and median for the barn, but also shows surprising deviations from 
the 95th percentile throughout the 90 day period of Study 1.  Examining a time series of 
frequency distributions of water usage (Figure 9) it is evident there are several outlier 
pens where the water usage is unusually high, suggesting water wastage.  Figure 10 
displays a time series of pen-level daily water usage of four selected outlier pens in 
the West Room – two pens with unusually high water usage (66, 72) and two pens with 
consistently low water usage (47, 80).  

Based on this water usage analysis, it is evident that use of water meters in individual 
pens throughout a swine barn enable the detection of unusual water usage deviations that 
may indicate pig-origin causes (e.g., diseases, vices) and/or faulty equipment (e.g., leaky or 
plugged drinkers) that can adversely affect growing pig health, welfare and performance.  
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Figure 9: Frequency distribution time series of pen-level water usage (liters per pig per day) across 
72 pens at 3 day intervals over a 90 day period for pigs from 40 kg to 116 kg body weight.  

Figure 10: Time series of pen-level daily water usage (liters per pig per day) for selected outlier pens 
in the West Room over a 90 day period for pigs from 40 kg to 116 kg body weight. 

Conclusions
Further research must be conducted to better assess the relationship of of zone-level 
ambient temperature variation and pen-level water usage variation with measures of 
pig health, welfare and performance. As these relationships are further evaluated and 
better documented, the cost-effectiveness of operating pen-level water usage meters 
and ambient temperature sensors can be defined. Obviously important to the bene-
fit:cost (specifically as the denominator) is the overall cost of purchasing, installing, 
connecting (to the cloud) and maintaining these meters/sensors.  To be scalable and 
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sustainable as a precision livestock monitoring method, it will be important that the 
per unit cost of cloud-connected combination water meters/temperature sensors de-
crease substantially.  
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Abstract 
Timely diagnosis of disease is essential for managing swine enteric diseases. In this study 
we investigate if diarrhoea events in finisher pigs can be detected based on water us-
age measures collected by sensors. Data used in the study originate from four farms of 
finisher pigs raised from 30kg till approximately 110 kg. Each farm consisted of several 
sections with several batches per sections. Batches with less than 60 days of observations 
were removed, and the maximum number of observation days was 102. A combination 
of Dynamic linear models and Random Forests are used for developing the prediction 
model. The effect of different parameters of the models were studied, e.g. the inclusion of 
a day and night pattern for drinking behaviour, the number of days back in time data was 
included, and different event sampling strategies. Results show a higher accuracy of the 
model when day and night drinking patterns and more days of data in the model were 
included. The test data shows best per-farm accuracies between 50 % and 63 % for the best 
performing model. This study shows that it is possible to predict diarrhoea events based 
on water usage measures, but performances seem not good enough for practical purpos-
es. Further research should aim towards improving these performance further. 

Keywords: water usage, dynamic linear model, random forest, swine enteric diseases

Introduction 
Timely diagnosis of disease is essential for managing swine enteric diseases. Ear-
ly detection and diagnosis of enteric disease are particularly critical in the nurs-
ery-through-finisher phase because of the significance of economic effects. One impor-
tant sign of disease is diarrhoea, which in many cases can be present in pigs without 
the farmer being able to tell from looking at the pigs (Weber et al., 2015).

Monitoring pig behaviour is important for detecting problems with pig health, but is chal-
lenging given the large scale of many farms. Surveillance of pig diseases and behaviour 
often involves human observations, by either farm staff or veterinarian assessments. 
With the development of sensors, data collection on pig behaviour has been automated, 
which enables routinely collection of data and detection and tracking of the movement 
of (individual) pigs over an extended period of time (Martínez-Avilés, 2015). This provides 
opportunities for the early detection of potential health or welfare problems. 

Several studies already looked at how various types of routinely collected data can 
be used for the early detection of diseases or undesired behaviour in pigs. Pen lev-
el temperature was used for the early detection of diarrhoea and pen fouling (Jensen 
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and Kristensen, 2016). This study showed that temperature data contained meaning-
ful information for predicting diseases, but in combination with other variables or by 
using more advanced models the predictive power was expected to improve. Combin-
ing  pigs’ water usage and pen temperature showed that predicting tail biting events 
was possible with an AUC of more than 0.80, but many false alerts on tail biting were 
generated due to the algorithm also flagging events other than tail biting (Larsen et al. 
2019). Regardless, these predictions can still be useful for farmers to point out pens that 
need extra attention. Pigs’ water usage is an interesting variable for detecting health 
issues, because pigs generally have a stable drinking patterns and typically does not 
deviate unless they are affected by a disease outbreak (Jensen et al., 2017). Madsen and 
Kristensen (2005) showed that a deviation in water consumption in weaned pigs can 
provide a warning for diarrhoea. Thus, sensor data on water usage may hold predictive 
value for detecting health events in finisher pigs as well. 

The aim of this study was to investigate if diarrhoea events in finisher pigs can be de-
tected based on water usage measures collected by sensors. This was tested by describ-
ing the patterns in the water usage data with a dynamic linear model (DLM), develop-
ing and optimising a Random Forest (RF) on a learning set and testing the predictive 
performance of the RF on the remaining test set. 

Material and Methods

Data
Data used in this study were provided by IQinAbox (Værløse, Denmark). The data had 
been recorded between 2019 and 2021, and originated from three pig finisher farms, 
raising pigs from 30 kg to approximately 110 kg. Each farm had between 4 and 6 sec-
tions, delivering between 25 and 49 batches of finisher pig. Two of the farms used liquid 
feed. On the third farm, half of the sections were given liquid feed and the other half 
dry feed. The raw data consisted of sensor data on water usage aggregated to hourly 
sums per batch of finisher pigs. The water usage in this study does not include the 
water intake from liquid fed. In addition, the farmers had been instructed to record 
the number of health events (i.e. diarrhoea) per batch. These farmer records were also 
available to us. A total of 37 batches were removed because of missing water usage re-
cordings at the start or middle of the growing period (23 batches), or because less than 
60 days of observations were removed (14 batches). Table 1 presents the final dataset 
that was used for this study. 

Table 1: Final dataset used for the prediction of diarrhoea

Farm Feed type Sections
total

Batches 
total 

Diarrhoea (1) 
events 

No diarrhoea (0) 
events 

1 Liquid 6 49 14,777 49,785

2 Liquid 8 48 34,985 22,791

3 Liquid 4 25 24,407 12,096

3 Dry 4 26 17,216 3,912
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The data were split for each farm into a learning set (70 %) and a test set (30 %), strati-
fied by section. The learning set was used to model the drinking pattern and estimate 
the parameters of the DLM, as described below. The test set was subsequently used to 
assess the performance of the trained RF models, as described further below. Separate 
models were made per farm for Farms 1 and 2, while separate models were made for 
each feed type for Farm 3. All data processing, modelling, and various calculations were 
done using the statistical language and environment R (R Core Team, 2017).

Modelling drinking pattern 
The water consumption of growing pigs have a diurnal pattern and a uniform water 
consumption pattern is required for assessment of changes in pig health and well-be-
ing (Madsen and Kristensen, 2005). Therefore, the drinking pattern of the growing pigs 
was described in the DLM as a linearly increasing mean plus the sum of three harmon-
ic waves, following the example of Madsen and Kristensen (2005). 

Dynamic linear model 
In general, a DLM will start with a certain set of assumptions, which in our study 
were defined by the parameters learned from the learning set. When applied to a new 
time series of data, the DLM will gradually learn the specific patterns of the new data 
through via the Kalman filter (West and Harrison, 1997). In this study, the DLM was 
used to make a one-step-ahead forecast on water usage, with each step corresponding 
to one hour. The forecast errors, i.e. the differences between the forecast from time t-1 
and the observation Yt is standardized by dividing it by the square root of the forecast 
variance, which is estimated continuously as part of the Kalman filter. The standard-
ized forecast error is then used as a measure of the deviation from the “normal” level of 
water intake; so long as the system is normal or “in control”, the standardized forecast 
errors will follow a standard normal distribution. If, on the other hand, the pigs change 
their drinking behaviour, data will no longer conform to the model predictions, and the 
absolute value of the standardized forecast errors will increase. 

Forecast error transformation
The  farm and feed-type specific DLMs, which had been optimized on the learning set, 
were subsequently applied to their respective learning and test sets, and the standard-
ized forecast errors saved. The standardized forecast errors were transformed by calcu-
lating the summary statistics (min, 1st quarter, mean, medium, and 3th quarter max) for 
a set number of hours back in time, relative to each observation. The exact summary 
transformation varied with respect to several different conditions, i.e. (1) whether the 
summary statistics were naively calculated for all observations in the set number of 
hours relative to the observation, or if separate summary statistics were calculated for 
day hours (07:00 – 18:00)  and night hours (19:00 – 06:00);  (2) the number of observations 
(hours) that were included in the summary statistics, i.e. t-24h, t-48h, t-72, and t-96

All 8 combinations of these two variations were used, in order to identify the most 
important features for predicting diarrhoea in pigs on batch level. Thus, in total 16 new 
datasets (8 learning and 8 test sets) per farm were created and used as input for the RF.    
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Data balancing
Since the data were highly imbalanced with relatively few positive diarrhoea events, 
two different methods of data balancing were applied to the data: (1) random over-sam-
pling which populates the data set with copies of randomly selected data points of the 
minority class (diarrhoea); and (2) random under-sampling where the data points from 
the majority class (without diarrhoea) are removed at random.

Random forest 
To predict diarrhoea at batch level, this study applied a RF. A RF is a classification mod-
el that generates a set of different decision trees and combines their predictions into 
a single final prediction. For each farm, the learning data (70 % of the full per-farm data 
set) was split into a validation set consisting of one section and a training set consisting 
of the remaining  sections. 

First the RF was trained on the training set and the number of trees was set to 500. This 
trained model was then used to make prediction on diarrhoea occurrence, using the 
validation dataset. In total 64 sets of RF predictions were made (i.e. 4 farms/feed types 
x 2 (under/oversampling) x 2 (day/night pattern) x 4 (t- 1 to 4 days)), and model perfor-
mances were evaluated based on the major-mean accuracy, and the 95 % confidence 
interval (CI) with bootstrap resampling. The best performance model per farm where 
identified and we used these best set of parameters to train the final model for each 
farm using the full learning balanced set for each farm. Finally this trained model was 
tested on the test data (30 % of the full per-farm data set). 

Statistical analysis
The accuracies achieved from the 64 different sets of RF predictions were analysed with 
a linear mixed-effects model, using the lmerTest package in R. The mixed-effects model 
was made to describe the accuracies given whether or not day/night distinctions were 
used, whether under-sampling or over-sampling were used, and the number of days 
back in time, relative to a given observation (t-days) was used in the summary statistics 
transformation of the forecast error data. All variables were included as factors. The 
farm was included as a random effect, with farm 3 (liquid feed) and farm 3 (dry feed) 
being considered as separate values. Effects were considered statistically significant if 
their corresponding p-values were less than 0.05. 

Results and Discussion
Table 2 presents the accuracy of each RF model when evaluated on the validation data-
sets, while Table 3 shows the results of the statistical analysis, i.e. the estimated effects 
of the various values of the different factors on the accuracy of the RF, along with the 
corresponding p-values for the effects under the null-hypothesis of no effect. 

It is seen from Table 3 that the data balancing method (over-sampling or over-sam-
pling) does not significantly affect the performance. This is also evident by the fact that 
no balancing strategy consistently yields the best performance for any of the farms 
(Table 2). 
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Table 2: Predictive performance Random Forest on validation datasets. Bold numbers indicate the 
best performance for a given farm.

Farm 
(feed type)

Day-night 
pattern t-daysa Under sampling

Accuracy (95% CI)
Over sampling

Accuracy (95% CI)

Farm 1 
(liquid)

YES

1 0.61 0.56-0.67 0.52 0.49-0.55

2 0.64 0.59-0.69 0.55 0.52-0.58

3 0.64 0.59-0.69 0.55 0.51-0.58

4 0.68 0.64-0.73 0.55 0.52-0.59

NO 

1 0.49 0.46-0.52 0.49 0.44-0.54

2 0.65 0.60-0.69 0.48 0.43-0.53

3 0.50 0.50-0.50 0.63 0.58-0.69

4 0.66 0.61-0.71 0.66 0.61-0.71

Farm 2 
(liquid)

YES

1 0.62 0.57-0.68 0.60 0.55-0.66

2 0.62 0.57-0.67 0.63 0.58-0.68

3 0.63 0.57-0.68 0.61 0.56-0.67

4 0.61 0.55-0.67 0.65 0.60-0.70

NO 

1 0.63 0.58-0.69 0.64 0.58-0.69

2 0.63 0.58-0.69 0.63 0.58-0.69

3 0.64 0.58-0.69 0.64 0.58-0.69

4 0.61 0.56-0.67 0.64 0.58-0.69

Farm 3 
(liquid)

YES

1 0.63 0.58-0.68 0.66 0.61-0.71

2 0.65 0.60-0.70 0.64 0.59-0.70

3 0.66 0.61-0.71 0.67 0.62-0.72

4 0.68 0.64-0.73 0.68 0.63-0.73

NO 

1 0.59 0.53-0.64 0.59 0.54-0.64

2 0.60 0.54-0.65 0.60 0.55-0.65

3 0.60 0.55-0.65 0.60 0.55-0.65

4 0.61 0.55-0.66 0.60 0.55-0.65

Farm 3 
(dry)

YES

1 0.71 0.65-0.77 0.70 0.63-0.76

2 0.73 0.67-0.79 0.74 0.68-0.80

3 0.70 0.64-0.76 0.75 0.68-0.81

4 0.73 0.67-0.80 0.76 0.70-0.83

NO 

1 0.50 0.50-0.50 0.76 0.71-0.82

2 0.50 0.50-0.50 0.71 0.67-0.75

3 0.79 0.73-0.84 0.71 0.67-0.75

4 0.71 0.67-0.75 0.77 0.72-0.83

a The number of days (24 hour periods) back in time, relative to a given observation, was used in the 
summary statistics transformation of the forecast error data.
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Table 3 shows a statistically significantly positive effect of distinguishing between day 
and night hours, when performing the summary transformation of the standardized 
forecast errors of the DLM, compared to naively calculating the summary statistics on 
the whole included time window. In Table 2, this is evident by the day/night strategy 
yielding the best performance in 3 out of the 4 farms. Even in Farm 3 (dry), where the 
best performance is achieved without the day/night strategy, the day/night strategy 
still yield higher performance than the naïve strategy in 5 out of 8 cases, when compar-
ing these two strategies stratified by both balancing method and t-days. 

A statistically significantly positive effect of using the 4 days (96 hours) up to a giv-
en observation in the summary transformation, compared to only using one day (24 
hours). The effects of using 2 and 3 days are not statistically significantly different com-
pared to 1 day, although using 3 days comes close with a p-value of 0.06. Furthermore, 
there is a clear trend towards the positive effect increasing with more days being used, 
suggesting that this is indeed a real effect. The fact 4 days yields the best performance 
in 3 of the 4 farms suggests that using even longer retrospective time windows for the 
summary transformation should be explored in future studies. 

It is also worth noting that for Farm 3 (dry) the performances were no better than ran-
dom guessing when only 1 and 2 days of observation data was used for the summa-
ry transformation. However, for farm 3 (dry) using three days of observations for the 
summary transformation yielded an accuracy which was significantly higher than the 
best accuracies for any of the liquid fed farms. This higher accuracy might be because 
changes in drinking behaviour are more clearly seen when using dry feeding compare 
to liquid feeding (Meunier-Salaün et al, 2017; Zoric et al., 2015). 

Table 3: Results of the statistical analysis of the effect of the three tested variables on the accuracy 
of a random forest trained to detect diarrhoea in slaughter pigs at section level.

Variable Value Estimated effect Std. p-value

(Intercept) N/A 0.60 0.030 0.000002

Day/Night pattern
No 0.00

Yes 0.03 0.014 0.04

t-daysa

1 0.00    

2 0.02 0.019 0.40

3 0.04 0.019 0.06

4 0.05 0.019 0.01

Balancing Method
Over-sampling 0    

Under-sampling -0.01 0.014 0.71

a The number of days (24 hour periods) back in time, relative to a given observation, was used in the 
summary statistics transformation of the forecast error data.

In our study, the best performances are all significantly better than random chance, i.e. 
the 95 % CIs from Table 2 does not overlap of 0.5 for the best performances per farm. In 
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fact, of the 64 performances achieved with various permutations of variables used in 
this study, only 7 had CI is which overlapped with 0.5, as seen in Table 2. However, when 
running the best performance models (Figure 1) for the given farms on the test data, we 
find that 2 of the 4 performances overlap 0.5. That being said, our best per-farm perfor-
mances accuracies are in the range between 50 % and 56 %, which seem not to be good 
enough for practical purposes (Dominiak and Kristensen, 2017). 

Figure 1: Confusion matrix of the Random Forest on test data sets test of the best performance 
model per farm (a) farm 1 liquid feed, (b) farm 2 liquid feed, (c) farm 3 liquid feed, (d) farm 3 dry feed.  

Further research aims towards improving these performance further. For this purpose, 
it would be of interest to also have data on the number of pigs that are present in 
a given section at a given observation time; even though the farmer may insert a set 
number of pigs per batch, pig are occasionally removed due to illness, and towards the 
end of the batch the largest pigs will systematically be removed and sent to slaughter. 
Both of these causes for removals will change the water intake pattern, which could to 
more false positive results, negatively effecting the accuracy. Furthermore, having in-
formation about the temperature in a given section at a given observation time would 
likely provide valuable context for the drinking patterns of the pigs. Without this con-
text, variations in temperature, and the corresponding changes in the pigs’ drinking 
behaviour, may be lead to false alarms. Lastly, in this study we only considered regis-
trations of diarrhoea. However, other undesired events such as pen fouling, tail biting, 
and respiratory disorders are known to occur at the farms included in our study. Since 
our study was focused specifically on detecting diarrhoea, based on the patterns in the 
water usage, these other undesired events may give rise to “false” alarms, as was the 
case for Larsen et al. (2019). 
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Conclusions 
In this study we found that water usage data recorded at the section level contains 
information, which is useful for detection of diarrhoea. The best per-farm accuracies 
range between 50 % and 63 %. Further studies will aim to improve these performances 
by including additional information such as temperature, the number of pigs in the 
section, and the potential effect of other undesired events being the course for the 
alarms raised by our model.  
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Abstract
Since the growth environment inside the piglet house is mainly controlled by venti-
lation, sufficient ventilation rate is required. However, it is difficult to overcome the 
excessive accumulation of odors and harmful gases because of low ventilation rate in 
winter. In addition, it is difficult to ventilate due to concerns about airborne disease 
transmission. The heat energy is high inside the facility due to the heat generation 
of the pigs, so it is necessary to recycle this thermal energy and reduce the exchange 
of outdoor air as much as possible to prevent diseases. Therefore, in this study, the 
air recirculated ventilation system was developed for pig house. The air recirculated 
ventilation system consists of 1) air scrubber module, 2) external air mixing module, 
3) UV cleaning module, 4) solar heat module, and 5) air distribution module. First, the 
internal environment of target piglet house was evaluated. Based on this, the numer-
ical model was developed in Python, and configuration the modules were selected. 
The performance evaluation of each module was conducted in test bed of AcSEC-A3EL 
(without piglets), and the optimal ventilation rates and external air mixing ratio were 
determined based on the data of each module. In order to control the selected ventila-
tion rates and external air mixing ratio, the semi-closed duct system considering the 
pressure loss was designed. Finally, the control algorithm was developed to install and 
operate the air recirculated ventilation system in the demonstration piglet house, and 
the operation evaluation of this system will be conducted.

Keywords: Air scrubber, Air recirculated ventilation system, Energy efficiency, Internal 
environment, Piglet house

Introduction
Domestic livestock production has steadily increased every year, accounting for 39.4% 
of the total agricultural production, and the pig industry accounts for the highest pro-
portion (MAFRA, 2020).  In order to increase the production of pig farms, the scale of 
the facility is increasing, and dense breeding is increased. However, as the scale of the 
facility increases and the number of animals increases, the internal environment can 
be improper. Since the behavior and distribution of the internal environment can be 
shown by the airflow, most pig facilities control the internal environment through ven-
tilation. However, there are many complex considerations such as environmental con-
trol inside the pig house, external exhaust gas, and odor. In addition, there are many 
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difficulties in ventilation due to the occurrence and spread of diseases inside and out-
side the pig house. 

There is an air recirculated ventilation system as a method designed to maximize the 
use of thermal energy inside the pig house and to block diseases inside and outside 
the pig house. The air recirculated ventilation system was conceived of cleaning and 
sterilizing the air exhausted from the inside to reuse the energy. If the air recirculation 
technology is applied to pig houses, the spread and inflow of livestock infectious dis-
eases can be minimized. In addition, it is possible to improve the breeding environment 
by increasing the amount of ventilation rate inside the pig house in winter, and it is 
possible to minimize the emission of odor from pig house. Wenke et al. (2018) analyzed 
that when a filtration was installed in the air recirculation system, the dust concen-
tration was the lowest and the pig’s lung health was excellent. Anthony et al. (2017) 
analyzed the concentration of dust and carbon dioxide inside the pig house when the 
air recirculation system was applied to the farrowing house, and reported that the air 
recirculation system is an alternative to prevent the deterioration of workers’ health. 
Mostafa et al. (2017) applied a wet scrubber to the air recirculation system, and reported 
that the wet scrubbing technique can reduce both ammonia gas and dust concentra-
tions and has no negative effect on pigs.

A precise design is essential for such an air recirculated ventilation system. Since the 
air inlet and the outlet are connected rather than a general ventilation method, if the 
amount of inflow and outflow air is not accurately controlled, a ventilation problem 
can occur. If the air balance is not correct, negative pressure is applied inside the pig 
house. Then, the infiltration occurs through an unnecessary inlet, it may be difficult to 
control the environment in the pig house smoothly. Therefore, for the proper ventila-
tion operation of the air recirculated ventilation system, an accurate evaluation of the 
recirculation air flow and a design considering the pressure load should be conducted. 

Therefore, in this study, the pressure loss and actual air volume of the semi-closed duct 
system of the air recirculated ventilation system were evaluated. To this end, a semi-
closed duct system simulating an air recirculation system was installed in the test bed 
of the piglet house test bed, and the air volume and pressure loss according to the ven-
tilation rate were measured. Based on the measurement results, it was attempted to 
present standards such as the type, number, and location of ventilation fans required 
when applying the ventilation rate and external air mixing ratio when operating the air 
recirculated ventilation system.

Material and methods

Target facility
As shown in [Figure 2], the air exhausted from fan #1 passes through the wet scrubber, 
is cleaned, and re-introduced into the pig house through the duct. The wet scrubber 
has a role in making the air quality at an appropriate level so that the air reintroduced 
to the pig house can properly maintain the environment inside the pig house. In case 
of applying the recirculated ventilation system, even if the ventilation rate is increased 
by reusing thermal energy inside the pig house, it is advantageous to maintain the 
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temperature in winter, and it passes through the wet scrubber to reduce harmful gases, 
dust, and odors to create an appropriate breeding environment inside the pig house. 
On the other hand, in the case of carbon dioxide generated by the respiration of pigs, 
since it is difficult to reduce it using the wet scrubber, it is necessary to keep it at an 
appropriate level by mixing some of the outside air. Therefore, the air that has passed 
through the air cleaner passes through some outside air mixing zone and is discharged 
to the outside, and the air flowing through the fan mixes with the outside air that has 
passed through the duct in the mid-ceiling and is designed so that it is re-introduced 
into the pig house. 

Figure 1: Test bed piglet room for air recirculated ventilation system experiment (the Artificially-
controlled Smartfarm Engineering Center of Aero-Environmental & Energy Engineering Laboratory 
(ASEC-A3EL) of Seoul National University in South Korea)

Figure 2: Schematic diagram of air recirculated ventilation system

Calculation of pressure loss in ducts
In general, the pressure loss in the pipe of the duct is the loss caused by friction be-
tween the air, the pipe wall, and the air. The pressure loss is proportional to the velocity 
pressure, which is the square of the velocity. The pressure loss is calculated from the 
equation below.
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 (1)

Where, �P is pressure loss (mmAq), � is pressure loss coefficient,  is the length of duct 
(m), D is the diameter of duct (m), � is the density of air (kg m-3), and g is gravitational 
acceleration (ms-2). 

Procedure of the experiment
The object of analysis through the air recirculation experiment is to determine the 
location and combination of ventilation fans required to control the required ventila-
tion amount and external air mixing ratio inside the pig house, and to find the control 
conditions for generating the required air volume from each ventilation fan. Therefore, 
the experiment was performed according to the fan combination, ventilation amount, 
and mixing ratio. In addition, in order to understand the position of the pressure load 
and the amount of loss, it was attempted to calculate the pressure loss for each flow 
measurement location. The experimental conditions for the combination of ventilation 
fan operation, ventilation amount operation conditions, and outdoor air mixing ratio 
are shown in the table below. 

Table 1: Experimental condition of air recirculated ventilation system

Combination of fan Ventilation rate Mixing ratio of outdoor air

Fan #1 + Fan #2

100 CMM
0.4 min-1

100

Fan #1 + Fan #3
Fan #1 + Fan #2 + Fan #3
Fan #1 + Fan #2 + Fan #3 + Fan #4

80

60

40

20

0

Results and Discussion

The following figure shows the results according to the operating conditions of fan #3, 
and by operating fan #3, the amount of inflow air was increased to compensate for the 
flow rate decrease due to friction loss in the duct. While the operating conditions of fan 
#3 were increased to 50%, compensation for pressure loss occurred insignificantly. It is 
thought that this did not significantly affect the operation of the fan compared to the 
amount of air recirculated. However, when the operating conditions are increased by 
60% or more, it can be confirmed that the actual pressure drop is reduced compared to 
the friction loss of the duct. This means that the friction loss due to the increase in flow 
rate increased due to the increase in ventilation volume due to the serial arrangement 
of the two fans, and at the same time, the air volume was secured enough to compen-
sate for the pressure loss of fan #3. When the maximum operation rate was reached, 
the pressure loss could be reduced to about 12% of the exhaust dynamic pressure. 
Therefore, when designing the air recirculation system, it is determined that the flow 

∆𝐏𝐏𝐏𝐏 = 𝛇𝛇𝛇𝛇 ∙
𝒍𝒍𝒍𝒍
𝑫𝑫𝑫𝑫 ∙

𝜸𝜸𝜸𝜸𝑽𝑽𝑽𝑽𝟐𝟐𝟐𝟐

𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐  
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rate should be supplemented at the fan #3 position in order to reduce the difference in 
the inflow and outflow flow due to frictional loss.

Figure 3: Friction loss measurement and calculation results according to the operating conditions 
of fan #3

Figure 4: Outdoor air mixing ratio according to fan #2 control condition

After fixing the set ventilation rate of fan #3 to compensate for the pressure loss of the 
air recirculated ventilation system at 100% operating condition, the flow rate at each 
air flow measurement location was measured according to the control value of fan #2. 
The figure below shows the mixing ratio control results according to fan #2 operation. 
When the mixing ratio was controlled by using fan #2, the actual flow rate measured 
in M   #5 responded well to the control value, showing excellent results. Meanwhile, the 
actual flow rate was measured to be about 20% lower than the control value in the 40 
to 60% mixing ratio range of fan #2. It is not recommended to control a fan of a general 
single-phase motor power by adjusting the power value linearly. The input power of the 
ventilation fan should be constant at 220V, and the performance of the output motor 
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may not be constant depending on the power value. Therefore, when the control is ap-
plied to an actual farm, it is preferable to control the inverter using a three-phase mo-
tor. In this experiment, since the purpose of this experiment is to adjust the external 
air mixing ratio according to the air volume of the ventilation fan, the evaluation was 
performed with power control. It is judged that it is appropriate to follow the installa-
tion environment and conditions for calibration of equipment and controller for pre-
cise ventilation fan control. While fan #3 was maintained at 100% operating condition 
to control the mixed air, the flow rate was kept constant at measurement position #4, 
the flow rate flowing into the pig room. Also, even if the mixing ratio was changed by 
adjusting the control value of fan #2, the average pressure loss in the duct was main-
tained at 8.35 Pa. Therefore, it is considered that the combination of #1, #2, and #3 of the 
ventilation fan is sufficient to control the ventilation amount and external air mixing 
of the air recirculation system.

Conclusions
In this study, an experiment to measure the flow rate of a semi-closed duct for the 
application of an air recirculation ventilation system was performed. For precise con-
trol of the actual ventilation fan, the air volume according to the control standard of 
the duct system was measured and analyzed. In order to compensate for the pressure 
loss in the duct, it is necessary to balance the exhaust fan and inlet fan of the facility. 
The air recirculation ventilation system should properly control the mixing ratio of the 
outside air. To this end, it was found that the external air exhaust fan must be operated 
quantitatively. For ventilation operation with the actual air recirculated ventilation sys-
tem applied, it is necessary to correct the actual control value by calculating the duct 
loss and measuring the airflow rate as in this study.
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Abstract
Due to the adverse effects of ammonia emissions on the environment, the government 
is making efforts to adjust ammonia emissions through policies. Among ammonia 
emissions by industry in 2017, ammonia emissions from agriculture were the highest. 
Ammonia emissions from agriculture consist of emissions from fertilized agricultural 
land and emissions from livestock industries. In particular, ammonia emissions from 
the domestic livestock industry have increased by 24 % over the past decade due to 
the increase in the number of breeding heads. Literatures showed that the ammonia 
emissions from livestock industry are mainly from ammonia generated by manure. 
Therefore, the domestic pig industry, which accounts for the largest proportion of live-
stock manure generation, is an industry of high importance in ammonia emissions. In 
recent years, many studies were conducted to estimate and measure ammonia emis-
sion from pig house, but there were significant differences depending on measurement 
facilities and environment. These differences occur because the internal environment 
of pig house and the characteristics of manure are different. In order to consider these 
differences, it is necessary to calculate emissions in consideration of factors influenc-
ing ammonia volatilization. Therefore, in this study, factors influencing ammonia vol-
atilization were identified through analysis of previous studies, and field monitoring 
was performed on factors influencing ammonia volatilization and ammonia concen-
trations. Based on monitoring results and equation of calculating ammonia volatiliza-
tion in pig manure, the estimation model of ammonia concentration in pig house was 
presented and calibrated. Based on calibrated model, ammonia emission factors of pig 
house considering factors were presented.

Keywords: Factors influencing ammonia volatilization, Ammonia concentration, 
Ammonia emission factor, Pig house,

Introduction
About 73.5% of the total ammonia emissions in Korea were emitted by the livestock 
industry. Ammonia produced by the livestock industry is mainly from livestock ma-
nure. Therefore, the domestic pig industry, which accounts for the largest proportion 
of livestock manure generation, is an industry of largest proportion in ammonia emis-
sions. Presently, the government included ammonia in the list of harmful atmospheric 
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substances in its counterplans for fine dust management. Ammonia generates fine 
dust through chemical reactions with sulfur oxides and nitrogen oxides in the atmos-
phere (Jang, 2013). Furthermore, ammonia causes various environmental loads.

Many previous studies were conducted to estimate and measure ammonia emission 
of pig house, but there were significant differences depending on measurement facil-
ities and environment. These differences occur because the internal environment of 
pig houses and the characteristics of slurry are different. Ammonia emitted from pig 
houses is mainly generated from slurry under pits, with the amount of volatilization 
varying according to slurry characteristics and internal environment factors (Aarnink 
et al., 1993; Meisinger et al., 2000; Ye et al., 2008). As these factors vary depending on the 
characteristics of each facility, including feed characteristics, breeding density, weath-
er, environment, acid treatment of manure, and microbial treatment, it is important 
to identify factors influencing ammonia volatilization. As a result of the analysis of 
previous studies, the factors influencing ammonia volatilization were total ammonia 
nitrogen (TAN) in slurry, slurry pH and temperature, air temperature, ventilation rate, 
wind speed on slurry surface, emitting area and pig number. Nonetheless, studies on 
ammonia emissions linked to emission characteristics based on factors influencing 
ammonia volatilization are insufficient. Moreover, studies analyzing ammonia emis-
sions according to pig ages using data measured throughout the breeding period are 
insufficient. Therefore, in this study, these factors were directly measured in pig houses 
and a model was developed to calculate the ammonia concentration and emission in-
side pig houses linked to these factors. 

Material and methods

Target facility

Figure 1: Internal environment of piglet house located at Imcheon-myeon, Buyeo-gun, 
Chungcheongnam-do (126° 53’ 47.5” E, 36° 12’ 30.7” N ) 
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The target facility is a mechanically ventilated piglet house located in Imcheon-myeon, 
Buyeo-gun, Chungcheongnam-do (latitude: 36°12’ 30.7” N, longitude: 126°53’ 47.5” E) 
(Figure 1). The floor area is divided into a pig breeding area and a corridor. The breeding 
area is composed of slat made of PE material, while the corridor is made of concrete. 
A total of 129 piglets enter at 28 days old and are moved to the finishing pig house at 
82  days old. The ventilation system supplies air into the room through nine ceiling 
slots (0.6 m × 0.3 m) and two windows (0.4 m × 0.95 m) connected to the corridor, which 
is exhausted outside through three sidewall exhaust fans (2 fans with a φ of 350 mm, 
1 fan with a φ of 500 mm).

Monitoring of factors influencing ammonia volatilization and ammonia concentration 
in pig houses
Factors influencing ammonia volatilization (TAN in slurry, slurry pH and temperature, 
air temperature, ventilation rate, wind speed on slurry surface, emitting area and pig 
number) and ammonia concentration inside pig house were measured. Since TAN is 
difficult to measure in real time, a manure sample was collected (a total of 7 times) dur-
ing visit and measured through ion chromatography. The wind speed on slurry surface 
is difficult to measure through field experiments due to disturbance by pigs. Therefore, 
the wind speed on slurry surface was predicted through proportional relationship with 
the ventilation rate. Other factors were measured at 1-minute intervals. Measurement 
were conducted from 1st of April until 21th of May 2021 when the piglets were first en-
tered the pig building until it was moved to the finishing pig house.

Development of model for estimating ammonia concentration inside pig houses
Ammonia in pig houses is mainly produced by the decomposition of urea in manure 
(Aarnink et al., 1993; Meisinger et al., 2000; Ye et al., 2008). In mass flow of ammonia in 
the pig house, ammonia volatilized on the slurry surface, accumulates under the pit, 
moves into the pig house, and is exhausted outside through fans. To predict the change 
of ammonia volatilization on slurry surface, the amount of ammonia volatilized was 
calculated based on the equation of Aarnink & Elzing (1997) by measuring factors influ-
encing ammonia volatilization. Since this equation was developed in a different breed-
ing environment from Korea, each coefficient was calibrated through the optimization 
technique based on the measured factors.

Eq. 1 was used to simulate the ammonia moving due to diffusion and advection from 
under the pit to the pig house.

Fick’s law was used to simulate the ammonia moving due to diffusion and advection 
from under the pit to the pig house (Equation (1)). The diffusion coefficient appears as 
Equation (2), and the change due to air temperature was applied (Gilliland, 1933).
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where J is flux caused by diffusion and convection (g s-1), DAB is diffusion coefficient (m2 
s-1), CA is ammonia concentration under the pit (g m-3), CB is ammonia concentration in 
pig house (g m-3), vc is convection rate (m s-1), dz is the amount of change in the z-coor-
dinate, Ta is air temperature inside pig house,  is total pressure, VA and VB are molal vol-
umes at the normal boiling point, MA and MB are ordinary mol weight of the two gases. 

The ventilation rate changes the ammonia concentration inside the pig house and 
emission. The amount of ammonia discharged outside and the amount of fresh air in-
troduced were calculated through the measured ventilation rate. The estimation model 
was designed at 1-minute intervals in accordance with the law of mass conservation 
in consideration of the amount of ammonia generated under the pit, the amount of 
fresh inflow air by diffusion and debris, and ammonia emissions by exhaust (Equation 
(3), (4)).

 (3)

 (4)

Where, Cpit,t is ammonia concentration under pit at time t (mg m-3), Volumepit is volume 
of pit (m3), J is flux caused by diffusion and convection (mg min-1), ENH3 is the amount 
of ammonia volatilized (mg min-1), Cin,t is ammonia concentration inside pig house (mg 
m-3), Volumein is volume of pig house (m3) and V is ventilation rate (m3 min-1).

The ammonia concentration inside pig house and emission were calculated by substi-
tuting the measurement results of the factors affecting the volatilization of ammonia in 
the designed estimation model. The model was calibrated by applying the optimization 
technique to improve the accuracy of the estimated model by comparing the measured 
internal ammonia concentration with the estimated ammonia concentration.

Results and Discussion

The results of predicting ammonia concentration through calibrated estimating 
ammonia concentration model
First, the predicted amount of ammonia volatilization was compared with the amount 
of ammonia emission as in the study of Aarnink&Elzing (1997). The predicted results 
were qualitatively different from the actual ammonia emission trend (Figure 2). R2 was 
also found to be low at 0.470, indicating that the prediction result did not show the 
trend of change in actual emissions. Accordingly, estimating ammonia concentration 
model attempted to increase prediction accuracy by simulating the diffusion and ad-
vection of ammonia generated in excrement and developing a model considering the 
mass flow of ammonia.

In the estimating ammonia concentration model, the accuracy for entire period of 
measurement for ammonia concentration before calibration has a R2 is 0.871, root 
mean square error (RMSE) is 1.712 ppm, and mean absolute percentage error (MAPE) 
is 23.49 %. The statistical indices in some periods were lower than those in the entire 
period (Table 1). In addition, qualitatively, errors in the maximum and minimum values 
were largely confirmed in the daily change trend of the ammonia concentration.
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Figure 2: Prediction of ammonia emission of piglet house using Aarnink&Elzing’s equation (1997)

The estimating ammonia concentration model was calibrated through the mea-
sured factors (Figure 3). The calibrated ammonia volatilization equation is as 
shown in Equations 5 to 9. As a result of predicting the ammonia concentration 
through the calibrated model, the R2 values slightly increased from 0.871 to 
0.906 whereas the RMSE values decreased by 34.6 % from 1.712 ppm to 1.119 
ppm, and MAPE values decreased by 13.7 %, improving the overall accuracy 
(Table 1). However, the predicted concentration during day time when the ven-
tilation rate was maintained high was higher than the measured concentration. 
These errors can be caused by the entry of farm manager and workers.

 (5)

 (6)

 (7)

 (8)

 (9)

Where, H is the Henry constant, Ta is the internal air temperature (K), k is the mass 
transfer coefficient (m s-1), v is the wind speed on slurry surface (m s-1), Ts is the slurry 
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in the liquid boundary layers of slurry, pHs is the slurry pH measurement results.
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Figure 3: Prediction of ammonia concentration in piglet house using calibrated model

Table 1: Changes in statistical indices of calibration for piglet

Measurement period R2 RMSE MAPE

19 April
~

05 May 2021

Before calibrated 0.820 2.231 25.78

After calibrated 0.886 1.287 19.20

Entire 
measurement 

period

Before calibrated 0.871 1.712 23.49

After calibrated 0.906 1.119 20.27

Estimation of ammonia emission rate through calibrated estimating ammonia 
concentration model
To calculate the ammonia emission rate, the ventilation rate and the ammonia con-
centration at the inlet and outlet are required. The ammonia concentration at the inlet 
used the measurement results. The average ammonia concentration measured at the 
inlet was 0.08 ppm. As the concentration at the inlet was very low compared to the 
concentration at the outlet, it was determined that ammonia concentration at the inlet 
did not affect the calculation of the emission rate and was assumed to be 0 ppm. The 
factors influencing ammonia volatilization measured in the mechanically ventilated 
piglet house were put into the calibrated model for estimating ammonia concentration. 
The internal concentration was calculated through the model, and ammonia emission 
rate was calculated by multiplying the ventilation rate. The ammonia emission rate 
at the piglet house was 0.13 g day-1 head-1 to 1.97 g day-1 head-1, tending to steadily in-
crease as the age increased. The average ammonia emission rate was 0.86 g day-1 head-1 

(0.32 kg year-1 head-1).

Conclusions
In this study, a model to predict the internal concentration in connection with factors 
influencing ammonia volatilization inside a pig house was developed. The slurry char-
acteristic factors, internal environmental factors, and ammonia concentration were 
measured in the target pig house, and the model was calibrated based on the meas-
ured data. As a result of the calibration, it is determined that the model can predict the 
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ammonia concentration inside the pig house (R2>0.9). Through the calibrated model, 
the ammonia emission rate of a mechanically ventilated piglet house was calculated 
for each age; the average emission rate of piglet was 0.32 kg year-1 head-1. Through the 
results of this study, it is possible to quantitatively analyze facilities that do not satisfy 
emission regulations and to suggest measures to reduce emission for each facility.
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Abstract
The odour dispersion modelling has been popular due to its capability to quantitatively 
analyze the amount of odour pollutants emitted in the environment. However, most 
odour dispersion models currently available are typically used for industrial odour 
transport and oftentimes neglected the topographical condition of the target experi-
mental areas due to the difficulties of integrating the terrain into the computational 
domain. To supplement these limitations, this study aimed to develop a computation-
al fluid dynamics (CFD) model to predict odour dispersion emitted from a pig farm. 
Specifically, a pig farm with complex terrain was designed and used to predict odour 
dispersion. In this study, the developed three-dimensional CFD model was validated 
through a comparison of the field-measured data and the CFD-computed results in 
terms of wind environment and dispersed odour. By comparing CFD-computed results 
with field-measured data, an appropriate grid size, time step, and turbulence model of 
the CFD model were determined. Considering various factors, case studies were also 
performed using the validated CFD model. The numerical analysis showed that low 
wind speeds and stable atmospheric conditions enhanced the transport of odour.

Keywords: complex terrain, computational fluid dynamics, odour dispersion, pig 
house

Introduction
Computational Fluid Dynamics (CFD) is a powerful tool involving fluid flow, heat and 
mass transfer and provides complete information related to the distribution of flow 
speed, pressure, temperature and even the target species concentration. The applica-
tion of CFD has gained momentum in the field of aircraft, oceanography, medicine, bi-
ology, and architecture during the late 20th century. Other prime industries where CFD 
or fluid flow simulation is frequently used including aeronautics, automotive, HVAC 
system, power generation, oil industry and so on.

In recent years, CFD modelling has been applied in agriculture-related industries such 
as food processing, agricultural machinery and agricultural facility design. The use of 
CFD in these fields reduced the risk of actual design modification, provide accurate 
quantification of aerodynamic environment parameter analysis and limits the actual 
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experimentation. However, many previously published CFD simulations researches are 
computationally expensive. For instance, Tseng et al. (2006) simulated the external air-
flow in 0.6 km × 0.6 km × 0.4 km urban region for almost 130 hours. The paper of Yeo, 
et al (2020) on the other hand predicted the odour dispersion of a pig farm in a 5 km di-
ameter domain with complex topography required 8 million elements of unstructured 
grids. Li and Guo (2006) on the other hand compared the prediction of odour dispersion 
of a 3000-sow farrowing farm using CFD and CALPUFF models taking into account the 
various atmospheric conditions such as temperature, wind, vertical temperature and 
so on. Although the above examples were case-specific, this gives general information 
about the computing time using CFD. As implied, both the number of grid elements 
and the size of the domain used in the simulation model affects the simulation time. 
Moreover, the need for modelling bigger test domain with smaller grid sizes for more 
accurate results have also accelerated with the increase of computing resources. As 
a result, reducing the computing cost with acceptable accuracy has always been an on-
going focus of CFD research. Thus, in this study, a three-dimensional model containing 
various pig farms were designed to simulate the dispersion of odour outside each pig 
farm boundaries. This is the first step for an attempt to develop and integrate a odour 
forecasting systems to allow the residents prepare for the odour nuisance that may 
occur at an specific weather condition. 

Material and methods

Selection of Experimental Farms
Since the study area covers several number of pig farms, it is important to properly 
design the selection of the target experimental area where the field experiment will 
be conducted. The selection of the target is a crucial stage in the field experiment as it 
will lessen the cost for the conduct of the field experiment but will also reduce the cal-
culation cost for the validation of the CFD model.  Shown in Figure 1 is the criteria for 
the selection of the target experimental farm where field experiment and CFD model 
validation will be conducted.

Field experiment devices and techniques
Several experimental devices were used to collect the needed data for the development 
of the three dimensional model of the experimental pig farm. This includes portable 
weather station (2900ET model of Spectrum Technologies’ WatchDog Weather Station 
2000 series) used to collect data on various climatical data such as wind speed, temper-
ature, humidity, wind direction and so on. A Hobo data logger (UX100-003, Onset com-
puter corporation, USA) was also used to identify the atmospheric stability of wind en-
vironment during the field experiment. Whereas, a TESTO manufactured sensor were 
used to measure the flowrate of ventilation exhaust fan of each pig buildings. Gas Tiger 
and MultiRAE was also used to record the emission of various gases such as ammonia, 
hydrogen sulfide and VOC. On the other hand, an odour chamber was used to collect 
odour samples at the specified sampling location. The evaluation of odorous air fol-
lowed the standard dynamic olfactometry method established by the European Union 
(EN 13725 2003) to measure the concentration of odour using the human sense of smell.
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Figure 1: A) Satellite image of a selected farm; d) Sampling location outside the experimental pig 
farm

Softwares for designing the CFD three-dimensional model
In this study, the complex terrain was developed using commercial software such as 
ArcGIS, AutoCAD, SketchUp, Rhino3D and Fluent Design Modeller. The developed mod-
el was designed to have an 11 km diameter (including the 1 km buffer zone) and height 
of 1 m. Presented in Figure 2 is the sample design of the three-dimensional domain.

Figure 2: ) a) Detailed procedure of developing the three-dimensional model of the experimental farm.

Setting the CFD boundary condition
Since the main goal of the research is to predict odour dispersion emitted from pig 
farm, it is important to properly address the wind environment which greatly influenc-
es the dispersion of odorous substances at the boundary of pig farm. In this case, the 
ABL of the experimental domain was expressed using the equation 1, 2 and 3 which 
represents the turbulent kinetic energy, dissipation rate and logarithmic wind profile, 
respectively. Whereas, equation 4, described the temperature profile at the inlet to in-
duce buoyancy effects within the domain.
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 (2)

 (3)

where z0 is aerodynamic roughness length, u∗ is friction velocity, Cµ is k − model con-
stant, z is the height, L is the Monin-Obukhov-length, u∗ is the friction velocity,and k is 
the von Karman’s constant which is equal to k=0.4

 (4)

where ρ is the density of air, g is the acceleration due to gravity, cp is the specific heat 
of air at constant pressure, and Qs is the sensible heat flux.

Results and Discussion

Field Experiment Result
Wind analysis of the nearest weather station from the target experimental farm was 
first done to identify the dominant wind occurring during daytime and nighttime. Ac-
cordingly, the most dominant wind direction in the target experimental farm with 
a wind speed ranging from <05 ~ 19.1 m/s (Table 1). The wind environment of the se-
lected experimental pig farm has a high mainly due to its location which is relatively 
flat and away from mountains or hills.

Table 1: Wind analysis result of experimental pig farm

Direction N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW

Frequency 
(%) 5.1 6.6 6.7 6.8 3.3 10.4 6.3 6.8 7.0 6.8 5.3 5.5 5.6 5.3 5.1 7.3

In this study first set of field experiments was obtained to determine the adjusted 
odour emission rate from each pig building considering the European standard and 
actual ventilation rates in the target experimental farm. Whereas, the next set of ex-
periments were more focused on the evaluation of the odour dispersed outside the pig 
farm. In the set of experiments, a total of 9 samples were done from the month of June 
to October 2021. Specifically, three sets of samples (samples 1, 2 and 3) were collected 
from June 6, 2021, and two samples each from August 11, 2021 ( samples 3 and 5), Sep-
tember 6, 2021 (samples 6 and 7), and October 5, 2021(samples 8,9) as shown in Table 
2. Due to the effect of fluctuating wind environment on the odour dispersion during 
the field experiment, careful observation of wind direction was done before collecting 
odour samples outside the pig farm. For instance, in samples 1 and 2, a constant dom-
inant wind direction must be observed for several minutes before collecting air sam-
ples. This is to ensure that the odorous air was dispersed along the downwind direction 
of the pig farms where sampling devices were installed. In addition to wind direction, 
the wind speed at the selected experimental farm was also observed and the recorded 
wind speed data was used for validating the accuracy of the three-dimensional model. 
However, the wind speed was <0.5 m/s for June and August field experiments which 
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make it very difficult to use as experimental data for model validation. Thus, additional 
field experiments were conducted (samples 6 ~ 9) on the days with higher wind speed 
for a more accurate utilization of data for model validation.

Table 2: Measured odour concentration measured inside the pig building

Date
Odour Concentration (OU/m3)

P1 F1 F2

6-Jun 448.1 448.1 173.2

11-Aug 144.2 448.1 81.8

6-Sep 310 448.1 1442.0

5-Oct 66.9 669.0 2080.0

Average 242.3 503.3 944.3

*P1=piglet; F1=Fattening 1; F2=Fattening 2

In addition to the analysis of field measured data, it was found that both the ammonia 
and odour concentration inside the pig houses varies depending on the age of theani-
mals and exhaust ventilation flowrate (Figure 3). It appears that providing a sufficient 
ventilation rate during a specific period is required to reduce the concentration inside 
the rearing building.

Figure 3: Measured odour concentration measured inside the pig building

(a)  (b)

 (c)
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Validation of three-dimensional model and simulation result
The wind and turbulence profiles were also checked to whether the simulation results 
have the same trend as the theoretical wind and turbulence profile. The result showed 
that in terms of the wind environment using the CFD model is in agreement with the 
theoretical wind profile which states that wind speed increases with the height from 
the surface to the upper troposphere due to the following reasons: 1) pressure gradient 
increases with height; 2) reduced the impact of ground surface friction caused by sur-
face objects such as trees, mountains, buildings and so on which slows down the wind 
speed when collided, 3) air density is higher near the ground surface and decreases 
with the increase of the height. This implies that the wind profile in open terrain will 
recover its original shape at a specific distance when expose to some obstruction. The 
second step of the validation is through comparison of CFD simulated result and field 
experiment data. Shown in Figure 4 is a comparison of model using the field experi-
ment data collected on Septer 6, 2021 with wind speed of 3.0 m/s from East direction. In 
validating the CFD model, various parameters are modified so that the predicted values 
will provide a reasonable result. Especially, the grid size close to domain was modified 
and the surface roughness was adjusted to reflect the actual terrain scenario as close 
as possible. The comparison of the result showed that the model has a r2 value of 0.983 
and RSME valuse of 3.89. This means that the result of the validation is close enough to 
the field measured data.

Figure 4: Sample comparison of field measure odour dispersion and cfd computed results.

Scenario cases
Various cases were also simulated to determine the effect of wind environment to the 
dispersion of odour outside the pig farm (Table 4). Result showed that not only the ex-
ternal environment affected the odour dispersion but it also showed that the amount 
of odour emission plays a vital role. Specifically, those farms (Farm C and D) with higher 
breeding head showed the highest dispersion distance. Similar to the result of Yeo et al 
(2020), the model also showed that a lower dispersion distance is expected at a higher 
wind speed due to the presence of turbulence caused by high wind environment which 
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resulted to the mixing of fresh air and odourous air making it diluted. In the case of 
wind direction, a significant change was observed when the odour is transported at 
a higher terrain compared to those with almost flat terrain. This implies that that el-
evation also greatly affect the transport of odorous air to the nearby community. In 
summary, the impact of the terrain affect the easy transport of odorous air.

Table 4: Sample result of the experimental data.

Wind 
Speed 

Wind 
Direction

Dispersion Distance (m)

Farm A Farm B Farm C Farm D Farm E,F Farm G Farm H Farm I

1.5 m/s
NE 806.2 606.2 891.3 868.3 643 502.3 407.5 813.7

SE 990.3 552.3 1208.2 1191.4 664.1 689.1 519.8 1002.5

2.0 m/s   
NE 708.3 370.1 982.1 956.7 500.6 467.9 385.4 762.2

SE 870.6 455.3 1187.1 1097.1 563.1 576.3 471 987.8

Conclusion
A three dimensional CFD model was developed to predict the dispersion of odour emit-
ted from various pig farms. The model was validated by improving the grid size and 
choosing the appropriate turbulence model.Specifically, in this study, an appropriate 
turbulence model of k-epsilon model was found to show the highest accuracy among 
the different turbulence model available in CFD. Moreover, the surface roughness of the 
terrain to reflect the actual surface of the chosen domain. A scenario cases was also 
made to determine the dispersion distance of odours in accordance to the variation of 
the wind speed. The result of the analysis showed that the effect of the wind environ-
ment (such as wind speed and wind direction) plays an important role on the transport 
of odorous air to the outside environment. Moreover, the inclusion of complex terrain 
also affected the simulation results as it determine ability of odour to be transported. 
In the continuation of this study, the simulated odour dispersion was exported into 
a readable data and was attached to a odour forecasting system.
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Abstract
This study was realized in the frame of the BIOma Project. The main goal was to create 
and develop an innovative precision livestock farming tool to support and reinforce the 
pig value chain. The environmental conditions have a great impact in animals’ welfare. 
Animal welfare can be measured through some behavioural, physiological, productive 
and health indicators. In order to evaluate the impact of the environmental conditions 
in the growing-finishing pigs’ resting behaviour, three experiments, each with 8 fe-
males Piétrain x TN60, were carried out in an environmental controlled room where the 
air temperature (T) and relative humidity (RH) were permanently monitored. A Proxim-
ity Index (P.I) to evaluate the level of the animal’s dispersion in the pen, was developed 
based on artificial vision algorithm. This was possible thanks to the analysis of the im-
ages recorded by video cameras strategically placed in the room. The P.I was represent-
ed on a scale of 0 to 1, where “0” corresponds to the maximum dispersion between the 
animals and “1” corresponds to the maximum proximity. The P.I presented differences 
between all experiments, being higher in cold conditions and lower in hot conditions. 
These results highlighted the influence of the environmental conditions on the resting 
behaviour of pigs. This work is funded by National Funds through FCT - Foundation for 
Science and Technology under the Project UIDB/05183/2020

Keywords: pig welfare, monitoring, environmental conditions, resting behaviour

Introduction
The majority of pig production in the world is realized in intensive systems (90%), char-
acterized by high animal density, using genetically improved breeds and developed 
and industrialized livestock facilities (Rodríguez et al., 2013). In these systems, animals 
are often subject to environmental conditions that can have great impact on perfor-
mance, health and welfare (Cruz, 1997; Gebreyes et al., 2014).

Animal welfare is an expression that tends to resist a strict definition and that can have 
different meanings and interpretations for different people (Madzingira, 2018). Within 
scientific community, there is a clear lack of consensus on welfare definition. In 1996, 
Broom suggested the animal welfare is defined in function of attempts to deal with the 
environment (Broom, 1996; Hewson, 2003; Vieira et al., 2011) and that approach still is 
the most accepted.

In general, animal welfare is related to physical and emotional state produced in ani-
mals due to human attitudes and practices, quantity and quality of available resources 
and environmental conditions in the facilities (Madzingira, 2018).



688 Precision Livestock Farming ’22

Animal welfare can be measured through some behavioural, physiological, productive 
and health indicators (Candiani et al., 2008). Most of these indicators provide informa-
tion that allows to characterize the animal’s status (Broom and Molento, 2004; Martins, 
2020).

Behavioural indicators are based on variations in pig behaviour that can be manifest-
ed by the difficulty in expressing certain movements or in adapting to environmental 
stimuli (Costa et al., 2009).

To deal with environmental conditions, animals adopt some behaviours that contrib-
ute to the thermoregulatory mechanisms. Regarding resting behaviour: when animals 
are in the thermoneutrality zone they adopt a lateral recumbent posture with about 
40-50% of pigs touching each other (Ekkel et al., 2003); when the temperature is below 
the animals’ comfort zone, pigs crowding to prevent heat loss and adopt a sternal re-
cumbent posture to reduce the surface area of the skin exposed to the environment, 
decreasing heat loss. In this situation, it is common for animals to tremble (Costa, 
2015); when temperatures are above the comfort zone, they adopt a lateral posture, 
stretching as much as possible and avoiding contact with other animals, in order to 
expose a greater body surface to a colder surface (floor), in an attempt to lose heat by 
conduction. In hot conditions animals decrease activity (Jones and Manteca, 2009), in-
crease respiratory rate (Linden, 2014) and use available water in contact with the body 
to evaporate, increasing latent heat losses (Cruz et al., 2021).

The main goal of this work was to develop a Proximity Index (P.I) to understand the 
influence of environmental conditions in the growing-finishing pigs’ resting behaviour.

Material and methods

Experimental design
Experiments were carried out in the environmental control room at the University of 
Évora. Three different conditions were defined: Winter (W) – cold stress (trial 1), Ther-
moneutrality (TN) – thermal neutrality (trial 2) and Summer (S) – hot stress (trial 3), 
shown in Table 1.

Table 1: Experimental environmental setpoints

Environmental Conditions Winter (W) Thermoneutrality 
(TN) Summer (S)

Temperature (ºC) 10 ± 2 18 ± 2 30 ± 2

Relative Humidity (%) 80 70 60

In each experiment 8 female pigs of Piétrain x Topigs Norsvin (TN60) genotype were used 
with an initial body weight around 48 ± 3kg. Each animal had 1.5 m2 of area in the pen.  
The animals were identified with an RFID ear tags system and each experiment started 
after 15 days of the habituation period in TN conditions (Tmean = 18 ± 2ºC and RHmean = 
60%) and ended when the animals reached a commercial slaughter weight of around 
95-105 kg live weight.
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Structures and equipment
The animals were housed in a pen with an area of approximately 12 m2 inside the envi-
ronmental control room. The floor was partially concrete covered with anti-slip tactile. 
The pen had a manure pit and was equipped with an automatic feed station and two 
nipple drinking bowl. 

Environmental control was carried out through ventilation, heating and cooling sys-
tems. Ventilation system was compound by two vertical extractors fans. The air came 
into the facility through a false ceiling to protect the animals and left through the ex-
tractors (negative pressure). The heating system consisted of a conventional gas heater. 
The cooling was by a nebulization system.

The environmental control room was equipped with different equipment and technol-
ogies that allowed to record experimental data, which are described in Table 2:

Table 2: Characteristics of the equipment used to record experimental data

Materials Unit. Measurement 
ranges Accuracy

Video camera (Foscam FI9961EP) 6 continuous –

Temperature probe (COPILOT) 4 -10 to 50 ºC ± 0.2 ªC
(resolution 12 bits)

Temperature probe (CapTemp TH3-
Temp OW) 7 -10 to 55 ºC ± 0.5 ªC

(resolution 12 bits)

Relative humidity probe (EE06) 1 0 to 100% RH
± 3% (10 to 90% RH);
± 5% (<10% RH e >90% RH)
(resolution 0.1% HR)

Data collection
Air temperature (T) and relative humidity (RH) was measured and recorded through an 
environmental control system (Webisense) and a data collector (Nidus) which allowed to 
record a high quantity of data simultaneously. These data were collected continuously 
and in real time throughout the experimental period.

Figure 1: Capture of the animals’ pen through video cameras
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The behavioural data was recorded through video cameras strategically placed in the 
room (Figure 1). Video cameras were integrated into the data storage system, which 
made it possible to continuously record and save video images in the cloud for further 
processing.

Proximity Index development
The disposition of the animals in the pen (removal/crowding) was studied through the 
development of a Proximity Index, using video images captured (24h/24h) and an arti-
ficial vision algorithm specifically developed for this purpose. 

This algorithm receives video images and process it frame by frame. The analysis pro-
cess occurred in two phases:

1. Recognition of animals and/or groups: This phase was developed based on the 
work of Nasirahmadi et al. (2015). Using a Delaunay triangulation method (ap-
plied in the software MATLAB), the algorithm searches for shapes that match 
the outline of an animal (elliptical shape) (Figure 2) and records the position of 
each one in the pen. If several animals are in contact, forming a group of ani-
mals, the algorithm also identifies this situation.

Figure 2: Example of pig shape adjustment (Nasirahmadi et al., 2015)

2. Proximity Index calculation: Through the perimeter of each triangle, formed by 
the centre of the identified ellipses, the proximity of the animals was calculated. 
Taking as input the pen area, the total number of animals and the position of 
each one, the algorithm calculates the animals’ proximity index, with the result 
changing between 0 and 1 (Figure 3). A value close to 1 means that the animals 
are all together in a group (1 = crowding) and zero means that the animals are as 
dispersed as possible throughout the entire pen area (0 = removal). 

In other words, the calculation of the P.I. results of an analysis that considers the pen 
area in pixels. With this information, the algorithm competitively assigns values   tend-
ing to 0 if the points (pigs) are further apart or values   tending to 1 if they are closer.
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Figure 3: Animals’ proximity calculation

Results and Discussion
The air temperature, relative humidity and PI data collected during the entire experi-
mental periods were analysed through a descriptive statistical analysis. 

Table 3: Air temperature and Relativity humidity recorded during in the experiments

Winter (W) Thermoneutrality 
(TN) Summer (S)

T (ºC) RH (%) T (ºC) RH (%) T (ºC) RH (%)

Average 12.5 74.5 20.7 74.0 28.9 63.1

Standard derivation (SD) 2.1 6.2 1.5 12.0 1.6 6.9

Maximum (max) 19.4 95.4 24.9 97.3 33.3 90.1

Minimum (min) 8.3 54.5 15.9 43.8 23.2 25.3

*(59 days in winter condition; 65 days in thermoneutrality; 58 days in summer condition)

Through the analysis of Table 3, it is possible to verify that the average temperatures 
and relative humidity recorded inside the environmental control room were in accord-
ance with the work goals (Table 1) and represented real winter, thermoneutrality and 
summer conditions.

The values of the P.I achieved during the experiments are presented in Table 4.
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Table 4: Proximity Index achieved during the experiments

Winter (w) Thermoneutrality (TN) Summer (S)

Average 0.8821 0.7920 0.6502

Standard derivation (SD) 0.1360 0.1449 0.1656

Maximum (max) 1 1 0.9823

Minimum (min) 0.3622 0.3581 0.2828

Legend: 0 = removal; 1 = crowding

According to the Table 4, it is possible to say that the animals were closer in the winter 
condition. This behaviour was expected since the animals tend to be crowding when 
subjected to low temperatures. This behaviour occurs to avoid the loss of body heat to 
the environment that surrounds them (Cruz et al., 2021). The opposite is verified for the 
summer condition, where the lowest P.I values were obtained.

The P.I presented less variation in the winter condition in relation to the thermoneu-
trality and summer conditions (Figure 4), as shown by the lowest SD found in the win-
ter condition (Table 4).

Figure 5 presents the P.I for an average day. This average day was obtained for each ex-
perimental condition, by calculating the mean at 0:00 am; 01:00 am; 02:00; etc.

Figure 4: Average daily Proximity Index in the experimental period
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Figure 5: Proximity Index for an average day 

Through the analysis of Figure 5, it is possible to verify similar behaviour for the 
P.I curves for the three simulated environmental conditions. The highest P.I values were 
recorded during the night period (7:00 pm to 6:00 am). During the daytime (7:00 am to 
6:00 pm), a decrease in P.I. was observed. This behaviour can be explained by the fact 
that the animals tend to remain at rest for a longer time during the night, which leads 
to be closer to each other.

Conclusions
This paper proposed a real-time Proximity Index to evaluate the influence of air tem-
perature and relative humidity in the growing-finishing pigs’ resting behaviour, con-
tributing to the scientific and technological advance of the pig sector.

Through the analysis of the P.I results, it was possible to verify that air temperature 
and relative humidity affect the pigs’ resting behaviour: in hot stress conditions the 
animals tend to removal and in cold stress conditions they tend to crowd. This type of 
analysis makes it possible to understand the thermal comfort level of animals through 
their behavioural mechanisms. 

The P.I developed and based on animal and environment real data proved to be a good 
precision livestock farming tool to evaluate animal welfare, being a non-invasive meth-
od that allows to monitor information continuously and remotely. 
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Abstract
Transparency along the livestock supply chain (LSC) can generate numerous tracea-
bility benefits for stakeholders. Sharing data between actors and processing data into 
meaningful insights can promote data-based decisions, providing the potential to 
boost productivity, improve animal welfare and decrease administrative costs.

Today, few data are shared between different actors along the LSC and existing data are 
often not in sharing-friendly digital format. It is also difficult to define, contractually 
and otherwise, value extraction from data assets, especially as the competitive impact 
of data sharing is poorly understood. A significant challenge related to data sharing is 
lack of a single entity, trusted by all, that can drive digital transformation efforts.

Novel information system architectures, specifically decentralised computing frame-
works (i.e. blockchains, distributed ledger technologies), provide new ways to share 
data and manage contractual agreements around data sharing and data usage. How-
ever, as with any information system, the design of decentralised and/or distributed 
computing frameworks involves several important trade-offs. This study was part of 
a larger project aiming to clarify such trade-offs in the LSC context. 

In this study, information flow in the LSC for beef in Sweden from farm to slaughter 
was mapped. Details of the existing LSC system and associated data needs were ob-
tained in interviews. Visualision of existing data and information flows was used to 
identify changes to improve future information flow.

Keywords: agriculture, agri-food, data sharing, traceability, digitalisation, 
decentralised computing frameworks

Introduction
Transitioning towards more sustainable and resilient food systems is key for the agri-
food industry, and digitalisation is an important driver in transition (Amentae & Ge-
bresenbet, 2021; Lezoche et al., 2020). Digitalisation enables collection of large quanti-
ties of data throughout the supply chain, which can be used to optimise and increase 
efficiency of production and processing in a sustainable way (Eriksson, 2020). An impor-
tant element in improving supply chain operation is integration of information flows. 
According to Buhr (2000), information flows are crucial for successful supply chain re-
lationships and good flows are an important incentive for establishing supply chain in-
tegration. Information sharing creates closer collaboration between actors in the sup-
ply chain (Vickery et al., 2003; Williamson et al., 2004), improves customer satisfaction 
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(Singh, 1996) and increases competitiveness and innovation in the supply chain (Van 
Hoek, 2001). Changes in consumer preferences for information on product origin and 
food safety requirements place demands on businesses to improve their traceability 
systems (Amuno et al., 2018) and integrate information flows across organisations in 
the supply chain so as to significantly reduce disruptions in data flow. 

Sector-specific frameworks may be beneficial in developing effective traceability sys-
tems for the supply chain (Leteane et al., 2021). This study focused on digitalisation of 
the Swedish beef supply chain. The business environment and production character-
istics of Swedish beef production place specific requirements on supply chain infor-
mation flows. For example, there is strong emphasis on downstream information flow 
and traceability, whereas conventional manufacturing industries require upstream in-
formation flow (Schroeder & Hope, 2004). The value chain is also complex and hetero-
geneous, including many small and medium-sized enterprises. A significant challenge 
related to data sharing is the lack of a single entity, trusted by all, that can drive digital 
transformation efforts (Leteane et al., 2021). 

Technologies for tagging, event detection, machine-to-machine communication and 
environmental data collection have increased data availability throughout the entire 
livestock supply chain (LSC). Consequently, data sharing and data-driven decisions are 
now possible at previously unprecedented levels. However, as data assets become val-
uable, conflicts around data sharing and data usage are likely to emerge (Altmann & 
Linder, 2019). There are also unresolved issues around privacy, data protection, rela-
tionships of trust and power, storage, usability, and security (Copa et al., 2018; Zhao et 
al., 2019). Another possible barrier to digitalisation of the beef supply chain is profita-
bility, as actors in the supply chain may struggle to maintain profitability when imple-
menting digital solutions.

This study mapped the information flow in the LSC for beef in Sweden from farm to 
slaughter. Through interviews with actors in the supply chain, the existing supply 
chain and associated data needs were identified. The existing data and information 
flows were then visualised and used to suggest changes to improve information flow.

Material and methods
An exploratory approach was used. First, stakeholders in the Swedish beef supply 
chain, including production businesses, authorities, and organisations with support 
roles, such as breeding companies, veterinarians, consultants, and tech businesses, 
were identified. Representatives from organisations across the supply chain were then 
selected for interviews by purposive sampling, aiming to cover all categories of organi-
sations through the whole information supply chain from farm to slaughter.

A total of 18 interviews were conducted and additional informants were consulted to 
clarify information pathways. Interviewees included representatives of businesses di-
rectly involved in the supply chain (e.g. beef and dairy farmers, animal transporters, 
slaughterhouses), service organisations (e.g. agricultural advisors, veterinarians) and 
organisations with an oversight role (e.g. Swedish Board of Agriculture, Swedish Food 
Agency, certification bodies). Semi-structured interviews were conducted using an 
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interview guide containing questions regarding information the stakeholder sought 
and supplied, type of data collected and stored, and how data were shared between 
stakeholders. The interviews also covered any deficiencies in data sharing, and barriers 
and motivators for sharing data between stakeholders.

Structured qualitative content analysis was used to analyse the interview data. Based 
on the qualitative data, the information flow in the Swedish beef supply chain from 
farm to slaughter was mapped. An alternative information flow, enabled by e.g. decen-
tralised computing frameworks or distributed ledger technologies, was then described, 
as a possible solution to the identified deficiencies while also addressing challenges 
regarding data protection, traceability and transparency. The benefits of such an alter-
native information flow system were assessed.

Results and Discussion
Meat production from cattle has two pathways, via dairy and beef. Both were consid-
ered in this study, but the focus was on meat production and not on data relating to 
dairy production. Many different private and public authorities handle the data gener-
ated in the meat value chain. Figure 1 visualises the complexity of the information flow 
in the beef value chain, with its many actors involved, and how data are fragmented 
between various data formats and databases.

Most of the data generated in the meat value chain are entered manually when they 
first enter the information flow, either through a website or in an on-line decision sup-
port system (DSS). Large volumes of data are generated automatically by dairy produc-
tion systems, some of which may be of use in the meat supply chain. However, in gen-
eral dairy data were not considered in this study. Data requested from authorities are 
entered either directly on an official website or via an on-line DSS passing on requested 
information to the authorities, depending on the farmer’s/producer’s choice. Not all 
farmers use a DSS, and dairy farmers do so more commonly than pure beef producers.  
Such manually entered data may result in a data trust issue, as there is a possibility 
of loading inaccurate data or false data into the system, creating a risk of a mismatch 
between physical product condition and data in the digital information system (Letane 
et al., 2021).

All producers and veterinarians need to be registered in different databases in order 
to enter data requested from the authorities. In Sweden, two national authorities (the 
Board of Agriculture and the Swedish Food Agency) request information from the value 
chain. On regional scale, the 21 County Administrative Boards conduct local checks 
on compliance with legal requirements. The National Veterinary Institute, the Swed-
ish eHealth Agency, municipal monitoring bodies and several other authorities check 
compliance with legal requirements or use the information in an expert or service 
body role to provide information to other authorities or the public. All data generated 
by veterinarians are strictly regulated by EU legislation, with strong confidentiality re-
garding data sharing. Veterinary data are only shared with farmers and some required 
data with authorities.
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Today, information is often shared between fewer actors than needed for efficient in-
formation flow and a competitive value chain. The quality of the information may dif-
fer if it is entered on a form in pdf-format or on a web-portal checking compliance with 
requested information. In particular, information generated by veterinarians, including 
essential information on medical treatments, may vary in quality.

When asked about the sensitivity of the information they generate, farmers men-
tioned information on unhealthy animals and treatments given to these animals and 
expressed unwillingness to share production expert knowledge. Information on treat-
ments can be difficult to communicate to consumers and farmers did not consider it 
relevant for sharing with consumers, due to the risk of misinterpretation. Regulations 
on the use of antibiotics differ between countries and are very restrictive in the EU and 
especially in Sweden, where treatment at group level and preventive treatment are pro-
hibited. Marketing meat as ‘antibiotic-free’ may have negative effects, such as failure to 
treat sick animals or implying to consumers that there may be residues of antibiotics 
in meat from treated animals. Regarding specific information on production, farmers 
stated that they had worked hard for their knowledge and saw no benefits in sharing 
information on their best practices with other farmers, as this might reduce their own 
competitiveness. If they were to share this information with anyone, it would be by 
visualising their production in figures directly to customers. 

Figure 2 shows current and desired information flows between actors in the beef value 
chain, as identified in interviews. In the current situation there are deficiencies in the 
upstream information flow of the supply chain, as the focus has been on hygiene and 
product safety. However, both upstream and downstream information flows are crucial 
for efficient supply chain management (Schroeder & Hope, 2004). Much of the informa-
tion handled by one authority is not available for other authorities. It can sometimes 
be made available on request, but not on a regular basis. This is especially true of infor-
mation between the Swedish Board of Agriculture and Swedish Food Agency, an issue 
that the authorities are working to resolve. Many actors in the beginning of the value 
chain wanted more knowledge on consumer demands and preferences. These actors 
included farmers, breeding companies, calf producers who sell their animals (Farmer 
1 in Figure 2) and farmers raising the animals to slaughter weight (Farmer 2). Farmer 1 
producers also wanted access to information on quality and food safety findings gen-
erated in abattoirs. In order to improve or specialise their production, some farmers 
wanted information from meat processers and restaurants on the quality they require 
and their views on the quality of meat they receive from the farmer.

In the next part of the project, we will develop a technical solution using decentralised 
computing frameworks to resolve data sharing issues, including security, privacy, and 
control of data. The road map to utilise blockchain in the defined flows will comprise 
various components that are coordinated with each other, to serve traceability, security 
and privacy features. Solutions will be implemented in the form of a generic data-shar-
ing platform where a wallet will hold core credentials, and a generic digital gateway 
will act as a single point of data exchange on every stakeholder premises. In addtion, 
the platform will be integrated with blockchain infrastructure to develop trust between 
all stakeholders in the supply chain, such as farm owners, veterinarians, authorities, 
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transporters and slaughterhouses. Blockchain can increase the integrity of transaction 
information and privacy of enterprise information and improve the efficiency of the 
whole value chain system (Zhao et al., 2019). 

Figure 2. Present and desired information flow between actors in the beef value chain.

Conclusions
This study mapped information flow in the Swedish beef supply chain from farm to 
slaughter and devised an alternative map built on trusted information pathways. Infor-
mation flow in the beef supply chain is very fragmented, with private and public actors 
of different sizes providing data in various formats stored in separate databases. The 
focus so far has been on sending more information downstream in the value chain. 
There are strong arguments for sending information back along the chain, but current-
ly limited possibilities to actually do so, hindering the development of business models 
based on upstream information. Interview responses revealed lack of trust between 
stakeholders, with no single trusted entity for handling a common database. However, 
there is potential for new information flows to be facilitated through trusted and se-
cure information sharing enabled by blockchain and distributed ledger technologies. 
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APPENDIX 1: Key to data points, type of actors, type of information, and storage in the 
information flow depicted in Figure 1

Item Actor Information recorded Format

1 Local authority 
(LA)

Producers’ production number, address, type of 
production. Database

2 Authority (A) New cow ID, entered from DSS or directly on web 
page.

DSS/Animal 
database

3 Laboratory Genome result from ear sample of cow, sent to 
farmer. DSS

4 Authority (A)

Records of animal movement, from farm to 
grazing or from farm to abattoir. Animal ID, sex, 
time to transport, production site, reason for 
transport.

DSS/Animal 
database

5 LA
LA reports animal welfare inspections to 
a Control Register. Information saved in database 
at A. Animal Health Law (AHL)

 Database

6a Vet. service Information generated from farm visits on 
unhealthy animals and treatments. Database

6b Pharmacy Antibiotics sold to type of animal Database

6c A Validates treated animal ID against Animal 
Database.

cloud service/
e-service

7 Vet. service Conditional drug usage delegated to farmer. Database

8 LA Check by clinical veterinarian Database

9 Hoof-trim. 
service

Farmer enters information about hoof-trimming 
activities. DSS

10 Dairy transport Information related to milk logistics and quality Database

11 Laboratory Analysis of bacteria, cell count and presence of 
antibiotics (or spores). Antibiotics reported to LA. DSS

12 Animal 
transporter Animal ID, time of transport Abattoir DSS/ cloud 

service

13a A
Postmortem (PM) findings and decisions in 
meat inspection (PMI), decisions in antemortem 
inspection (AMI).

Abattoir DSS

13b A AM and PM findings on animals and meat from 
official reports. Database

14 Large abbatoir Meat classification according to EUROP Abattoir DSS

15 A AM and PM findings on animals (AMI) and meat 
(PMI) inspections. Database

16 Small abbatoir Meat classification according to EUROP scale Database

17 A Calibration of EUROP classification Html to A

18 Vet. service Sampling animals Database

19 A Sampling meat Database
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Abstract
Expectation of increasing productivity, profitability and sustainability on dairy farms 
on behalf of farmers and consumers meets many challenges. Sensor technologies have 
the capability to address this by provision of real-time information for more astute deci-
sion-making on-farm. This Pilot Study aims to create a template for installation, manage-
ment and use of these sensors and the data generated from them in farm management 
decision-making. Six ‘Ambassador Farms’ were initially selected within the peninsular 
catchment area of Dingle (Ireland).The sensors were installed using LoRaWAN com-
munication. The sensors were chosen based on the importance of their respective and 
combined data for decision-making on Irish dairy farms and cost effectiveness. They 
included technologies that continuously recorded milk/slurry volumes, weather condi-
tions (e.g. rainfall, air temperature), soil moisture as well as the Decision Support Tool 
‘Pasturebase’ for grassland management, and a nutrient management plan. Validation 
of the sensors was conducted. The framework for capturing and monitoring the data, 
analysis and interpretation is on-going. The ultimate aim is to use the information gen-
erated by the data, e.g. grass growth rates, milk production, soil characteristics, rainfall, 
volume of slurry usage, etc. to increase precision in decision-making, thereby improv-
ing production efficiency while reducing environmental impact in farming. The pilot 
study demonstration platform is currently being rolled out to 30 farms.

Introduction
Dairy farms in Ireland are currently challenged with finding implementable solutions to 
improve sustainability, in terms of environmental issues, labour demand and availabil-
ity, herd management and welfare, while also improving profitability (Kelly et al., 2020). 
Precision livestock farming (PLF) incorporating digital technology presents a strategy 
with potential to address these challenges. Berckmans (2017) defined PLF as the integra-
tion of deployed hardware such as sensors and software systems on farms in order to 
extract information that help in subsequently generating insights which inform busi-
ness decisions. The validity and viability of PLF as a framework that could support sus-
tainable food production in terms of farm and supply chain performance improvement, 
along with task automation and compliance has been substantiated by Eastwood et al. 
(2021). However, Eastwood and Renwick (2020) have also addressed the limited under-
standing of how the use of smart farming technologies can be translated into effective 
use in the farming sector. While sensors may be considered as the foundational pillars 
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of a PLF framework and collect significant volumes of data, Bahlo et al. (2019) have high-
lighted that current PLF systems often utilize these datasets in a siloed manner for sin-
gular use-cases. The additional benefit is when different datasets can be integrated, e.g. 
allowing a farmer to predict grass growth as well as have current measured data, thus 
ensuring improved management of grass and performance of the system.

The motivation behind this project was informed by the need to equip dairy farmers, in 
the Republic of Ireland, with data and insights that inform holistic business decisions. The 
Farm Ambassador Programme was an initiative involving the local farming community 
located on the Dingle Penninsula in the southern part of Ireland. This programme aimed 
to investigate the feasibility, application and impact of digital technology in the farm-
ing business. The overall vision was to integrate smart technologies into pasture based 
farming systems, be they dairy, beef or sheep production with the objective of improving 
farm management, and ultimately have a positive impact on environment, profitability 
and lifestyle for the farmer. This was based on the premise that better and more precise 
management decisions can be made with the availability of ‘real time’ data from these 
smart technologies.  But this data has to be captured, managed and used appropriately. 

Material and methods
Six dairy farmers signed up to this Farm Ambassador Pilot Programme within the penin-
sular catchment area of Dingle, and a network of sensor technologies was put in place on 
the farms. This allowed ‘real-time’ automated monitoring of various aspects of the farm, 
e.g. grass and milk production, weather and soil. The sensors were installed using Lo-
RaWAN communication technology. The sensors were chosen based on the importance of 
their respective and combined data for decision-making on farms, and cost effectiveness.

Figure 1: A range of deployed sensors

The six Ambassador Farms in the pilot study each had 11 different sensors deployed. 
These sensors measured the height of milk and slurry in their respective tanks, grass 
parameters, soil temperature and soil moisture. The remaining 6 sensors measured 
weather parameters such as: wind speed, wind direction, rain fall, air temperature, 
atmospheric pressure and relative humidity. The sensors measuring weather variables 
were attached to a sensor array on the Libelium Waspmote as shown in Figure 1, a sen-
sor device for Internet of Things (IoT) applications. The sensors sent Unix timestamped 
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values every 15±3 minutes to a cloud server managed by a local Information Technolo-
gy (IT) partner. All the sensors used in this project were provided by Smart Agri with the 
exception of soil moisture sensors from Sensoterra. Other data sources integrated into 
the architecture included grazing data from PastureBase (https://pasturebase.teagasc.
ie). Figure 2 shows the real time data architecture implemented in the study.

Figure 2: Data architecture of the study

Results and Discussion
In order to add value to the data and increase its utility, the captured data from each 
sensor should be examined individually and also in association with linked data. Data 
captured included milk volume on an hourly basis together with tanker collection 
times. The milk volume readings were validated on e.g. 3 occasions/week by matching 
the farm bulk tank readings with the collection tanker reading (Figure 3). Thus, morn-
ing, evening, daily and weekly milk production was available for the farm. 

Figure 3: Milk volumes compared for farm bulk tank and collection tanker
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Thus the individual farm milk production level could be examined on a weekly, daily or 
morning/ evening basis at a specific time point or on a continuous basis over a defined 
timeframe. It could also be used to benchmark the farm against other farm groups of 
similar size and management criteria or in comparison with appropriate targets. This 
milk sensor represents an inexpensive milk meter, whose output data may be associ-
ated with paddock data, e.g. herbage mass (HM) and grass growth rate (Figure 4), and 
with weather data, with a view to observing association between these parameters, 
and subsequently using those associations to predict what options should be taken in 
terms of management, e.g. allocation of grass to livestock. This is important as grazed 
pasture can make a contribution to dairy cow feeding systems but it’s management 
can be challenging in parts of Europe (Hennessy et al., 2020).

LU = Livestock unit; MS = Milk solids

Figure 4: Grassland management parameters

Farmers were asked to do a farm walk weekly, record grass cover and upload this data 
to the ‘PastureBase’ decision support tool (https://pasturebase.teagasc.ie). The interac-
tion of these data can be used to optimise and ensure more precise decision-making 
regarding grass allocation (Figure 5). 

Furthermore, the grass data may be considered in conjunction with the weather data 
(Ruelle et al., 2018). Herbage mass/ha is a valuable parameter that may be used to ad-
vise on recommended time for fertilizer/ slurry application and to match grass growth 
rates to weather.  Soil moisture can also be related to weather. Slurry tank volume data 
can indicate slurry production rate and days of storage remaining in the tank. This 
data, together with weather data and soil moisture may be used to advise on applica-
tion/ spreading dates. Finally, the nutrient management plan developed for each farm 
details the fertility index of the soil and indicates the varying requirements for lime, N, 
P, K in the different paddocks, which in turn, facilitates nutrient management planning 
in terms of targeted application rates, thus minimizing wastage and potential environ-
mental issues. 
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Figure 5: A ‘wedge’ developed within the PastureBase decision support tool

This work is continuing with respect to data analysis and obtaining maximum ben-
efit from the data captured. Plans are now in place for progressing this work further 
and scaling up to 30 additional farms. This is made possible through partnership in 
a recently funded EU project (PLOUTOS). Decision making criteria will be developed 
through a co-creation process with farmers, technology providers and data analysts. 
These will be embedded in an online dashboard tool giving the farmer real-time ac-
cess to information to support decision making. A further key aspect of this phase will 
involve looking to commercial models in terms of how the solution be packaged, deliv-
ered and implemented at scale. 

Conclusions
This project is basically about getting maximum value from real time data on rele-
vant parameters, captured using appropriate measurement systems, and modelled to 
generate decision support systems to ensure improved decision-making and precision 
management. This approach using smart farming technology can also provide evi-
dence-based attributes for the farming system, such as traceability, sustainability and 
low environmental impact, and that, in turn, would support a high market value for the 
farmers produce and facilitate a brand for farm products from the Dingle Peninsula. 

Lessons learned from the work so far include: (a) the technologies must be relevant, 
appropriate and cost effective, and operate as required; (b) data management is a sig-
nificant part of the work incorporating building of databases, storage, data flows, au-
tomated checking and appropriate data combining for analysis; and (c) a necessity for 
support and training of farmers in the interpretation and use of the decision support 
tool output.
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Abstract
In the discussion on the increasing demand for food, which is to be met by efficient and 
sustainable increases in productivity, animal welfare is becoming increasingly impor-
tant. Animal health issues must be identified to prevent epidemics that significantly 
impact the economic performance of farms or even cause societal harm.

The use of cutting-edge technologies (IoT, sensors, Big Data processing, etc.) is in-
creasingly enabling early intervention in livestock farming to curb productivity loss-
es through real-time monitoring, alerts, and decision support. The ubiquity of these 
technological solutions has enabled stakeholders to create more robust agricultural 
supply chains, that deliver sustainable nutrition for a growing population. However, the 
increasing use of Artificial Intelligence (AI), which is responsible for many of the cur-
rent breakthroughs in Precision Livestock Farming (PLF) and agriculture in general, has 
meant that modern decision-support solutions have increasingly transitioned toward 
black box systems. It has become apparent that a gap exists between efforts to develop 
more advanced machine learning models, and the growing demands for ethical assess-
ment and transparency in agriculture decision-making. 

Explainable Artificial Intelligence (XAI) is one such solution that could prove effective in 
overcoming the current limitations of black-box models, by allowing the decision-mak-
ing process of such models to be explored. Through a literature review, we evaluate the 
potential of XAI in various agricultural use cases and demonstrate the potential bene-
fits of its application to precision livestock management.

Keywords: Artificial Intelligence (AI), explainability, animal welfare, farm 
management, monitoring.

Introduction
In agriculture, Artificial Intelligence (AI) has attracted great interest in both research 
and industry. AI is commonly defined as “simulated human intelligent behavior such 
as learning, judgment, and decision-making” (Caiming Zhang, 2021). In line with this 
definition, AI has enabled breakthroughs that until recently could only be achieved by 
humans.

Its ability to provide high accuracy classification and decision support has enabled 
breakthroughs in Precision Livestock Farming (PLF), Smart Farming, and many optimi-
zation and monitoring tasks. The addition of cheap Internet-of-Things (IoT) technology 
has further enhanced the abilities of AI, enabling large volumes of unstructured data to 
be collected with relatively little effort. 
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In this context, ML has helped distinguish AI from other traditional methods, such as 
the use of threshold and rule-based modelling. In contrast to these, ML offers the ability 
to make predictions as well as aiding in important decisions for livestock farms based 
primarily on learning models from real-world data, enabling actionable information 
and knowledge to be extracted from the ever-increasing and diverse pool of available 
data sources (e.g., image, video, sound, text, etc.) (Unal, 2020). The ability of ML algo-
rithms to learn directly from firsthand observation has translated into reduced costs, 
labor optimization, and better-improved decision-support for the farming community.

These benefits have been exemplified by the application of AI in the form of ML and 
now Deep-learning (DL) in PLF, which has provided timely and comprehensive knowl-
edge to farmers through animal monitoring, behavior classification, disease predic-
tion, and personalized management-support (J. Pomar et al., 2011; Mathieu Marsot et 
al., 2020). Although the adaptation of AI in agriculture has provided considerable break-
throughs, it is not without challenge or opposition. From being considered unreliable 
and impractical in critical applications, to even delivering irreversible wrong results, 
due to the black box nature of the involved algorithms, assessing such characteristics 
is often impractical. 

As AI research focuses increasingly on improving the accuracy models at the expense 
of increased complexity (Gunning, 2016), it is sometimes difficult to find application 
of the technology in socially sensitive domains, due to the ethical concerns of unex-
plainable decision processes. To address some of these issues and encourage the use 
of AI technologies, we have proposed the use of Explainable Artificial Intelligence (XAI), 
which attempts to explain and interpret highly complex machine learning models. Al-
though commercialization of XAI in agriculture is still a challenge, there have been 
several attempts to create working XAI solutions (i.e., SHAP, LIME, CXplain) that can ex-
plain a wide range of AI models. XAI-techniques such as LIME, taking a human-centric 
focus, seeks to justify machine decisions by describing the model within a few critical 
use cases (Gunning, 2016). Therefore, this paper explores the main issues that arise in 
the application of AI in the livestock supply chain. 

To this end, we use a literature review to create an initial set of exemplary use cases 
that highlight the trust requirements in AI-based PLF. The resulting use cases will then 
be used to explore the inclusion of explainability, to demonstrate how the use of XAI in 
PLF-AI is a prerequisite for building trust with the agricultural community. 

Material and methods
This paper follows the PRISMA framework to conduct a thorough review of the avail-
able literature to identify the aspects of livestock farming in which AI has made an 
improvement and what AI technologies are currently being used, as well as discover if 
there are already any cases where explainability is being used to solve problems (i.e., 
ethical assessment, fidelity, reliability in technology) in agriculture. In this context, the 
following issues will be analyzed: i) How does XAI affect the interaction between the 
human factor in the farming communities and the technologies they use; ii) How can 
we improve AI-models and overcome their failures when using them in critical decision 
processes; iii) To what extent does the use of machine learning affect animal welfare 
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and challenges. The assessment of these questions will be made through exploring the 
different directions of AI in agriculture, which are currently being researched. Further-
more, a guideline of possible use-cases of how AI can be supplemented by XAI can be 
implemented in livestock farming to overcome the limitations imposed by complex AI 
models and the difficulties that their application in the industry faces. The most pop-
ular topics in agricultural-AI will be discussed and through them an analysis of impact 
will be derived.

Results and Discussion

Overview
A review of current AI research in precision livestock farming identified the following 
terms, which give an overview of Agri-AI applications and key research directions. The 
phrase “Smart Farming” is used in a broad sense to refer to the application of informa-
tion technology or AI in agriculture. A sub-area of smart farming is the application of 
these technologies in livestock farms, which is referred to as precision livestock farm-
ing. For the use of AI in precision livestock farming, we have identified three main ar-
eas: animal monitoring, sustainability, and farm management. In animal monitoring, 
the monitoring of behavior, feeding, and constant body measurements are included. 
These dependencies are as shown in Figure 1. 

Figure 1: Core application areas of Agri-AI in precision livestock farming

Classification of behavior in livestock can be used to conduct performance classification 
which results in optimal management of resources (Reza Arablouei et al., 2021). Since 
extensive monitoring via human labor can be considered almost impossible, the use 
of AI methods and IoT technologies to collect, process, and interoperate animal behav-
ior is an extremely efficient and attractive substitute in livestock enterprises. Another 
key issue that AI  adoption can address is deep learning-based face recognition and 
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tracking, enabling remote identification that can replace chip implants, which can be 
costly and labor intensive to attach (Mathieu Marsot et al., 2020). Animal identification 
is an important procedure used for the personalized management of individual ani-
mals, especially in areas such as behavior assessment, disease detection, performance 
monitoring, and certification (e.g., Farm-to-Fork, etc.) (Mathieu Marsot et al., 2020).

Example use cases we have identified in machine learning applications for health as-
sessment. One use-case that demonstrates how ML can be used for the classification 
of feeding behavior and, by extension, the health assessment of pigs utilizing pat-
tern recognition and signal processing (José O. Chelotti et al., 2018; Berckmans et al., 
2017).  Research on such topics has clearly shown that physiological variables, if as-
sessed correctly can provide valuable indicators for welfare issues (B. B. Odevci, 2021). 
By leveraging AI and its sub-domains ML and DL, models can be created that not only 
allow monitoring and classification of these variables, but also predict their future val-
ue. However, using these predictions to aid in farm management comes with several 
challenges, which will be discussed in the following section. 

Challenges
Complex systems where processes and entities are not well understood need inter-dis-
ciplinary knowledge. Many of the methods used in agricultural applications of AI are 
“black-box” models which offer a high accuracy rate but with the trade-off of being 
non-transparent regarding their internal logic and decision-making process. Explain-
able Artificial Intelligence can tackle this problem by offering solutions which bridge 
such an interdisciplinary gap. XAI is a technology that creates a good cross-domain 
environment where domain experts can be incorporated directly into the model evalu-
ation and validation processes. Precision Livestock Farming is a good example of a field 
that includes many researchers and professionals from differing backgrounds and thus 
could benefit greatly from a technology that initiates better understanding and trans-
parency of models for all parties involved.

If the potential of AI is to be fully realized in the PLF community, there should be a cer-
tain level of trust built between the stakeholders and the technology that they are 
using. According to Steeneveld W. et al. (2017), farmers are hesitant to incorporate new 
technologies into their practices unless they are in more mature stages of development 
and fully reliable. AI has difficulty being applied in farming communities unless it fully 
addresses user concerns. Developing XAI systems that give full transparency in their 
decision-making processes offers more certainty and justified reliability (Marco Tulio 
Ribeiro et al., 2016) to the people who are using them. Since model trust, reliability, and 
fidelity are the main obstacles to the adoption of more Machine Learning technologies 
in agriculture, use-cases from other domains that successfully utilize XAI to achieve 
AI-integration could serve as a template for agriculture (Tjoa et al., 2021). 

Therefore, a literature review on the implementation of XAI in non-agricultural do-
mains was conducted. This review found that in human medicine and manufactur-
ing the three most common applications of explainable artificial intelligence are used, 
namely environmental sustainability, diagnosis of disease, and classification. XAI is 
used for assessing environmental parameters and explaining the effect of phenomena 
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on environmental sustainability. The next main utilization of XAI is in the field of 
health, more precisely in explaining the results of a diagnosis. XAI is commonly used 
for the classification of different events or objects, but the most relevant application to 
livestock can be found in research on behavior classification. Table 1. shows the three 
main topics where XAI has been successful in solving issues when adopting AI in de-
cision critical systems.

Table 1: Explainable Artificial Intelligence applications

Application Domain

Environmental Sustainability Manufacturing

Diagnosis of Disease Medical

Classification Manufacturing, Medical

In nearly all the reviewed agricultural literature, the problems outlined, and solutions 
presented clearly lack the involvement of XAI.

The need to improve decision-making in the healthcare field can be exemplified in 
(Lamya et al., 2019), where XAI is used to assist in making a diagnosis and prescribing 
medicine for breast cancer. They argue that this approach enables the user to under-
stand the decision-making process of the AI model and how it diagnoses cancer, with 
it being suggested that the user could verify the model’s decision by comparing output 
against their own personal knowledge. In a study by Sappagh et al. (El-Sappagh et al., 
2021), an explainable AI model is proposed that promises to overcome the difficulty of 
adopting machine learning systems for Alzheimer’s disease detection in clinical practic-
es. Looking at other critical domains, XAI is used to bridge the gap between the research 
efforts toward improving AI models and their implementation in practice. AI models 
face many issues and although accurate, are not seen as the most reliable tool, this is 
illustrated by examples identified in the aviation sector, where the introduction of com-
posite components has led to a considerable increase in the amount of time needed 
to classify defects in the production line, here Neural Networks are suggested to help 
increasing efficiency. However, understanding the features which contribute to model 
decision itself can provide valuable knowledge, therefore more interpretable models are 
proposed (Meister et al., 2021) as a method to increase Neural Networks utilization in 
practice, providing both a method to evaluate and investigate learned patterns.

While in many other sectors, due to the importance of explainability, XAI has been the 
answer to several issues, in farming enterprises AI-models that have been implement-
ed or proposed are accompanied with almost no explanation about their predictions 
or how they work. The relevance of model explainability in livestock farming can be 
seen in several concrete use-cases that deal with crucial farming management deci-
sions, methods like deep learning and artificial neural networks alone cannot be used 
in these cases because they are difficult to evaluate.
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To illustrate the potential benefits of XAI, two PLF use-cases were derived based on XAI 
examples found in the medical and environmental domains.

1. Explanation in culling decisions: there are many examples (Anna Markella An-
toniadi et al., 2021; Tjeerd A.J. Schoonderwoerd et al., 2021) in the medical domain 
where XAI-driven solutions have been proposed for critical decision-making 
processes. Model validation is a requirement that is currently lacking in the ad-
aptation of machine learning systems in farming decisions. In PLF this could be 
meaningful when utilizing AI for high-cost decisions such as culling, which are 
complex and ambiguous in nature, requiring a model with high reliability and 
logical coherence (Saleh Shahinfar et al., 2014).

2. Feed intake monitoring: animal nutrition is a key factor in environmental sus-
tainability (A. Cerisuelo et al., 2020). Feeding ingredients determine the environ-
mental impact, performance, and health of animals, but precise results on how 
ingredients impact such KPIs can only be measured by collecting continuous 
data on farms using sensors as well as software that predicts outcomes based 
on this information. By using explainable AI based personalized feeding sys-
tems, the negative impact on the environment can be reduced by increasing the 
digestibility of feedstuffs or controlling gut health. XAI offers the opportunity 
to see which features have been the most influential in decision-making and 
explain for example the tradeoff of cost and environmental impact of selection 
and management of feedstuffs.

Another challenge that hinders the wide-spread adoption of AI in agriculture is that 
it is not perfect, if the model is fed with bad data it could lead to wrong correlations 
and invalid decisions. Mistakes in this aspect can be very costly and make the systems 
unreliable. Bias detection is something that can be achieved using XAI (Iam Palatnik De 
Sousa et al., 2021), by identifying bias in a model XAI has the potential to allow the do-
main expert to assert any failure mode and minimize any potential damage that might 
arise from applying incorrect findings. In this approach, the user has an oversight over 
the decision-making process of these AI systems.

Conclusions
XAI can be a viable solution for precision livestock farming, as it has the potential to 
solve many of the limitations proposed by AI and even encourage the application of 
AI in agriculture by building trust among stakeholders. In this paper, we provide an 
overview of major issues of Agri-AI today, the challenges and limitations that AI poses 
due to its complexity and non-transparency, and how XAI can be used to solve many 
of these problems. XAI improves the interaction between users in the agricultural com-
munity and artificially intelligent machines by building trust and reliability. Offering 
reliability through explanations of “black-box models”, exploiting the capacity of ex-
plainability to aid the creation of more complete models that do not lead to unexpected 
or undesirable results in, while enabling model validation, which is currently missing 
in the agricultural domain, create some of the foundational reasons why XAI can hold 
great potential to improve aspects of PLF. 
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Abstract
Facing the manifold sustainability challenges (GHG emissions, eutrophication, social 
welfare, etc.) in livestock farming, Digital Twins can help farmers to use available feed 
and nutrients efficiently, monitor livestock health, and control emissions to air, soil, 
and water. Combined with current precision livestock farming (PLF) technologies, Dig-
ital Twins (DT) enable real-time monitoring, simulation, and automation capabilities 
through real-world models and a two-way flow of information. As current applications 
are mostly focused on closed and highly regulated systems, this paper investigates the 
systemic challenges and associated design implications of DTs in complex PLF set-
tings. By integrating a STES (social-technical-ecological system) design approach, the 
authors argue to foster design strategies that serve sustainable livestock governance 
and enable a sound and flexible basis for balancing associated engineering require-
ments such as privacy, security, ethics, and inclusion. We will use a qualitative assess-
ment approach, discuss multi-disciplinary requirements for Digital Twins, and consol-
idate them in a high-level road-map.

Keywords: Digital Twins, Sustainability, Precision Livestock Farming, Technology 
Assessment, Systemic Challenges

Introduction 
A Digital Twin (DT) is a virtual representation of a product, process, or environment 
with a bilateral exchange of information. By incorporating novel advances in Artificial 
Intelligence, IoT (Internet of Things), big data analytics, cloud, and edge computing, 
Digital Twins use the enhanced capacities of data storage, processing, and visualization 
to track, predict, and optimize the behavioural traits of its subject. Current successful 
applications of Digital Twins can be found particularly in closed and controlled envi-
ronments such as industrial and engineering fields (Erol et al., 2020; Ibrion et al., 2019; 
Uhlenkamp et al., 2019). As the processes in these settings are easier to monitor and 
the external variables are limited, the reduced complexity allows faster development 
of robust DT models and therefore, a higher return of investment (Neethierajan and 
Kemp, 2021). 

Recent reviews have been conducted to summarize the potential benefits of DTs for 
precision livestock farming (PLF) such as risk reduction, enhanced flexibility, and effi-
ciency gains (Neethierajan and Kemp, 2021; Pylianidis et al., 2021). The same research 
also highlights the novelty of DTs and the so far limited number of prototypes in pre-
cision livestock farming, but also in other dynamic biological and ecological systems. 
Although first promising results have been achieved in more open environments 
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(Pylianidis et al., 2021; Ford et al., 2020), swift progress is hindered by the many design 
challenges that arise by working with different stakeholder needs and complex mul-
ti-variate systems causing a high degree of uncertainty, as well as through different 
and sometimes conflicting objectives (e.g., cost-reduction vs. animal well-being, ani-
mal health vs. ecological footprint, model fairness vs. model accuracy).  

By connecting the biophysical realm with the virtual domain (models) under the pre-
requisite of stakeholder needs, the design of a Digital Twin is inherently co-depend-
ent on ecological, social, and technological parameters. Therefore, sound development 
must refer to the individual requirements and standards of each perspective, but also 
include the complex feedback mechanisms that result from the practical application of 
DTs. To achieve this, the authors introduce a socio-technical-ecological systems (STES) 
approach (Ahlborg et al., 2019) for DTs that guides the incorporation of the manifold 
human-environment relationships in the design and development phase. By highlight-
ing the systemic requirements that come with such an integrated approach, we aim 
to display some of many needed aspects for fair, inclusive, reliable, and sustainable 
technology development. As a complete overview of all possible challenges would go 
beyond the scope of this paper, we will highlight and exemplify design aspects that 
specifically address prominent effects of complex STES systems such as cascading er-
ror propagation, single points of failures, or unwanted emergent behaviour of DTs, but 
also foster multi-value effects for achieving sustainability from various perspectives.

Material and methods 
This paper is following a Requirement Engineering approach, with its primary focus to 
generate a set of multi-disciplinary and inter-systemic requirement specifications that 
represent stakeholder needs (Braun et al., 2015). As defined by the IEEE (2010), require-
ment will be interpreted as the condition or capability of a system or a person to solve 
a certain problem or to reach an objective. In the scope of this paper, the objectives 
are defined in the results section and represent exemplified systemic interdependen-
cies that arise through STES dynamics. Therefore, the requirement analysis follows 
a STES framework introduced by Ahlborg (et al., 2019) to analyze i) how technologies 
shape specific human–nature relations and with what consequences, for whom, and 
where; ii) how emergent pressures in complex socio-technical-ecological systems are 
interlinked and; iii) how intentional and unintentional technical mediation may result 
in ambiguous outcomes and feedbacks. The preliminary and potential systemic impli-
cations of different Digital Twin designs will be assessed by literature review. This will 
be complemented by incorporating known systemic risks of the fundamental tech-
nologies Digital Twins are based on. Thus, the qualitative assessment is practice-in-
spired, focusses on generalizing Digital Twin design requirements based on the various 
systemic threats and opportunities in PLF settings, and formulates the next steps for 
generating sustainable DT designs as a roadmap.

Results and Discussion 

Challenges 
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Digital Twins incorporate a wide range of novel technologies to achieve high-fidelity 
virtual replication and optimization through the consolidation of large volumes of re-
al-time data from distributed sources, simulation-driven insights, and feedback mech-
anisms which enables the user to replicate and manage entities with complex life cy-
cles (Jones et al., 2020). As the DT is optimizing the biophysical realm set by the user’s 
goals, the level of precision and success to achieve these goals is directly and indirectly 
linked to ecological and social feedbacks (see figure 1 and table 1) as well as to the 
capability of the DT design to process and display such (e.g., its visualization of infor-
mation, automated management strategies). Therefore, the DT is in the very center of 
various dependencies, with the goal to mediate individual feedbacks and requirements 
(legal, technical, social, ethical, etc.). Because of its virtual and physical entanglement, 
it is extremely difficult to define external and internal boundaries of a Digital Twin. 
Defining challenges, requirements, and goals of DTs without acknowledging the inter-
twined feedback mechanisms will ultimately lead to designs that lack the flexibility, 
adaptability, and processing capacities to handle uncertainty and to manage complex 
real-world systems sustainably. 

Figure 1: This representation shows the extended system boundary of a Digital Twin to capture the 
physical and virtual entanglement as well as the direct and indirect coupled dynamics that govern it.

As DTs build on the capacities and flaws of existing technologies, its hyper-connected 
design not only inherits those systemic connections (Fuller et al., 2020), but further 
intensifies existing dependencies. If not addressed properly in the early design phase, 
Digital Twins may accelerate current attitudes and barriers of PLF technology adoption 
such as the lack of trust and usability, the fear of a low return on investment, issues of 
interoperability, privacy, and security, as well as concerns about complexity and exter-
nal dependencies (Boothby and White, 2021, Makinde et al., 2020; Drewry et al., 2019). 

Following a STES approach, we distinguished the systemic dependencies of Digital 
Twins in the form of social, technological, and ecological perspectives and associated 
challenges (see table 1). As Digital Twins are at the intersection of all three areas (and 
many more), some dependencies can be assigned to several perspectives at once (such 
as data vendor lock-in). To avoid duplication, we chose to display certain dependencies 
only once and exemplify categories in more detail below. 
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Table 1: An exemplified overview of categorical dependencies that need to be examined to create 
sustainable Digital Twins and design strategies to manage systemic effects.

In order to balance qualitative attributes like usability, maintainability, and legal ad-
herence, social dependencies and interactions based on stakeholder incentives must 
be carefully explored. As many design aspects are driven by individual economic in-
centives, the deployment of DTs has the potential to accelerate prominent issues of 
data ownership, maintenance responsibilities, and the balance between scalability and 
use-case specific design (Fuller et al., 2020). Centralized data storage at the vendor site 
(Vendor-Lock in), infrastructure and technological know-how monopolization, and the 
primary focus on multi-user design and cash-crops, can lead to unwanted system-
ic effects that ultimately hinder sustainable farming (see table 1). Without carefully 
balancing the needs, incentives, and dependencies of the stakeholders, profit-driven 
DT design could increase single-points of failures, loss of crop diversity, lack of trust 
in technologies, and societal imbalances. The technological design must therefore ac-
knowledge social feedback mechanisms and enable a careful balance of values without 
further deepening existing dependencies.  

On the technical side, a critical aspect of Digital Twin designs is the automated infor-
mation flow, data processing, or even decision making (Mallinger et al., 2021), which is 
often based on machine learning models. An unfit design might incorporate unknown 
biases (by insufficient modelling of use-case domains such as lack of health metric 
incorporation to enhance productivity) that can reinforce unwanted effects of animal 
production (animal mismanagement and lower yields) by algorithmic feedback loops. 
This situation is being aggravated by the combination of multiple and co-depended 
machine learning models that focus on individual but interconnected aspects of the 
animal and its environment. As the explainability and transparency of a single model 
is already very limited (Birhane et al., 2021), building a Digital Twin that exchanges 
data between multiple models and then uses model outputs further as input for other 
models, correlations, and calculations, creates an incredibly complex information flow. 
These direct and hidden machine learning dependencies lower the transparency of the 
system and in turn effect maintainability, error tracking, and may lead to unwanted 
emergent effects and feedback processes (Sculley et al., 2015).



722 Precision Livestock Farming ’22

Within its ecological environment, the DT is inherently linked with its physical entity/
subject by monitoring and adjusting the state based on predefined goals. Therefore, 
any changes on either side (virtual or physical) create feedback mechanisms that alter 
the state of both. This is further complicated, as the DT farming environment is not 
a closed system. Any changes on the subject may lead to unforeseen systemic or even 
cascading effects of its environment. Designing algorithms and data streams without 
carefully assessing the individual DT environments, can therefore lead to direct or hid-
den feedbacks and unwanted emergent effects (Ibrion et al., 2019). Creating algorithms 
and architectures that are flexible enough to cope with such uncertainties and enable 
robust but also cost-efficient redeployment is therefore one of the biggest systemic 
challenges for sustainable DT development.

High-level roadmap
Balancing these interdependent social, technical, and ecological requirements is vital 
to truly realise multi-stakeholder Digital Twins in agriculture and Precision Livestock 
Farming. As such, the following high-level roadmap in the form of core milestones is 
outlined:

Milestone One: The alignment of Precision Livestock Farming use-cases and technol-
ogies. The arrival of low-cost sensors, cloud computing, and Artificial Intelligence has 
enabled considerable automation in animal monitoring, and other time-consuming 
tasks (e.g., automatic feeding, calving detection, etc). Although, many of these sys-
tems sit in isolation and data is often used for bespoke applications or singular deci-
sion-making tasks (Jayaraman et al., 2016; Neethirajan & Kemp. 2021) we can say with 
certainty that Digital Twins for Precision Livestock Farming are feasible (Jo et al., 2018). 
Limited examples in the area demonstrate that research has not fully matured, as the 
applications which do exist often mirror the technological use-case on which they are 
built (Neethirajan & Kemp. 2021; Verdouw et al., 2021).  To fully leverage the benefits 
of Agricultural and PLF Digital Twins, data from multiple use-case dependant sources 
should be collected, combined, and modelled. Although these benefits are easily jus-
tified, a more complex task is the reconciliation of intermediate dependencies that 
must first be overcome to enable these benefits. These include questions pertaining 
to data privacy and processing. AI models are by their very nature data dependent, 
and farms are privately owned complex non-uniform environments. Therefore, data 
privacy and data processing should be considered a prerequisite for large scale data 
collection, owning to the sensitivity of the domain. For example, stakeholders may 
want to keep ownership or at least control over sensitive data, avoiding vendor-lock-in 
or undesirable data use. An initial step might be to research data management ap-
proaches which satisfy these privacy concerns, while allowing models to be leveraged 
for other purposes, or even by other stakeholders. Federated Machine Learning could 
be one such solution, allowing models to be shared while maintaining data sovereignty 
and privacy (Ramu et al., 2022). However, these consideration and requirements must 
be investigated in full and appropriate solution found for true use-case alignment and 
data consolidation to take place.

Milestone Two: Model modularity, fidelity & validation. Current examples of Digital 
Twins for PLF are tightly coupled in terms of design, technology, and use-case. An effect 
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of this is that validation, and by extension assessment of model fidelity, is often com-
plex and non-trivial, or overlooked entirely. Expert validation, although adequate for 
proof of concept and other simpler applications, can lead to significant problems as 
applications grow in scale and complexity. As current methods do not adhere to con-
crete methodologies or metrics by which an analytical comparison can be effectively 
and efficiently made, it will become increasingly difficult to identify models which ac-
curately ensure fidelity, both in unknown and adverse conditions. To overcome these 
issues, methodological protocols and key performance metrics must be developed to 
ensure comparability through a set of concise design requirements, enabling standard-
ised approaches for in-depth assessment and understanding of model behaviour and 
limitation. Such requirements and approaches could enable both decision-safety and 
ethical concerns to be assessed, and undesirable model behaviour to be mitigated. 

The widespread availability of pre-validated modularised and standalone (i.e., single 
use-case) models would further facilitate such goals. These models would provide us-
ers with measured and known failure modes and expected behaviour, allowing Digi-
tal Twins to be developed safely and quickly for new applications without needing to 
undertake cumbersome validation processes (Mahmud et al., 2021; García et al., 2020).

Milestone Three: A FAIR Digital Twin Framework, the FAIR (Findability, Accessibility, 
Interoperability, and Reuse) principles are ubiquitous in the world of data, forming the 
conceptual underpinning of current state-of-the-art data management and open sys-
tem design methodologies (Research Data Alliance, 2020). The Digital Twin as a concept 
is uniquely positioned to gain significant value from the FAIR methodology.  If modular, 
validated, and use-case aligned Digital Twins are to be fully leveraged, their accessi-
bility to industrial practitioners and the wider research community is a prerequisite. 
A methodological design framework which adheres to the FAIR principles would be 
a logical next step in this process. Although the value of such a framework is immedi-
ately evident, developing and implementing the required standardised methodological 
approaches may prove a formidable and complex challenge, requiring the integration 
and assessment of not only technological criteria, but social, privacy and ethical re-
quirements. The involvement of these distinct and intersecting groups must be en-
sured, if coherent and applicable guidelines are to be developed and widely adopted. 

Conclusions 
Digital Twins in agricultural settings are specifically prone to various risks (e.g., sin-
gle points of failure, cascading errors, unwanted emergence) due to their manifold 
technological, ecological, and social dependencies. Without proper management, the 
systemic implications of those risks negatively impact various design requirements 
simultaneously (e.g., reusability, scalability, maintainability, privacy, security, ethical, 
etc.) and ultimately, hinder technology adoption. Therefore, defining key design char-
acteristics and management techniques that acknowledge these complex feedback 
mechanisms and enable flexible and robust DT development are key for sustainable 
farming, specifically in PLF settings. The authors acknowledge that these interdiscipli-
nary challenges cannot be met by design decisions alone and are a matter of extensive 
regulatory efforts. Nevertheless, early identification of STES requirements can serve 
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as a multiplier effect for technological and ecological sustainability and foster an en-
vironment for balancing economic and ecologic incentives. To achieve this, we iden-
tified three milestones that are necessary to manage systemic dependencies and lay 
the foundations for sustainable DT development. Firstly, the alignment of Digital Twin 
use-cases, requirements, technology and definitions with those of Precision Livestock 
Farming (PLF). Secondly, standardised criteria for the development and validation of 
subsequent models. Finally, the creation of a FAIR principle driven design framework 
which promotes Digital Twin accessibility.
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Abstract
Lactation persistency gets increasing attention, and previous studies stated persistent 
cows are more profitable. These studies were however at cow level, and associations 
might differ from herd level as other herd factors are interfering with herd economic 
performance. Additionally, for other lactation curve characteristics (magnitude, time to 
peak yield) no economic evaluation is performed yet. Our objectives were to 1) present 
a procedure to aggregate cow lactation curves into herd lactation curves (herd mag-
nitude, herd time to peak yield and herd persistency); 2) investigate the association 
between herd lactation curve characteristics and herd economic performance. Lon-
gitudinal Dutch data (8 years) on milk production and accounting of 1,673 herds were 
evaluated. Cow lactation curve characteristics were summarized to weighted medi-
an herd lactation curve characteristics on a calendar year basis, for primiparous and 
multiparous cows (P1 and P2+). Data was analyzed using linear mixed modelling, with 
income over feed cost (IOFC) per cow as dependent variable, herd lactation curve char-
acteristics and other herd variables as independent variables. Results indicated all herd 
lactation curve characteristics were associated with IOFC, except for time to peak yield 
for P1. All were positively associated with IOFC, except for the negative association 
with time to peak yield for P2+. In conclusion, we defined herd production patterns by 
aggregating the cow lactation curves into annual herd lactation curves for P1 and P2+. 
Associations between IOFC and the various herd lactation curve characteristics were 
deemed logical and interpretable, suggesting that the herd level aggregation was valid. 
More research is required to determine when herd economic analysis can be based on 
simple peak production or M305, or in which circumstances the more computationally 
challenging herd lactation curve characteristics are better suited.

Keywords: lactation curve, dairy cow, herd economics 

Introduction
A lactation curve model can quantify the lactation curve shape for a single lactation 
of a dairy cow and consists of various lactation curve characteristics which describe 
the curve in different ways. The classic Wood model (Wood, 1967) is the most common 
lactation curve model, inspiring certain improvements and innovations (e.g., Wilmink, 
1987). The Wood model consists of the scale (representing the level of production), the 
ramp (representing the rising rate of milk production up to the peak level) and the de-
clining slope (Wood, 1967). The MilkBot model adjusts the Wood model with extended 
lactations (Ehrlich, 2011). In MilkBot, scale and ramp are similar to the Wood model but 
include other characteristics - the estimated time between the start of milk synthesis 
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and calving (offset) and the rate of late lactation decline (decay) - which can be trans-
formed into a measure of persistency (Ehrlich, 2011). 

Persistency is an important lactation curve characteristic describing the cow’s ability 
to maintain a slow rate of decline in production after the peak (Wood, 1967). Persis-
tent cows have increased milk yields, improved conception rates, extended productive 
lifetimes and decreased culling rates (Dekkers et al., 1998; Hadley et al., 2006; Togashi 
et al., 2016). The economic consequences of persistency have mainly been evaluated 
with bio-economic simulation models (Dekkers et al., 1996, 1998). Empirically, econom-
ic analyses have only included feed costs (Sölkner & Fuchs, 1987). Both normative and 
empirical studies have shown that cows with higher persistency are more profitable 
(e.g., Dekkers et al., 1998; Němečková et al., 2015). 

To our knowledge, only Němečková et al. (2015) have presented empirical economic 
evaluations of other lactation curve characteristics (ramp, scale) besides persistency. 
Their study evaluated only 80 dairy cows from one herd. As lactation curve character-
istics are only available at the cow level, economic evaluations (both empirically and 
normatively) were all performed at the cow level (Dekkers et al., 1998; Němečková et al., 
2015; Sölkner & Fuchs, 1987). However, associations found at the cow level might differ 
at the herd level as other herd factors (e.g., management, herd size) can interfere with 
the herd’s economic performance. Economic evaluations of lactation curve character-
istics at the herd level need a valid aggregation of cow lactation curve characteristics. 
Such a herd lactation curve needs however to be summarized on a calendar year basis 
as only then it is possible to combine it with economic data, which is often expressed 
at a calendar year. This will, however, be challenging as individual cow lactation curves 
often belong to multiple calendar years. Aggregating methods from cow to herd level 
lactation curves, on a calendar year basis, have not previously been described.

This study aimed to 1) present a procedure to aggregate cow lactation curves into herd 
lactation curves (herd magnitude, herd time to peak yield and herd persistency); 2) 
investigate the association between the herd lactation curve characteristics and the 
economic performance of dairy herds.

Material and methods

Available data
Milk production data at the test-day level and herd level performance data for the years 
2007 to 2016 were obtained from the Dutch Cattle Improvement Cooperative (CRV, Arn-
hem, The Netherlands). Originally, the cow test-day data included 159,173,868 test-day 
records from 6,710,117 cows in 20,760 herds. All test-day records included general cow 
information (e.g., birth date, calving date, parity, health status), milk yield (kg) and milk 
component (protein and fat percentage). At the cow level, days in milk (DIM), age in 
days and calving intervals were calculated for every lactation. Herd level performance 
data contained annual averages of somatic cell counts (SCC), calving intervals, age in 
days and the 305-day milk production level (M305). 

Herd accounting data from a Dutch accounting agency (Flynth, Arnhem, The Nether-
lands) was obtained. The data represented 2,058 herds with 18,108 yearly records from 
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2008 to 2015. The herd accounting data included annual information on all revenues 
(e.g., milk, livestock), fixed costs (e.g., depreciation, maintenance costs) and variable 
costs (e.g., feed costs, breeding costs, health costs), as well as on general herd charac-
teristics (e.g., soil type, herd size, milking system). 

Development of herd lactation curve characteristics
We used the cow test-day data to calculate herd lactation curve characteristics. First, 
we fitted a lactation curve for each lactation with the MilkBot model using a propri-
etary maximum likelihood fitting algorithm by the DairySight fitting engine (Ehrlich, 
2011). The MilkBot equation is shown as:

 (1)

in which Y(t) is the estimated milk production when DIM is t, and a (scale), b (ramp),  
and d (decay) are lactation curve characteristics describing the lactation curve. As c 
(offset) is practically undetectable without daily milk production records at the begin-
ning of lactation we decided not to use offset. In the current study, a (scale) was re-
named magnitude of milk production (in kg day-1), b (ramp) was renamed time to peak 
yield (in days), and d (decay) was transformed into a measure of persistency using the 
equation (Ehrlich, 2011): 

 (2)

Persistency (in days) is the time needed for milk production to drop by half after the 
peak. 

After fitting, every lactation had a set of three lactation curve characteristics (magni-
tude, time to peak yield and persistency). Two parity groups were defined: primiparous 
and multiparous cows. To summarise herd lactation curve characteristics on a calendar 
year basis, we used a weighted method as the partitioning method to deal with lac-
tations in multiple calendar years (Figure 1). Lactations belong to every calendar year 
with a specific weight relative to the number of test-day records. Using the number of 
test-days as weight, the contribution of the lactation for different calendar years was 
calculated. For example, cow A started a lactation in 2008 and finished in 2009. This 
lactation had 5 test-day records in 2008 and 3 in 2009. Suppose there were n and m 
test-day records in total from all lactations in 2008 and 2009 in the herd, in which cow 
A belonged. Then cow A’s lactation curve characteristics would contribute 5 / n to the 
herd lactation curve characteristics in 2008 and 3 / m in 2009. Using the number of test-
days as weight, weighted medians were calculated per parity group per herd for each 
calendar year. 

To include only complete lactations for aggregation to herd level, we excluded herd 
level calculations for the first record year (2007) and last record year (2016), resulting in 
273,322 records from 20,000 herds. 
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Figure 1: Example of how to aggregate herd lactation curve characteristics from individual cow 
lactation curve characteristics illustrated for persistency.

Data management
We defined several additional variables based on the accounting dataset. First, income 
over feed cost (IOFC) was calculated as total milk revenue minus total feed costs (Wolf, 
2010), and was expressed per cow. Secondly, the relative yearly herd milk price was cal-
culated as the difference between herd milk price and the Dutch raw milk price for the 
corresponding year. Finally, the equity ratio was calculated as the total equity divided 
by the total assets. The expansion rate was calculated as:

 (3)

 The yearly herd accounting data of 2,058 herds were merged with herd lactation curve 
characteristics (n = 20,000 herds) and herd performance data (n = 20,760 herds) for the 
corresponding years. This merging was possible for 1,887 herds and resulted in a da-
taset of 12,849 yearly records from 2008-2015. We first excluded 184 yearly records as 
they were not consecutive ( < 2 years consecutive). Secondly, we excluded herds selling 
milk products on farm (direct sellers) and organic herds (153 yearly records). We also 
excluded extremely small herds (herd size < 1% percentiles; 126 yearly records). Finally, 
extreme outliers and records with missing values were excluded (1,578 yearly records). 
The final dataset included 1,673 herds with 10,808 yearly records.  

Statistical analysis
Using IOFC per cow as the dependent variable, we developed a linear mixed model to 
analyse the association between herd economic performance and herd lactation curve 
characteristics. Apart from the lactation curve characteristics, other variables (e.g., soil 
type, equity ratio, milking system) were selected as independent variables based on 
an expected association with IOFC per cow. Multicollinearity between several varia-
bles was checked using variance inflation factors. A year variable was forced into the 
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model as a fixed effect to account for potential year effects (e.g., absolute milk price 
differences). A herd variable was entered into the model as a random effect to account 
for unobserved herd-related heterogeneity (e.g., environment, feed management). In 
order to compare the strength of the effect of each individual independent variable 
to the dependent variable, we standardised continuous independent variables. Akaike 
information criterion (AIC) and backward selection were used to find the best model. 
The conditional R2, the marginal R2 and the part R2 were calculated to describe the vari-
ance explained by the entire model, the fixed effects and a single variable, respectively. 
Data editing and analysis were performed using the Python API for the Spark platform 
(PySpark) and R version 3.6.3 (R Core Team, 2020), respectively. 

Results and Discussion
This study presented a procedure to summarize individual cow lactation curves into 
herd level lactation curve characteristics per calendar year. Aggregating lactation 
curves fitted from data aggregated by DIM or pooled milk production data from all cows 
within groups has been applied previously (Dematawewa et al., 2007; Vargas et al., 2000). 
This method was, however, not applied in our present study, since a lactation curve 
from aggregated milk recording data would neglect individual cow variation (Ehrlich, 
2013). Therefore, we fitted every lactation curve first and subsequently summarized the 
cow lactation curve characteristics to create annual herd level lactation curve charac-
teristics. In this case, all information of cow lactation curves is available, which allows 
analysis of both inter-lactation and intra-lactation variability. It makes a better under-
standing of the variance of cow level lactation curve characteristics possible, opening 
possibilities to explore differences within and between herds. 

Table 1: Distribution of annual herd lactation curve characteristics from weighted median method 
for primiparous cows (P1) and multiparous cows (P2+).

Lactation curve 
characteristics

P1 P2+

Mean (SD) Q11 Q3 Mean (SD) Q1 Q3

Herd magnitude (kg day-1) 34.3 (4.08) 31.8 37.1 45.9 (5.85) 42.5 49.8

Herd time to peak yield (day) 29.6 (0.44) 29.4 29.9 22.0 (1.25) 21.9 22.5

Herd persistency (day) 373 (82.3) 316 417 255 (38.8) 229 277

1Q1 and Q3: The first and the third quartile

Average herd lactation curve characteristics are presented in Table 1. Herd persistency 
was on average 373 and 255 days for primiparous and multiparous cows, respectively. 
As in previous studies, primiparous cows tend to have higher persistency than multip-
arous cows (Gengler, 1996) and we found the variance of herd persistency was higher 
in primiparous cows as well (Table 1). Mean milk weights calculated for each DIM were 
often used when making aggregate lactation curves (VanRaden et al., 2006). Previously, 
median and mean milk weights were aggregated for each DIM to describe aggregated 
curves for different dairy breeds and parities. These median and means were howev-
er based on normally distributed data, and therefore mean and median curves were 
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similar in all cases (Ehrlich, 2011). We demonstrated that for a skewed distributed var-
iable, like persistency, using median was an appropriate way to aggregate to herd level 
lactation curve characteristics as the variance was smaller. 

Table 2: Results of the final reduced linear mixed model on the association between herd lactation 
curve characteristics and income over feed cost per cow (€).

Variable β S.E. P value

Intercept 2,436.7 5.93 < 0.001

Primiparous cows Magnitude 48.0 3.13 < 0.001

Time to peak yield 1.1 1.85 0.600

Persistency 14.1 2.44 < 0.001

Multiparous cows Magnitude 152.9 3.77 < 0.001

Time to peak yield -5.2 1.98 0.010

Persistency 66.4 2.87 < 0.001

Year 2008 Ref1

2009 -593.1 5.41 < 0.001

2010 -225.0 6.45 < 0.001

2011 80.7 5.86 < 0.001

2012 -248.4 6.46 < 0.001

2013 119.6 7.06 < 0.001

2014 188.1 6.45 < 0.001

2015 -492.6 7.20 < 0.001

Milking system Conventional Refc

Automatic 14.2 0.030

Herd size -16.1 3.44 < 0.001

SCC -23.1 2.10 < 0.001

Equity ratio 6.4 2.55 < 0.001

Herd intensity  -13.9 2.82 < 0.001

Calving interval -22.1 2.14 < 0.001

Relative herd milk price 149.0 2.32 < 0.001

1Ref: This category is used as a reference category in the regression analysis.

The results of the final reduced linear mixed model to estimate the associations be-
tween IOFC per cow and herd lactation curve characteristics are presented in Table 2. 
All herd lactation curve characteristics were associated (P < 0.01) with IOFC per cow, 
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except for the time to peak yield for primiparous cows. Apart from the negative associ-
ation with time to peak yield for multiparous cows, all estimated coefficients were pos-
itive, indicating that an increased lactation curve characteristic was associated with an 
increased IOFC per cow. The standardised coefficients indicated that for multiparous 
cows, herd magnitude had a larger effect on IOFC per cow than it did for primiparous 
cows. Increasing one unit of magnitude for multiparous and primiparous cows corre-
sponded to a €152.9 and €48.0 increase in IOFC per cow, respectively. Of this model, the 
conditional R2 and the marginal R2 were 88.9% and 76.6%, respectively. Herd lactation 
curve characteristics explained 14.0% variance of IOFC per cow, 88.9% of which was 
explained by multiparous cows. 

Magnitude was most strongly associated with IOFC per cow among the herd lactation 
curve characteristics of both parity groups. This was expected, as, of all lactation curve 
characteristics, herd magnitude has the highest correlation with M305 (Ehrlich, 2013) 
and M305 explains most milk revenues (Demeter et al., 2011). Herd persistency of both 
parity groups was positively associated with IOFC per cow. These results correspond 
with earlier findings (Dekkers et al., 1998; Němečková et al., 2015; Sölkner & Fuchs, 
1987), with previous studies also mentioning persistency as an important economic 
parameter (De Vries, 2006; Togashi & Lin, 2009). Time to peak yield was least associated 
with IOFC per cow in our study. This was expected because of the weak phenotypic cor-
relation between the rising rate of milk to the peak yield and M305 (Atashi et al., 2020; 
Elahi Torshizi, 2016).  

Lactation curve characteristics for multiparous cows were more strongly associated 
with herd economics than those for primiparous cows. The herd magnitude of multipa-
rous cows was positively associated with IOFC per cow. Multiparous cows have a higher 
milk production compared to primiparous cows (Cole et al., 2012); they generally make 
up 60-70% of the dairy herd and are thus the main milk suppliers of the herd. 

Conclusions
In this study, we defined herd production patterns by aggregating the individual cow 
level lactation curve characteristics to a yearly herd level for primiparous and multip-
arous cows separately. The associations between IOFC per cow and the various herd 
lactation curve characteristics were deemed logical and interpretable, suggesting that 
the herd level aggregation was valid. More research is required to determine when herd 
level economic analysis can be based on simple peak production or M305, or in which 
circumstances the more computationally challenging herd lactation curve character-
istics are better suited.
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Abstract
This study evaluates the ability of using cow and herd parameters from the early stage 
of lactation to predict milk yield and culling in an extended lactation as well as to 
predict yield and metabolic disorders in the early part of the subsequent lactation. 
This study is part of an ongoing project with the overall aim of developing a meth-
od to identify the most and least suitable cows for extended lactation within a given 
herd at an early stage. The study is based on routinely recorded data. A total of 680,000 
calvings from 2016 and 2017 from cows in herds with milk recordings in the Danish 
Cattle Database were included. A two-step Lasso regression procedure was used. The 
predictions were done separately for primiparous and multiparous cows and for dif-
ferent breeds. Here results from Danish Holstein are reported. Calving interval, calving 
age, calving month, calving ease, previous lactation yield and persistency, dry period 
length combined with early lactation data on disease, milk yield and treatments are 
tested as cow level predictors. Mean herd yield, mean culling rate of cows in the same 
lactation are included as herd level predictors. Using only data until day 40 in lactation 
allows prediction of mean yield per day of lactation (kg energy-corrected milk (ECM)) 
with a root mean square error of prediction of 2.4 kg for primiparous cows and 2.8 kg 
for multiparous cows and R2=0.68 and 0.72, respectively. The most important predictors 
are cow yield in early lactation and herd yield level. Area Under the receiver operating 
curve (AUC) for predicting cows leaving the herd after first insemination and before 
a new calving were 0.63 and 0.67 for primiparous and multiparous cows, respectively. 

Keywords: Extended lactation, yield, reproductive management strategy

Introduction
Extending the voluntary waiting period is a dairy herd management strategy, which 
may benefit farmer economy and greenhouse gas emission (Kok et al., 2019)the number 
of calves and the related labour for farmers. This study aimed to assess the impact of 2 
and 4 months extended lactations on milk yield and net partial cash flow (NPCF. Many 
cows are capable of maintaining a high milk yield throughout lactation (Arbel et al., 
2001; Lehmann et al., 2016)it is vital for the success of extended lactation practices that 
cows are able to maintain milk yield per feeding day when the length of the calving 
interval (CInt.  Delaying pregnancy improves both persistency (Niozas, Tsousis, Malesi-
os, et al., 2019) and reproductive performance (Niozas, Tsousis, Steinhöfel, et al., 2019). 
Studies suggest that the optimal calving interval might be different for individual cows 
(Lehmann et al., 2017; Burgers et al., 2019). Lehmann and colleagues (2017) suggested to 
combine information from early lactation production with information of previous and 
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current reproduction, disease and animal welfare to predict which cows are suitable for 
extended lactation.  

However, an actual method for selecting individual cows suitable for extended lacta-
tion is lacking. This study is a part of a project aiming to design a method for selecting 
cows that are suitable for extended lactation. The project consists of both a randomised 
field study of extended lactation in 48 Danish dairy herds and an analysis of routinely 
recorded data from the Danish Cattle Database. This study focuses on method devel-
opment using data from the Danish Cattle Database. Our focus is predicting: milk yield 
per day of calving interval (Clint) in the extended lactation, culling risk before next 
calving, yield at the beginning of the next lactation, and health problems at the begin-
ning of the next lactation, in all cases using information from the previous lactation 
and the first 40 days of this lactation. Predicting yield per day of Clint considers the 
longer lactation period and fewer days dry for cows with extended lactation length 
(Burgers et al., 2021). Another part of the project focuses on predicting reproductive per-
formance and the lactation curve, especially yield at the end of an extended lactation.

Materials and methods
All data included in this study were obtained from the Danish Cattle database (SEGES 
Innovation, Skejby, Denmark). Data selection criteria were as follows: Every cow that 
calved in 2016 and 2017, where the cow was alive minimum 40 days after calving and 
where at least 30 cows within the herd had a subsequent calving in the herd. Herds 
were required to be active (December 2020) and participate in milk recording with 
a minimum of 11 milk recordings/year, use artificial insemination (AI) for at least mul-
tiparous cows, defined as at least 90 % of the calves having an AI-bull as father. Herds 
with more than 50 days between 1st and 2nd AI or less than 35 % pregnant at first AI or 
more than 70 % pregnant at first AI where excluded.  

Cows that were moved to another herd before next calving and cows that aborted in 
this or next lactation were excluded. A total of 681,301 calvings met the above require-
ments. Finally, calvings with abnormal production result were excluded, e.g. cows 
younger than 18 months or older than 42 months at 1st calving or an ECM yield below 2 
kg in the first 40 days of lactation. The final data included 679,493 calvings across 1,609 
herds. 

Features
The following features were considered in all prediction models; cow factors incl. 
breeding values, gestation length, season of calving expressed in months, calving dif-
ficulties, milk yield, somatic cell count and content of milk at the last milk recording 
before day forty, milk yield and content relative to standard/expected milk yield at the 
last milk recording before 40 days of lactation, treatments grouped by illness, and herd 
factors, e.g. relative production of the herd. 

For multiparous cows (parities>1) the prediction models also considered; yield, somatic 
cell count and content of milk in lactation before, length of dry period and yield and 
somatic cell count at the last two milk recordings before drying off.
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Except for the models for culling, all models included an effect of length of calving 
interval. The models for culling instead included an effect of days from calving to first 
insemination. 

As a starting point the models for yield included 60 features for primiparous cows and 
86 features for multiparous cows.

Model building 
Model building was done separately for primiparous cows and multiparous cows and 
separately for the breeds Danish Holstein (DH) and Jersey. Results are reported on DH. 

Calvings from 01/01/2016 to 30/06/2017 were used as training data, and the models 
were tested on calvings from 01/07/2017 to 31/12/2017. This matches the way the pre-
dictions will be used in the future, where we would have information until a certain 
timepoint (in lactation) and want to predict the near future. 

Predictions were both made using Random Forest as an example of a Tree ensemble 
method and Lasso Regression as an example of a linear regression shrinkage method. 
Results were compared using the coefficient of determination (R2) and the root mean 
squared error of prediction (RMSEP) on test data for numeric responses and using AUC 
for binomial responses. Models were implemented in R (version 4.1.2; R Foundation for 
Statistical Computing, Vienna, Austria). For all models except one, Lasso Regression 
gave the lowest RMSEP and AUC, therefore only Lasso Regression results are reported. 
In general, there were only small differences in prediction errors between the different 
models.

The Lasso regression was implemented using the R package glmnet. Lambda was cho-
sen with a 10-fold cross validation to the largest value such that the error was within 1 
standard error of the minimum (lambda.1se). The most important variable from a mod-
el was found comparing the standardized coefficient. Predictions were made with 
a two-step procedure. First, a full model without interactions was run, then a model 
with the 10 and 15 most important variables including interactions was run. Missing 
observations were imputed as mean value. 

Results and Discussion
A two-step Lasso Regression with interactions in nearly all cases produced the lowest 
RMSEP, and the results from that model are reported. However, the difference in RMSEP 
between different models were very small, therefore, for an implementation meant to 
be used by farmers, the method is quite robust in case one or more features are not 
available. One may also consider a more simple and transparent model. 

Generally, the variables that were included in the final models were the ones we would 
expect from biological and agricultural knowledge. As an example, Figure 1 shows the 
15 variables with the highest standardized coefficient (most importance) from the Las-
so model without interaction for the model for yield in ECM per day of Clint for multip-
arous cows. The variables can be grouped in ones describing; yield in the beginning of 
this lactation; average production in the herd; yield in the lactation before (average and 
at dry off); Clint both now and in the lactation before; and breeding value for yield and 
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persistency. Many of these properties are the same as found in other studies (Lehmann 
et al., 2017; Burgers et al., 2019).

Figure 1: Variable importance for the prediction of yield in ECM per day of calving interval for 
multiparous DH cows. From Lasso-model without interactions. 

Figure 2: Variable importance for the prediction of risk of culling multiparous DH cows. From the 
Lasso model without interactions. 
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Figure 2 presents the 15 variables with the highest standardized coefficient (most im-
portance) from the Lasso model without interaction for predicting the risk of culling 
multiparous cows. The yield of the cow also was important here, but as expected, av-
erage risk of culling in the herd, parity of the cow, somatic cell count, treatments for 
different diseases and breeding index for longevity also had an influence.    

Altogether, the Lasso model was capable of predicting 68 % of the variation in ECM per 
day of Clint for primiparous cows and 70 % of the variation in ECM per day of Clint for 
multiparous cows (Table 1). The RMSEP was higher for long lactation than for short 
lactation, 8 % and 6 % for primiparous and multiparous cows, respectively. The models 
for yield in the early part of the next lactation where capable of predicting 41 % of the 
variation both for multiparous and for primiparous cows. Expectedly, the prediction 
error was relatively higher in the early part of the next lactation than in this current 
lactation, because there is a calving in between.  

Table 1: Number of observations in training (N train) and test data (N test), RMSEP and coefficient of 
determination for prediction of yield in ECM per day of calving interval and yield in ECM in the first 
150 days in the next lactation. 

Response N train N test RMSEP R2 RMSEP long 
Clint (>400)

RMSEP short 
Clint (<400)

ECM per day of Clint, 
primiparous cows 90,400 32,309 2.36 0.68 2.48 2.29

ECM per day of Clint, 
multiparous cows 132,724 51,610 2.76 0.72 2.88 2.71

ECM first 150 days next 
lactation, primiparous cows 90,709 32,425 5.18 0.41 5.53 5.03

ECM first 150 days next 
lactation, multiparous cows 121,347 47,228 5.60 0.41 5.80 5.51

The AUC for predicting culling after first insemination and before a new calving with 
a Lasso model were 0.63 and 0.67 for primiparous and multiparous cows, respectively, 
see Table 2. The AUC for predicting metabolic diseases were a little higher. Only insemi-
nated cows were included in the calculation of AUC. This may explain the relatively low 
AUC, because a cow is usually not inseminated, once the farmer has decided that it will 
leave the herd before next calving.    

To improve the predictions, one option is to try to match cows from herds with short 
and long Clint to obtain a more balanced data set. However, the best option to improve 
the predictions is probably to include features with new information. An obvious de-
cision would be to add daily milk measurement from robot milking systems or from 
milking parlours to the milk recording data. 

In the future, when farmers are going to make decision based on these predictions, 
as few features as possible to relate to will be preferable. Therefore, we may decide 
to weigh the different properties in a combined index. The weights of the different 
properties should be determined by how important the different properties are from 
an economic point of view, how important they are for the farmers faith in the index, 
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and how certain we are on the predictions made. The results of this study may serve 
as a basis for this. 

Table 2: Number of observations in training (N train) and test data (N test) and AUC for prediction of 
cows leaving the herd after first insemination and before a new calving and for metabolic diseases 
in the early part of the next lactation.

Response N train N test Mean risk (%) AUC

Culling risk before new calving, primiparous cows 113,843 40,661 13.9 0.63

Culling risk before new calving, multiparous cows 193,578 76,262 26.8 0.67

Risk of metabolic diseases in first 150 days next 
lactation, primiparous cows 98,093 35,137 4.8 0.65

Risk of metabolic diseases in first 150 days next 
lactation, multiparous cows 142,274 55,567 17.7 0.69

Conclusions
This study is a part of a project that aims to develop a method for selecting cows suita-
ble for extended lactation as decision support for farmers. A two-step procedure using 
Lasso regression was used to make predictions models for yield per day of Clint, yield 
in early part of next lactation, culling risk, and risk of metabolic disorder in early part 
of the next lactation. Only routinely recorded data available by day 40 in lactation were 
used in the predictions. The models for yield in the whole lactation had the highest 
accuracy. The most important predictors of ECM per day of calving interval were cow 
yield in early lactation and average herd yield. Adding data from daily milk recordings 
is likely the best way of improving predictive performance.   
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Abstract
We evaluated the performance of three oestrus detection methods (visual detection, 
oestrus detection patch (“Oestrus-patch”), and behaviour monitoring ear tag (“Elec-
tronic ear-tag”) in dairy heifers across three housing systems (bedded-pack, free-stall, 
and pasture). Thirty-six Holstein heifers were enrolled. Heifers were fitted with an 
eletronic ear-tag and randomly assigned to a housing system in a 3x3 Latin Square. 
Blocks were 29d and included two weeks of housing habituation followed by oestrous 
synchronization using a 7-day protocol (D0 CIDR insertion and GnRH [100 mcg]; D+7 
CIDR removed and PGF2α [25mg]). Heifers received an oestrus-patch on D+7. Visual 
oestrus observations were conducted twice daily for 60 minutes, 12h apart. Uterine 
ultrasonography was performed on days -7, +2, and +7. True oestrus was defined if ovu-
lation was confirmed via ultrasound following the oestrous synchronization protocol. 
The ovulation rate was 82%. Sensitivity (proportion of heifers in true oestrus detected), 
specificity (proportion of heifers not in true oestrus undetected), and accuracy (pro-
portion of heifers that were correctly identified in oestrus or not) were calculated for 
each method. A logistic model determined the effects of housing and method on true 
oestrus detection. Oestrus detection was affected by detection method (P<0.01) but not 
by housing (P=0.41). Sensitivity, specificity, accuracy, and AUC were: 52.4%, 100%, 61.0%, 
and 0.53 for visual; 87.7%, 91.7%, 87.0%, and 0.55 for the oestrus detection patch; 90.8%, 
91.7%, 90.7%, and 0.60 for the eletronic ear tag. In summary, oestrus detection method 
affected oestrus detection in dairy heifers, but no effects of housing were observed.

Keywords: reproduction, precision, validation

Introduction
In dairy cows, oestrus is associated with changes in the animal’s normal behaviour 
that can last between 3 and 16 hours (Dransfield et al., 1998). A variety of methods 
such as visual observation, tail paint, oestrus detection patches, and precision dairy 
technologies can be utilized to detect oestrus (Dolecheck et al., 2016). Visual detection 
is the most common method utilized in the United States (USDA, 2007). Precision dairy 
technologies are an available and economically viable alternative that can supplement 
or replace visual oestrus detection methods (Dolecheck et al., 2015, Dolecheck et al., 
2016). These technologies can detect changes in the animal’s behaviour and generate 
automated oestrus alerts (Dolecheck et al., 2015). However, it is known that the type 
of housing system influences the ability of an animal to perform behaviours and is 
especially important for oestrus detection. Some authors have shown how housing 
environmental conditions impact cow oestrous expression due to factors such as floor 
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type (Vailes and Britt, 1990, Platz et al., 2008) and area available for animal movements 
(Palmer et al., 2012, Roelofs et al., 2017). Thus, the objective of the current study was 
to evaluate the efficacy of three common oestrus detection methods (visual observa-
tion, oestrus detection patch, and behaviour monitoring ear tag) across three common 
housing systems (pasture, bedded pack, and freestall) in Holstein heifers.

Materials and Methods

Animals and housing
The experiment was conducted at the University of Kentucky Coldstream Dairy Research 
Farm in Lexington, KY, under the Institutional Animal Care and Use Committee protocol 
number 2018-3138. The experiment was conducted from March to June 2019. Thirty-six 
nulliparous Holstein dairy heifers (14.7 ± 2.2 months old) averaging 297.7 ± 65.2 kg of 
body weight were enrolled in this study from March to June 2019. Heifers were selected 
from the herd if in good health for the 6 months preceding the study, deemed not lame 
(gait score < 3; Flower and Weary, 2006), and were sexually mature (i.e. defined as the an-
imal presenting at least one corpus luteum and an ovulation confirmed via ultrasound). 
Throughout the study, animals were housed in three different housing systems: pasture, 
bedded pack, and freestall. The pasture had an area of 1.47 hectares of mixed grasses 
with an adjacent concrete feeding area. The free stall barn consisted of six rows of stalls 
with nine dual-chamber cow waterbeds each (Advanced Comfort Technology, Reeds-
burg, USA). A detailed description of the free stall barn is provided in Wadsworth et al. 
(2015).  The bedded-pack barn was 9.15 m in width and 21.34 m long, providing animals 
with a total of 195.26 m2 of bedding. The bedded pack consisted of dry saw dust and was 
checked daily by farm staff. New bedding was added to the barn between each group of 
animals in this research project. The bedded pack and freestall barns provided animals 
with close to unlimited access to shade. However, animals housed in the pasture were 
provided with shade cloth structures and a covered feed bunk. Regardless of housing 
system, heifers had ad libitum access to feed and water throughout the study. All animals 
received the same diet formulated for growing heifers according to National Research 
(2001). Diets were composed of corn silage, alfalfa silage, alfalfa hay, whole cottonseed, 
and concentrate mix and were delivered once daily around 0900 h.

Experimental design
This study was conducted as a 3x3 Latin Square design, in which each animal had one 
oestrus synchronized in each one of the three housing systems. Each experimental pe-
riod was 29 days long. During the first 13 days of the experimental period, animals were 
habituated to the randomly assigned housing system. Then, animals had their oestrus 
synchronized utilizing a seven-day protocol. Following the synchronization protocol, 
heifers had their oestrous behaviours recorded for eight days before being assigned to 
a new housing system.

Oestrous synchronization and monitoring
In this study, we utilized a seven-day oestrous synchronization protocol starting im-
mediately after the end of the housing habituation period. At the beginning of the pro-
tocol (day 0), animals received a CIDR (Eazi Breed, Pfizer Animal Health, New York, USA. 
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1.38 g of progesterone) plus 100 mcg of GnRH (Factrel, Zoetis, NJ, USA). Then, seven days 
later (day +7) animals received one 25 mg injection of PGF2α (Lutalyse, Pfizer Animal 
Health, New York, USA) and had the CIDR device removed. Upon CIDR removal, heifers 
were fitted with an oestrus detection patch (Estrotect, Rockway Inc., Spring Valley, USA) 
placed on the anterior portion of the tail head. 

All heifers were fitted with a behaviour monitoring ear tag (CowManager SensOor, Agis, 
Harmelen, the Netherlands). This behaviour monitoring tag constantly measures feed-
ing and rumination behaviours and has been previously validated by Borchers et al. 
(2016). In addition, the behaviour monitoring ear tag can detect oestrus-related events 
based on changes in the behaviour variables recorded and generate automated oestrus 
alerts (Dolecheck et al., 2015). If an automated oestrus alert was generated, researchers 
recorded the oestrus as detected by the behaviour monitoring ear tag.

Visual observations were performed for one-hour periods twice a day at 0600 h and 
1800 h. Visual oestrus observations were performed by three trained observers. During 
the visual observation period, observers used an oestrus scoring system developed by 
van Eerdenburg et al. (1996). Briefly, the system allocates scores for multiple common 
oestrus symptoms ranging from 3 points for observing vaginal discharges to 100 points 
for observed standing heat. A visual oestrus was was considered detected if the sum of 
points exceeded 50 during the observation period (van Eerdenburg et al., 1996). Follow-
ing the visual observation period, researchers evaluated the oestrus detection patch. 
If the oestrus detection patch had more than 50% of its area activated, researchers 
recorded the oestrus as detected by the patch. 

The ovarian follicles and corpora lutea ultrasound images were obtained by a transrec-
tal linear probe (5 MHz. Ibex Pro, E.I. Medical, Loveland, CO, USA) performed on days -7, 
+2, and +7.  . During the ultrasound, the operator recorded if the animal had ovulated 
or not. A heifer was in true oestrus only if the ovulation was confirmed by the presence 
of a correlated corpus luteum, detected via ultrasound. 

A true positive (TP) oestrus detection event was considered if the animal was confirmed 
to be in true oestrus by the ultrasound and was considered to be in oestrus by the oestrus 
detection method. A false positive (FP) oestrus event was recorded if a heifer was not 
considered to be in true oestrus but was detected by either oestrous detection method. 
A true negative (TN) oestrus detection event was considered if the heifer was not in true 
oestrus and was not considered to be in oestrus by the oestrus detection method. A false 
negative (FN) oestrus detection event was considered if the heifer was in true oestrus but 
was not considered to be in oestrus by the oestrus detection method.

Statistical analysis
All statistical analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, 
NC, USA). Sensitivity, specificity, and accuracy were calculated for each of the three 
oestrus detection methods in each of the housing systems.

Sensitivity, the proportion of heifers in true oestrus detected was calculated as follows:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) ×  100 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) ×  100 

𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  ×  100 
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Specificity, the proportion of heifers not in true oestrus undetected was calculated as 
follows:

Accuracy, the proportion of heifers that were correctly identified in oestrus or not was 
calculated as follows:

A logistic regression model (Proc Logistic) and a general linear model (GLM) parameter-
ization were utilized to determine the effects of housing and method on true oestrus 
detection. The model considered both housing system and oestrus detection method 
as fixed effects. Further, the logistic model was used to generate a receiver operating 
characteristic curve (ROC curve) and calculate an area under the curve (AUC) for each 
oestrus detection method. Significance was declared at P ≤ 0.05, and trends were de-
fined as 0.05 < P ≤ 0.10.

Results and Discussion
In this study, we evaluated the performance of three oestrus detection methods (visual 
observation, oestrus detection patch, and behaviour monitoring ear tag) across three 
heifer housing systems (pasture, bedded pack, and freestall).

The overall true oestrus rate observed in this study was 82.4%. Although five-day oes-
trous/ovulation synchronization protocols are more common for dairy heifers, as they 
yield greater pregnancy rates. However, we opted we opted for a seven-day protocol 
where the heifers would have a longer exposure to progesterone (Islam, 2011; Lopes 
Jr. et al., 2013). Mean ± SD sensitivity, specificity, and accuracy for each of the oestrus 
detection methods is displayed on Table 1. Overall, housing did not affect how oes-
trus was detected (P = 0.41). However, true oestrus detection was affected by detection 
method (P = 0.01). The AUC for visual observations, oestrus detection patch, and the 
behaviour monitoring ear tag were 0.53, 0.55, and 0.60, respectively (Figure 1).

To our knowledge, our study was the first to investigate the performance of different 
oestrus detection methods across multiple dairy heifer housing systems. Yet, our study 
yielded similar results to the current literature, mainly regarding the automated behav-
iour monitoring ear tag. Mayo et al. (2019) also reported high sensitivity, specificity, and 
accuracy for the behaviour monitoring ear tag in freestall housed Holstein dairy cows. 
Further, Pereira et al. (2020) evaluated the oestrus detection performance of a behav-
iour monitoring collar in cows housed in a pasture during the summer and in a bedded 
pack during the winter. Like our study, Pereira et al. (2020) did not observe differences 
in the performance of the automated behaviour monitoring system across housing 
systems. Although we found that housing system did not affect oestrus detection, fur-
ther research is needed to understand if there are any effects of housing system on the 
intensity of the oestrous behaviour and the reproductive physiology of dairy heifers.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) ×  100 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
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It is known that relying on visual detection of oestrus can result in low oestrus detec-
tion rates (Roelofs et al., 2010). Additionally, Dolecheck et al. (2016) reported that the 
adoption of precision dairy technologies for oestrus detection is economically viable 
in various scenarios. Yet, the adoption of precision dairy technologies for oestrus de-
tection remains fairly low among dairy producers (Denis-Robichaud et al., 2016). Thus, 
further research should investigate the reasons and possible strategies to remediate 
the low technology adoption by farmers.

Table 1: Mean ± SD Sensitivity, specificity, and accuracy for three heifer oestrus detection methods 
(visual observation, oestrus detection patch, and behaviour monitoring ear tag) across three housing 
systems (pasture, bedded pack, and freestall; n=36)

Oestrus detection Method

Variable Visual Observation Oestrus detection 
Patch

Behaviour Monitoring 
Ear Tag

Overall

Sensitivity, % 52.43 ± 18.69 87.73 ± 9.36 90.84 ± 10.72

Specificity, % 100.00 ± 0.00 91.67 ± 25.00 91.67 ± 17.68

Accuracy, % 61.11 ± 13.82 87.04 ± 11.11 90.74 ± 9.72

Pasture

Sensitivity, % 51.14 ± 13.40 92.80 ± 6.46 100.00 ± 0.00

Specificity, % 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Accuracy, % 58.33 ± 16.67 94.44 ± 4.81 100.00 ± 0.00

Bedded Pack

Sensitivity, % 54.85 ± 5.01 80.61 ± 10.05 87.58 ±13.80

Specificity, % 100.00 ± 0.00 100.00 ± 0.00 83.33 ± 28.87

Accuracy, % 61.11 ± 4.81 83.33 ± 8.33 86.11 ± 9.62

Freestall

Sensitivity, % 51.30 ± 34.34 89.77 ± 9.30 84.93 ± 8.66

Specificity, % 100.00 ± 0.00 75.00 ± 43.30 91.67 ± 14.43

Accuracy, % 63.89 ± 20.97 83.33 ± 16.67 86.11 ± 9.62
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Figure 1: Receiver operating characteristic curve (ROC curve) for three heifer oestrus detection 
methods (A - visual observation, B- oestrus detection patch, and C- behaviour monitoring ear tag) 
across three housing systems (pasture, bedded pack, and freestall).

Conclusions
Overall, housing system did not seem to affect oestrus detection in Holstein dairy heif-
ers. However, we did observe a significant impact of oestrus detection method on de-
tection of oestrus. To our knowledge, our study was the first one to investigate the 
performance of different oestrus detection methods across multiple dairy heifer hous-
ing systems. Future research should investigate the effects of housing system on the 
intensity of the oestrous behaviour and the reproductive physiology of dairy heifers.
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Abstract
In livestock management, accurate and timely detection of oestrus is a priority aspect 
to improve production systems. In a previous study, a moving mean-based algorithm 
for dairy cow’s oestrus detection from uniaxial-accelerometer data acquired in a free-
stall barn was developed. In this study, the algorithm was implemented in a stand-
alone smart pedometer (SASP) which is a customised electronic device designed to be 
connected to Low-power wide-area networks (LPWAN). In detail, the SASP was specif-
ically developed to provide farmers with a real-time tool able to detect the ‘standing 
to be mounted’ behaviour by computing a specifically oestrus index. The SASP was 
equipped with both a triaxial accelerometer, which acquired data at 4 Hz, and a micro-
controller which calculated the moving-means. Then the computed means were sent 
to a cloud server at 15-min intervals. A WebApp was specifically developed to monitor 
the oestrus status by producing a graph of the oestrus index. The SASP was tested in 
a free-stall barn for dairy cows during summer. The farmer selected six cows among 
those at thirty days distance on average from calving and six SAPSs were attached 
to the cow forelegs. All cow oestrus onsets were detected through the WebApp and 
then validated by farmer. Moreover, the graphs of the moving mean highlighted the 
occurrence of other atypical conditions related to cow locomotion activity. This study 
makes a new step forward to development of cow’s oestrus monitoring systems based 
on low-power wide-area networks (LPWAN).

Keywords: sensor-based systems, MEMS, cow welfare, automated monitoring 
systems, oestrus detection

Introduction
Since the second half of the last century, it was understood that the accurate detection 
of oestrus in dairy cows is an essential step for the improvement of production systems 
and, therefore, of livestock management. The first automatic systems for the electronic 
recording of milk production were implemented in the 70s, while for the first attempts 
to automatically detect oestrus it was necessary to wait until the 80s (Mottram, 2015).

During oestrus, many biological parameters of dairy cows (e.g., skin temperature, milk 
yield, milk conductivity, and motor activity) (Hurnik et al., 1985; Blanchard et al., 1987; 
and Schofield et al., 1991) can undergo more or less evident alterations and, therefore, 
the early detection of such modifications allows the timely recognition of oestrus. The 
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increase in motor activity during the oestrous phase (Wendl et al., 1995) suggested the 
use of electronic devices to monitor restlessness embedded in collars or pedometers.  

Nowadays most attention has been paid to the determination of behavioural models 
based on data acquired from triaxial accelerometers and wireless telemetry systems. 

In a previous study (Arcidiacono et al., 2020), a moving mean-based algorithm for dairy 
cow’s oestrus detection from uniaxial-accelerometer data acquired in a free-stall barn 
was developed. The algorithm was specifically designed to provide farmers with a re-
al-time tool able to detect the ‘standing to be mounted’ behaviour by a specifically oes-
trus index. In this study that algorithm was implemented in the firmware of a stand-
alone smart pedometer (SASP) which is a customised electronic device designed to use 
Low-power wide-area networks (LPWAN). After a testing period carried out during the 
year 2020, six SASPs were installed in a free-stall barn during the summer 2021. The 
farmer selected six cows among those at thirty days distance on average from calving 
and six SAPSs were attached to the cow forelegs. Data coming from the SASPs were 
used to develop a model based on pre-oestrus window, technically called proestrus. The 
novelty consisted in the possibility of identifying changes in motor activity preceding 
this physiological event, characterised by the development of follicles and the produc-
tion of estrogen, which will reach its maximum in the true oestrus phase. Moreover, 
this study makes a new step forward to develop livestock monitoring systems based on 
LPWAN (e.g., Sigfox, and LoRa).

Material and methods

Stand-alone smart pedometer 
The designed SASP was equipped with an accelerometer, which acquired data at 
4 Hz, a Sigfox communication module, a microcontroller which calculated the mov-
ing-means by using equation 1, and a power supply system. The electronic device was 
sheltered into a customised case and then attached to the cow’s leg (Figure 1a). To build 
the moving mean from uniaxial-accelerometer data (eq. 1), an algorithm implemented 
in the firmware computed the variables reported in Table 1. Since there are 96 intervals 
of 15 minutes in a day, the moving mean over 24 hours (mov_meanh) was computed by 
using the following relation:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚_15𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗ℎ
𝑗𝑗𝑗𝑗=ℎ−95

96
 

 
(1)

The SASP sent the moving means computed by equation 1 to a cloud server at 15 min-in-
tervals. A WebApp was specifically developed to monitor the oestrus status by produc-
ing a graph of the oestrus index (Figure 1b). 

The proestrus - window based model
To develop a model based on pre-oestrus window, technically called proestrus, during 
the summer 2021 (period between 17 July – 31 August), the breeder selected six cows 
among those at thirty days distance on average from calving and one SASP for each cow 
was attached to cow’s foreleg. All cow oestrus onsets were detected through a WebApp 
specifically developed and then validated by the breeder, through the visual and direct 
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identification of all the typical signs of the oestrus phase (i.e., frequent bellowing, reflex 
at the mount, and presence of mucous discharge), and by the veterinarian, through the 
milk analyses. During the trial, six oestrus events occurred. The analysis of the acceler-
ometer curve during oestrus (Figure 2) allowed the identification of recurring alterna-
tion of ‘standing’ behavior (corresponding to an increase in the accelerometer values) 
and ‘walking’ behavior (corresponding to a plateau of the accelerometer curve). During 
the standing phase, the cow exhibits the willingness to be mounted, as it is ready for 
insemination. Failure to mount favours the walking phase, since the restless cow tends 
to move more in search of the bull. The two behaviours alternate until the oestrus oc-
curs, and the maximum value (peak) in the accelerometer curve is reached. When the 
oestrus event ends, there is a continuous decrease in the acceleration values detected 
by the SASP, corresponding to the rest of the animal in the lying posture.  

Figure 1: a) SAPS attached to cow’s leg. b) Typical trend of the accelerometer curve including the 
peak due to oestrus (testing phase during summer 2020)

Table 1: Variables involved in the computation of the moving mean over 24 hours of the x-axis 
accelerations

Variable Definition

accx Acceleration along x axis, acquired at a 4Hz frequency.

smax = |accx|
Signal Magnitude Area (sma) along x axis computed at 
4Hz frequency.

smax Mean value of sma_x in one second (1Hz).

Sum_15minj is the sum of smax in each j-th 15-min time 
interval (900 s) 

Data coming from the SASPs were used to develop a model based on a moving window 
whose duration is equal to proestrus time interval. As suggested in the literature (All-
rich, 1994), the width of the proestrus time interval considered in this study was 3 days 
before oestrus event. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚_15𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗ℎ
𝑗𝑗𝑗𝑗=ℎ−95

96
 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚_15𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 =  �𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥�������𝑖𝑖𝑖𝑖

900

𝑖𝑖𝑖𝑖=1
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The analysis of the acceleration curve (Figure 2) was performed by identifying the fol-
lowing parameters: 

 — mean value of the acceleration in the three days of the moving window (MV3-days);
 — value of the local minimum (MIN) and value of the maximum (MAX) found during 
oestrus event;

 — mean value of the slope of each single standing phase (SMS)

From the computation of these parameters, it was possible to define the following oes-
trus indicators:

 — width of the oestrus window (W) expressed in hours (duration of oestrus event)
 — mean value of the oestrus slope (MS) expressed in mg/h
 — increase of the peak compared to the local minimum (I%) expressed in percentage 
as follows: 

I% = MAX – MIN . 100MIN
It has to be noted that the fluctuations in the curve with respect to the average trend in 
the short term were considered, freeing the analysis from changes in behaviour due to 
seasonality that have nothing to do with oestrus event (MV3-days could also differ signif-
icantly from the average value in the long term).

Figure 2: Main parameters in the acceleration curve related to an oestrus event detected for one of 
the six cows

Based on the previous observations, the proposed model for identifying oestrus can es-
tablish whether a given increase in the acceleration curve represents an oestrus event 
and, if so, what is the probability related to it. This model included an algorithm devel-
oped starting from the mean values and standard deviations calculated for the indica-
tors chosen within the set of the six oestruses taken as sample. In detail, for each i-th 
indicator (W, MS, I%), the error range (Ei), expressing the measure of the uncertainty 
associated with the quantity, was defined as the difference between the highest and 
lowest error values computed as follows:

 (3)

where x–l is the mean value of the i-th indicator and σi is the related standard deviation.

(2)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚_15𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗ℎ
𝑗𝑗𝑗𝑗=ℎ−95

96
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An increase in the acceleration curve is associated with oestrus if, from the analysis 
of the main parameters of Figure 2, at least two of the three indicators fall within the 
corresponding error ranges. In this case, the algorithm of the proestrus detection mod-
el generates the following alert: ‘Oestrus detected’. Conversely, when no indicator falls 
within the error range, the algorithm does not generate any alert.

When only one indicator falls within the error range, the procedure must be repeated 
by widening the error range by an additional half standard deviation (extended error 
range Eext):

Eext,i = x–l ± 1.5�i  (4)

In this case, if at least two of the three indicators fall within the extended error range, 
the algorithm generates the ‘Probable Oestrus’ alert. The algorithm can scan and up-
date the computation about the oestrus indicators until the conditions of oestrus de-
tection are achieved.

Results and Discussion
To assess the reliability of the proposed method, a statistical analysis of the data from 
acceleration curves of the sample (Figure 3) was carried out. As can be seen, in the 
observation time interval (from 17th July to 31st August), one oestrus event per cow was 
identified in cows n. 1, 2, 3, 5; in cow n. 4 two oestruses occurred; and no oestrus was de-
tected in cow n. 6. The acceleration mean values and the maximum values over that 
period were the following, respectively: 535.8 mg and 745.1 mg (cow n. 1), 534.6 mg and 
690.2 mg (cow n. 2), 421.2 mg and 628.9 mg (cow n. 3), 523.4 mg and 615.0 mg (cow n. 4), 
521.2 mg and 712.3 mg (cow n. 5).

Table 2 shows the values of the indicators (W, MS, I%) computed for each oestrus event 
detected by the SASP and successively validated by both the breeder and veterinary.

Mean values and standard deviations of the indicators computed for the six oestrus 
events were found to be:

 — width of the oestrus window: W = 16.8 h; σw = 2.5 h
 — mean value of the oestrus slope: M  = 9.2 mg/h; σMS = 2.7 mg/h
 — increase of the maximum:  = 29.3 %; σI% = 6.8 % 

In accordance with the proposed proestrus detection model, four oestruses could be 
considered as ‘detected’ (oestruses 1, 3, 4 and 6). Among the remaining two oestrus-
es, one could be classified as ‘probable’ (oestrus 2). The event 5 was not recognised as 
oestrus. From this statistical analysis, it can be inferred that the proposed proestrus 
detection model is 67% reliable in recognising an oestrus event (4 events over 6) and 
83% reliable in recognising a probable oestrus (5 events over 6). By adding new data 
input such as milk production and milk conductibility, the model could improve the 
detection accuracy. 

The proposed proestrus detection model represents an advancement of knowledge com-
pared to the previous studies (Arcidiacono et al., 2017; 2018; 2020), as it overcomes the 
limitation due to the analysis of the absolute values of the moving mean over 24 hours. 
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Indeed, these absolute values could be influenced by practices performed by the breed-
er altering the natural behaviour of livestock. As already highlighted in Arcidiacono et 
al., 2020, the breeder, once the first signs of oestrus were identified, moves the cow from 
the barn to a special separate box in order to practice artificial insemination, which 
can be carried out several hours after such movement. Since the animal is moved from 
the resting area, once the oestrous phase is over, it cannot express the physiological 
lying behavior, resulting in an increase in the acceleration curve. The proestrus detec-
tion model, based on the computation of the indicators, ensures the determination of 
oestrus event as independent from the effects of the aforementioned artificial insem-
ination practice.

Table 2: Values of the indicators in the oestrus event defined as ‘detected’

Oestrus indicator
Oestrus event

1 2 3 4 5 6

Duration of the oestrus window (W) [h] 17.8 18.8 19.0 16.8 12.3 16.0

Mean value of the oestrous slope (MS) [mg/h] 8.2 6.4 6.7 10.2 13.6 10.1

Increase percentage (I%) [%] 24.2 21.1 26.0 31.4 38.9 34.4

The mean value found for the indicator W fits well with the typical duration of oestrus 
event in dairy cows, that ranges from 3 to 28 h with a higher probability around 16 h 
(Allrich, 1994; Gilbert 2018). With regard to the assessment of the remaining two indi-
cators, since they were introduced for the first time and constitute the main novelty 
of this study, a greater number of oestrus events (that can be determined using the 
acceleration curve provided by the SASP) should be analysed. It could be performed by 
applying a higher number of devices to monitor the whole herd.  This further task will 
be useful in refining the error ranges and, thus, experimentally validating the model 
proposed in this work. However, despite the small number of samples tested, a good re-
peatability of the proposed model was achieved, and it was proved by the low values of 
the standard deviation compared to the mean values for all the indicators. In addition, 
in the oestrus windows related to each validated oestrus event, the indicators (Tab. 2) 
tend to settle on values close to the mean values calculated in the six oestruses. This 
evidence encourages future experimental validation. 

All the three indicators (W, MS, I%) can be implemented in the customised WebApp of 
the SASPs, i.e., in devices not requiring any installation in the barn (as Personal Com-
puters or wired communication and/or power supply networks). Indeed, such devices 
make use of wireless communication network infrastructures of the LPWAN type to 
allow long-range communications with a low bit rate between the various connected 
pedometers. The latter feature is important in rural areas where coverage of GSM/GPRS 
networks or wired networks (ADSL) is often missing. In this way, besides displaying the 
acceleration curve, the WebApp will provide the breeder with the early recognition of 
oestrus events and the relative probability of occurrence.
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Conclusions
In the present paper, a new proestrus detection model for dairy cows was proposed. This 
model is based on the study of the acceleration curve provided by the SASP, which is 
a device not requiring any installation in the barn. A specifically developed algorithm 
can scan this curve and update the computation of appropriate oestrus indicators until 
the conditions of oestrus detection are met. When analysing relative fluctuations in 
the characteristic parameters of the curve, the algorithm does not consider unwanted 
influences of factors unrelated to oestrus event.

By considering only motor activity, the model was found to be 67% reliable in detecting 
an oestrus event and 83% reliable in detecting a probable oestrus. By adding new data 
input such as milk production and milk conductibility, the model could improve the 
detection accuracy. 

Figure 3: Acceleration curves of tested cows with oestrus events. The dates indicate when the 
oestrus was detected. SASP malfunctioning intervals are highlighted in grey 
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Abstract
The objective of this observational study was to evaluate the association of estrous 
expression within 50 days in milk (DIM) using a neck-mounted automated activity 
monitor (AAM; Heatime Pro; SCR Engineers Ltd., Netanya, Israel) and reproductive per-
formance in lactating Holstein cows. A total of 3,334 lactating cows (1,017 primiparous 
cows and 2,317 multiparous cows) from 7 commercial dairy farms were included in 
the statistical analyses. Cows were classified according to the number of estrus events 
from d 7 until d 50 into 4 categories: 1) no estrus event (ANESTRUS); 2) one estrus event 
(ESTRUS1); 3) at least two estrus events (ESTRUS2+). Generalized linear mixed models 
were used to analyze continuous or categorical data. Shared frailty models were used 
for time to event data. Overall, 41.9% (1,396/3,334) of cows had no estrus event detected 
by an AAM system from d 7 until d 50. Estrous expression within 50 d affected estrous 
duration (P = 0.001), estrous intensity (P = 0.001) and P/AI (P = 0.001) at first AI. Estrous 
expression within 50 d affected time to first AI (P = 0.001) and time to pregnancy (P = 
0.001). Median DIM to pregnancy were 136, 118, and 103 for ANESTRUS cows, ESTRUS1 
and ESTRUS2+, respectively. In conclusion, cows with no estrous expression from 7 
to 50 DIM had reduced estrous expression at first AI and inferior reproductive perfor-
mance compared with cows that displayed estrus activity. Future studies should ad-
dress risk factors for ANESTRUS and evaluate intervention strategies in these cows to 
improve their reproductive performance.

Keywords: estrous expression, automated activity monitor, dairy cow

Introduction
Reproductive performance has a major impact on profitability in dairy farms (Overton 
and Cabrera, 2017). Resumption of ovarian cyclicity within the voluntary waiting peri-
od (VWP) is associated with improved reproductive performance (Dubuc et al., 2012; 
Santos et al., 2009). A delayed resumption of cyclicity reduced reproductive efficiency 
in both synchronized and non-synchronized cows (Walsh et al., 2007; Gümen et al., 
2003) and was associated with an increased risk for pregnancy loss (Gümen et al., 2003; 
Sterry et al., 2006). Overall, the prevalence of anovulation was 23.3% (ranging from 7.3 
to 41.7%) within 8 US herds including 5,818 cows (Bamber et al., 2009). In a Canadian 
survey including 1,341 cows from 18 herds the overall prevalence of anovulation was 
19.5% ranging from 5 to 45% within herds (Walsh et al., 2007). Risk factors for anovula-
tion included parity, calving problems (e.g., dystocia, stillbirth, twins), excessive body 
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weight loss, negative energy balance (i.e., high NEFA and/or BHB), uterine inflamma-
tion, and extended dry period length (Walsh et al., 2007; Dubuc et al., 2012; Vercouteren 
et al., 2015). Anovular cows are not diagnosed on a routine basis, although it has been 
shown that an anovulatory condition until the end of the VWP has a strong negative 
impact on reproductive performance and consequently on the overall farm profitability 
(Walsh et al., 2007; Galvão et al., 2010; Dubuc et al., 2012). Assessment of anovulation 
prior to the end of the VWP is labor intensive requiring multiple examinations either by 
analyzing circulating progesterone (P4) concentrations or by visualization of a corpus 
luteum using transrectal ultrasound. In-line milk P4 analysis or automated activity 
monitoring (AAM) systems have the potential to identify anovular cows without addi-
tional labor. In-line milk P4 analysis has been utilized to demonstrate that cows with 
early postpartum luteal activity have improved reproductive performance (Bruinjé et 
al., 2017). Using a pedometer system, it has been shown that cows with more than 3 es-
trus events within 50 DIM were more likely to become pregnant within 90 DIM (Yániz et 
al., 2006). Automated activity monitoring systems based on 3-dimensional accelerome-
ters have become popular in the last years (Fricke et al., 2014). Up to now these systems 
have been used rarely to assess the effect of estrous expression in early lactation on 
reproductive performance (Chebel and Veronese, 2020).

Therefore, the objective of this study was to evaluate the association of estrous ex-
pression detected by an AAM within 50 DIM and reproductive performance of lactating 
Holstein cows. We hypothesized that cows with a detected estrus event by 50 DIM using 
an AAM system would have 1) improved estrus expression at first AI, 2) greater odds of 
conceiving at first AI, 3) greater hazard of receiving first postpartum AI by 100 DIM, and 
4) greater hazard of getting pregnant by 200 DIM.

Materials and methods

Animals, Housing, and Nutrition
This study was an observational cohort study including 7,687 cows (2,914 primiparous 
cows and 4,773 multiparous cows) from 7 commercial dairy farms in northeast Germa-
ny calving from May 2018 until September 2019. Inclusion criteria for farms were a herd 
size above 400 cows and the use of a neck-mounted AAM (Heatime Pro, SCR Engineers 
Ltd., Netanya, Israel). Herd size ranged from approximately 400 to 1,200 cows per farm. 
All cows were housed in free-stall barns and milked twice or three times daily. Milk 
yield ranged from 9,105 to 11,900 kg per 305 d. Exclusion criteria for cows were: “do-not-
breed” status within the VWP, culling before first postpartum AI or before pregnancy 
diagnosis, and less than 95% usable activity data from 7 to 50 DIM. All experimental 
procedures were approved by the Institutional Animal Care and Use Committee of the 
Freie Universität Berlin.

Automated Activity Monitoring System
All cows were fitted with a neck-mounted AAM 14 d before their first calving (farm 5), 
or on the day of their first calving (farms 1 - 4, 6, 7). The AAM was attached to the cows 
until culling. Individual activity and rumination data of each cow were recorded in real 
time for 2 h periods by a wireless receiver box and transmitted to the on-farm computer, 
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where the accelerometer software (DataFlow II, SCR Engineers Ltd., Netanya, Israel) was 
installed. The raw activity data from each cow was converted into an activity change in-
dex value using a proprietary algorithm. Index values for activity change ranged from 0 
to 100 (0 = lowest, 100 = highest). The period of the cow’s activity that exceeded an activ-
ity index value of 35 was considered an estrus event. For each estrus event, peak activity 
(PA) and duration (DU) were determined. The intensity of an estrus event was represent-
ed by the maximum peak value of the activity index during an estrus event. Onset of es-
trus was defined as the time a cow reaching an activity index value of 35 or higher. End of 
estrus was defined by the first instance at which the index value fell below 35 during the 
event. Estrus duration was defined as the interval from onset to end of an estrus event.

An estrus event within 50 DIM was defined as activity index ≥ 35 for more than 2 hours. 
Cows were classified according to the number of estrus events from d 7 until d 50 into 
three categories: 1) no estrus event (ANESTRUS); 2) one estrus event (ESTRUS1); 3) two 
or more estrus events (ESTRUS2+). Estrus intensity at first service was categorized ar-
bitrarily based on peak activity of estrus into low (0 to 80) or high (80 to 100) intensity.

Reproductive Management
Lactating Holstein cows were inseminated based on the alert of the AAM, after visual 
estrus detection or receiving AI after hormonal intervention. A list of cows eligible for 
breeding with an activity alert was generated on a daily basis by the AAM on each farm. 
Based on these lists, cows were inseminated predominantly based on an AAM alert. Cows 
were inseminated once (farms 1, 3, 7) or twice daily (farms 2, 4-6) following the am-pm 
rule with each cow receiving a single AI based on the AAM alert. Cows that were not bred 
until a farm specific threshold were either examined by the local veterinarian and treat-
ed accordingly (i.e., cows with a corpus luteum received prostaglandin) or they received 
a timed AI using a simple Ovsynch protocol (GnRH – 7d – PGF – 56h – GnRH – 16h - AI).

Cows remained in the study until a confirmed pregnancy diagnosis, which was per-
formed on a weekly basis by transrectal palpation 38 ± 3 d after AI (farms 1, 3-5), by 
transrectal ultrasound beginning at 28 d after AI (farm 2) or at 32 d after AI (farms 6 and 
7). For simplicity, the time at which pregnancy diagnosis was conducted will be referred 
to as 38 d after AI throughout the manuscript. In case of transrectal palpation, pregnan-
cy was based on a verified pregnancy diagnosis defined by the presence of uterine fluid, 
asymmetry, and a positive fetal membrane slip. Non-pregnancy was based on absence 
of pregnancy at the day of examination or a rebreeding to an estrus before pregnancy 
diagnosis. Positive pregnancy diagnosis performed by ultrasound was based on visuali-
zation of an embryo with a heartbeat. Cows diagnosed not pregnant were reassigned to 
breeding after spontaneous estrus or following a non-pregnancy diagnosis and a hor-
monal intervention. Open cows with a CL received prostaglandin and were bred upon 
estrus detection. Open cows without a CL received timed AI using a simple Ovsynch 
protocol as described above.

Data Collection and Statistical Analyses
Cow ID, parity, calving date, and breeding information (i.e., DIM, breeding code [estrus vs. 
hormonal intervention], outcome) were obtained through the on-farm computer soft-
ware (herdeW and herdeplus respectively; dsp agrosoft GmbH, Ketzin/Havel, Germany). 



764 Precision Livestock Farming ’22

All statistical analyses were performed using SPSS for Windows (version 22.0, SPSS Inc., 
IBM, Ehningen, Germany) or Stata (Stata/IC 13.1 for Windows; StataCorp LP, Station, 
TX). To evaluate the association of estrus expression detected by an automated activity 
monitoring system within 50 DIM and reproductive performance of lactating Holstein 
cows, a linear regression model (estrus duration at first AI) and 2  logistic regression 
models (pregnancy per AI at first AI and probability of high intensity estrus event at first 
AI) were built using the GENLINMIXED procedure of SPSS. Herd was considered a ran-
dom effect. Cow was nested within farm. Parity was considered as a repeated measure 
because some cows had more than one calving within the observation period. Model 
building was conducted as recommended by Dohoo et al. (2009), where each parameter 
was first analyzed separately in an univariable model using the GENLINMIXED proce-
dures as described above. Only parameters resulting in univariable models with P ≤ 0.10 
were included in the final mixed models. Selection of the model that best fit the data 
was performed using a backward stepwise elimination procedure by removing all varia-
bles with P > 0.10 from the model. The initial models included the following explanatory 
variables as fixed effects: parity (primiparous vs. multiparous), year of AI, season of AI 
(winter from 1st of December to 28th of February, spring from 1st of March to 31rst of May, 
summer from 1st of June to 31rst of August, and autumn from 1st of September to 30th of 
November), DIM at first AI, estrus activity within 50 DIM (ANESTRUS vs. ESTRUS1 vs. 
ESTRUS2+), breeding code at first AI (estrus vs. hormonal intervention). 

Cox proportional hazards were used to model the time to event outcomes (i.e., time to 
first AI, time to pregnancy) while accounting for herd as a random effect(shared frailty 
term; cows within farm) and a random effect for cow for repeated observations of the 
same cow in different lactations. Cows were censored if they were culled before first 
insemination or pregnancy diagnosis or at the end of the observation period. The varia-
bles parity, year of calving, season of calving (winter from 1st of December to 28th of Feb-
ruary, spring from 1st of March to 31rst of May, summer from 1st of June to 31rst of August, 
and autumn from 1st of September to 30th of November), and estrus activity within 50 
DIM were tested as risk factors. The proportional hazard assumption was checked us-
ing Schoenfeld residuals. Frailty models were fitted in R version 4.0.2 (R Foundation Vi-
enna, Austria) using the R package coxme (version 2.2-16). Survival Curves were plotted 
using the package survminer (version 0.4.8). Variables were declared to be significant 
when P < 0.05. A statistical tendency was declared when P ≥ 0.05 and P ≤ 0.10. 

Results and Discussion
Overall, 7,687 cows (2,914 primiparous cows and 4,773 multiparous cows) were enrolled 
in this experiment. After exclusion of 1,208 cows (403 primiparous cows and 795 mul-
tiparous cows) due to “do not breed” status or culling before first postpartum AI, 3,065 
(1,464 primiparous cows and 1,601 multiparous cows) due to incomplete activity data 
from d 7 until d 50, and 80 cows (20 primiparous cows and 60 multiparous cows) due 
to culling after first postpartum AI but before pregnancy diagnosis, 3,334 cows (1,017 
primiparous cows and 2,317 multiparous cows) were included in the final statistical 
analyses. Overall, 41.9% (1,396/3,334) of cows had no estrus event detected by the AAM 
system from d 7 until d 50. Parity had no effect (P = 0.711) on the frequency of estrus 
events from d 7 until d 50. Farm (P = 0.001) affected the frequency of estrus events from 



 Precision Livestock Farming ’22 765

d 7 until d 50. Herd level prevalence of ANESTRUS ranged from 30.4% to 47.4%. For cows 
having at least one estrus event from d 7 until d 50, median DIM for the first estrus 
event was 27 d. There was no difference between primiparous (28 DIM) and multipa-
rous cows (27 DIM). Of these cows, 35% (269/780) had an inter-estrus interval between 
18 to 24 d. Overall, 81.6% (2,719/3,334) of cows received first postpartum AI upon heat 
detection. Among cows without an estrus event from d 7 until d 50, 71.3% (996/1,396) re-
ceived first postpartum AI upon heat detection. Among cows in ESTRUS1 and ESTRUS2, 
87.0% (1,008/1,158) and 91.7% (715/780) received first postpartum AI upon heat detec-
tion, respectively. Activity data on estrus duration at first postpartum AI were available 
from 2,870 cows. The mean (± standard error of the mean) duration was 14.1 ± 0.10 h 
at first AI. Duration of estrus activity at first AI was affected by season of AI (P = 0.001), 
year of AI (P = 0.079), breeding code at first AI (P = 0.021), and estrus expression from 
d 7 until d 50 (P = 0.001). While parity had no effect (P = 0.488), there was a significant 
interaction between parity and estrus expression (P = 0.049). Overall, ANESTRUS cows 
had the shortest duration (13.2 ± 0.28 h). Cows in ESTRUS1 and ESTRUS2+ had a DU of 
13.5 h (± 0.28) and 14.5 h (± 0.31), respectively. Estrus duration was reduced in the sum-
mer (12.7 ± 0.32 h) compared to spring (13.9 ± 0.31 h), autumn (14.4 ± 0.28 h), and winter 
(14.0 ± 0.30 h). Cows with spontaneous estrus (14.1 ± 0.25) at first AI had longer dura-
tion compared to cows after hormonal intervention (13.5 ± 0.34). A total of 75% (2518/ 
3,334) had high PA at the first postpartum AI. Estrus intensity at first postpartum AI was 
affected by season of AI (P = 0.001), year of AI (P = 0.007), parity (P = 0.031), and estrus 
expression from d 7 until d 50 (P = 0.004). Among ANESTRUS cows, 85.7% had high PA 
at first postpartum AI. Among cows in ESTRUS1 and ESTRUS2+, 86.8% and 91.1% had 
high PA at first postpartum AI, respectively. There was a significant difference between 
ESTRUS2+ and ANESTRUS (P = 0.001) and ESTRUS2+ and ESTRUS1 (P = 0.009). There was 
no difference between ANESTRUS and ESTRUS1 (P = 0.459).

At d 38 after AI, overall P/AI was 34.6% (1,115/3,334). Pregnancy per AI at first postpar-
tum AI was affected by parity (P = 0.001), season of AI (P = 0.001), and estrous expression 
from d 7 until d 50 (P = 0.001). Primiparous cows (44.6%) had greater P/AI compared 
to multiparous cows (34.7%: P = 0.001). Pregnancy per AI was reduced in the summer 
(32.7%) compared to spring (42.9%), autumn (38.1%), and winter (45.0%). For ANESTRUS 
cows, ESTRUS1, and ESTRUS2+ pregnancy per AI was 39.0%, 35.2%, and 44.8%, respec-
tively. There was a significant difference between ANESTRUS and ESTRUS2+ (P = 0.019) 
and ESTRUS1 and ESTRUS2+ (P = 0.050). A tendency was observed between ANESTRUS 
and ESTRUS1 (P = 0.074).

Estrous expression from d 7 until d 50 affected time to first AI (P = 0.001). Compared to 
ANESTRUS cows, cows in ESTRUS1 (Hazard risk (HR) = 2.06; P = 0.001) and ESTRUS2+ 
(HR = 3.35; P = 0.001) had an increased hazard of being inseminated within 100 DIM. 
Median DIM to first AI were 83, 69 and 63 for cows in ANESTRUS, ESTRUS1, and ES-
TRUS2+, respectively. Parity (P = 0.003), year of calving (P = 0.001), and season of calving 
(P = 0.001) affected time to first AI.

Estrus expression from d 7 until d 50 affected time to pregnancy (P = 0.001). Compared 
to ANESTRUS cows, cows in ESTRUS1 (HR = 1.26; P = 0.001) and ESTRUS2+ (HR = 1.58; 
P = 0.001) had an increased hazard of becoming pregnant within 200 DIM. Median DIM 
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to pregnancy were 136, 118, and 103 for ANESTRUS cows, ESTRUS1 and ESTRUS2+, re-
spectively.  Parity (P = 0.001), year of calving (P = 0.001), and season of calving (P = 0.001) 
affected time to pregnancy.

The overall herd level prevalence of ANESTRUS was 41.9% ranging from 30.4% to 47.4% 
based on estrus detection using a commercially available AAM system. This seems high 
compared to a US survey including 8 herds (23.3%; 7.3 to 41.7%) and a Canadian survey 
including 17 herds (19.5%; 5.0 to 45.0%), respectively (Walsh et al., 2007; Bamber et al., 
2009). While parity had no effect on the frequency of estrus expression from d 7 until 
d 50 in our study it has been shown that primiparous cows have a higher risk for being 
anovular at the end of the VWP (Bamber et al., 2009). In a recent study, the prevalence 
of anestrus was 42.1% using activity data from a neck-mounted activity collar (Heat 
Rumination Long Distance, SCR Inc., Netanya, Israel) from calving until 62 DIM (Chebel 
and Veronese, 2020). Four hundred sixty-seven cows had at least one estrus recorded 
≤62 DIM (1 estrus event = 271; 2 estrus events = 168; 3 estrus events = 27; 4 estrus events 
= 1). Although the prevalence of anestrus was similar as in our study, results can hardly 
be compared due to a different observation period and because only primiparous cows 
were used from a single herd.

The discrepancy might be due to the definition of anovular cows using serial measure-
ments of circulating blood P4 concentrations in the US and Canadian studies compared 
with an anovulatory condition identified by behavioral changes using a commercially 
available AAM system in our study. Measuring P4 in milk or blood is considered the gold 
standard for defining patterns of estrus cyclicity (Lucy, 2019). A previous study showed 
only moderate agreement between the timing of the first estrus episode using either 
serial measurements of milk P4 concentrations or increased activity (Løvendahl and 
Chagunda, 2010). Although measurement of milk or blood P4 concentrations seems 
more accurate for phenotyping cyclicity patterns compared to AAM technology, there 
are a greater number of AAM systems in place on farm compared with commercially 
available systems that measure in-line milk P4. Using neck collars measuring activity 
patterns, the genetic correlation (0.96) between calving to first insemination and calv-
ing to first high activity was high (Ismael et al., 2015). The estimated heritability of calv-
ing to first high activity was 0.16 in that particular study indicating its potential use for 
selection of fertility traits based on AAM data. Therefore, calving to first high activity 
might be a more robust estimate in herds using TAI protocols compared to the calving 
to first insemination trait (Lucy, 2019).

Median time to the first estrus event was 27 d. This is an agreement with previous stud-
ies using either a neck-mounted activity monitor (33.1 d: Løvendahl and Chagunda, 
2010) or milk P4 profiles (27.9 d: Nyman et al., 2014). There was a tremendous variation 
in the occurrence of the first estrus event using an AAM in our study. 

It has been described that the first postpartum estrus cycle may be shorter, which is 
considered normal (Lucy, 2019). The following cycle length was observed to be 21 d with 
some variation (Crowe, 2008; Remnant et al., 2015). Using milk P4 profiles, one-quarter 
of postpartum estrus cycles were found to be irregular (Nyman et al., 2014; Petersson et 
al., 2006) because of 1) delayed cyclicity, 2) a prolonged luteal phase, or 3) cessation of 
cyclicity. Based on the interval between the first 2 estrus cycles from d 7 until d 50 in 
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our study, only 34.5% had an interval between 18 to 22 d. The majority of cows (43.6%; 
340/780) had a short inter-estrus interval (i.e., below 18 d). The first ovulation is not ac-
companied with estrus behavior and followed by a short estrus interval (Crowe et al., 
2014). The underlying physiological mechanisms have not yet been fully resolved. It is 
assumed, however, that high levels of estradiol during late gestation and parturition 
induce a refractory state to the estrogens present at the first postpartum ovulation. 
However, P4 from the corpus luteum secreted after the silent ovulation seems to favor 
estrous expression during the next ovulatory cycle (Allrich, 1994). Also priming of the 
hypothalamus with P4 by an increased number of estrus cycles before the first insemi-
nation might be associated with a better responsiveness of estradiol receptors leading 
to improved estrus behavior (Thatcher and Wilcox, 1973). In our study we observed AN-
ESTRUS cows displaying shorter DU and being less likely to have high PA supporting 
these early findings. Especially in multiparous cows we observed a linear increase of DU 
at the first postpartum AI with increasing numbers of estrus events from d 7 until 50. To 
the best of our knowledge, this is the first study showing an association between early 
resumption of estrus cyclicity and estrus expression patterns at the first postpartum AI. 

Cows with two or more estrus events from d 7 until d 50 had higher odds of conceiv-
ing at the first postpartum AI compared to cows in ANESTRUS (+ 5.8%; P = 0.019) and 
ESTRUS1 (+ 9.6%; P = 0.050). This is in agreement with other studies using either milk 
(Walsh et al., 2007) or blood P4 concentration (Galvão et al., 2010) to determine estrus 
cyclicity in the early postpartum period, during which anovular cows had lower odds 
of conceiving at the first postpartum AI. Another study, however, did not observe any 
difference in first service conception risk for cows that were cyclic by 21 d or 63 d com-
pared to anovular cows (Dubuc et al., 2012).

Postpartum estrus activity influenced time to first AI in our study. Anestrus cows had 
reduced hazard of being inseminated until 100 DIM. Median time to first insemina-
tion were 80.5 d, 71.4 d, and 66.3 d for cows in ANESTRUS, ESTRUS1, and ESTRUS2+, 
respectively. This corresponds with two studies in which anovular cows had a reduced 
likelihood of being inseminated early (Walsh et al., 2007; Galvão et al., 2010). In the first 
study (Walsh et al., 2007), median days to first insemination were 72 and 80 for ovular 
and anovular cows, respectively, using milk P4 profiles in herds with minimum hormo-
nal interventions. In the study from Galvao et al. (2010), a Presynch-Ovsynch protocol 
with insemination after estrus detection was used to facilitate first postpartum TAI. 
Median days to first insemination were 71, 76, and 96 for cows cycling at 21 d, 49 d, and 
anovular cows, respectively, using blood P4 profiles. When comparing different studies 
regarding the effect of anovulation on insemination risk one has to be careful as inter-
ventions with TAI protocols might confound the effects. 

Using time to pregnancy as the ultimate measure of reproductive performance (Lean 
et al., 2016), cows displaying estrus activity from d 7 until d 50 had increased hazard 
of conceiving until 200 DIM compared to ANESTRUS cows. Median time to pregnancy 
was 139.8 d, 128.6 d, and 118.1 d for cows in ANESTRUS, ESTRUS1, and ESTRUS2+, re-
spectively. This is in agreement with three other studies using either milk (Walsh et 
al., 2007) or blood P4 profiles to identify anovular cows (Dubuc et al., 2012; Galvão et 
al., 2010). Median time to pregnancy was 126 d and 156 d for ovular and anovular cows, 
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respectively, in herds with minimum hormonal interventions (Walsh et al., 2007). Me-
dian time to pregnancy was 103 d, 147 d, and 173 d for cows cycling at 21 d, 49 d, and 
anovular cows, respectively (Galvão et al., 2010). Interestingly, Dubuc et al. (2012) only 
observed a detrimental effect of anovulation in third parity or greater cows (cyclic by 
21 d: 129 d; cyclic by 63 d: 151 d; anovular by 63 d: 180 d). Overall, this observational 
study provides evidence that displaying estrus activity in the early postpartum period 
is beneficial for subsequent reproductive performance. Therefore, activity data in early 
lactation might be useful in 2 different ways in herd management. They can be used 1) 
as a descriptive measure (i.e., how many cows are anestrous? Is there a change in the 
proportion of anestrous cows?), and 2) in a prescriptive way, such that there are differ-
ent reproductive management strategies for anestrous cows (e.g., enrolment in a TAI 
protocol such as a Double-Ovsynch protocol) and cows that showed estrous expression 
in early lactation (i.e., rely on estrus detection after VWP).

Conclusions
Results from the present study provide strong evidence that early postpartum estrous 
expression influences fertility in dairy cattle. Cows with no estrus expression from d 7 
until d 50 detected by a commercially available AAM system had inferior reproductive 
performance compared with cows that displayed estrus activity. Missing or incomplete 
activity data clearly limits the practical use of this system. Future studies should ad-
dress risk factors for ANESTRUS and evaluate intervention strategies in these cows to 
improve their reproductive performance.
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Abstract
The objective of this observational, retrospective study was to determine the association 
between the timing of artificial insemination (AI) and pregnancy per AI (P/AI) in nullipa-
rous Holstein heifers inseminated either with sexed or conventional semen considering 
different characteristics of an estrus event (i.e., onset, peak, and end) using an automated 
activity monitoring system. A total of 4,265 AI services from 2,919 heifers based on the 
alert of Heatime (SCR Engineers Ltd., Netanya, Israel) were evaluated from 6 commercial 
dairy farms in Germany. The mean (± standard deviation) duration of an estrus event 
was 16.0 ± 4.8 h. Overall P/AI was 49.1%. Heifers inseminated with conventional semen 
(51.4%; 933/1,644) had similar P/AI compared to heifers inseminated with sexed semen 
(46.9%; 1,277/2,621; P = 0.14). Heifers at a younger age at AI were more likely to get preg-
nant (P = 0.01). The interval from onset of estrus to AI was associated (P = 0.01) with P/AI, 
with the greatest P/AI for heifers inseminated within 9 to 32 h after the onset of the activ-
ity alert. Whereas the interval from peak activity to AI was not associated (P = 0.58) with 
P/AI, there tended (P = 0.08) to be an association between the interval from end of estrus 
to AI and P/AI. There were no interactions between the intervals from onset, peak or end 
of estrus to AI and type of semen on P/AI. In conclusion, inseminating heifers within 9 to 
32 h after onset of estrus increased P/AI irrespective of type of semen. 

Keywords: insemination time, activity monitor, pregnancy, heifer

Introduction
Timing of artificial insemination (AI) is of major importance to achieve high concep-
tion risk. One of the major challenges, however, is to identify the time of ovulation (e.g. 
Saacke et al., 2008). Using automated activity monitoring (AAM) systems, the mean in-
terval from onset of estrus to ovulation was approximately 29 h in nulliparous heifers 
(e.g. Guner et al., 2020). Therefore, implementation of AAM systems into reproductive 
management of dairy heifers may improve estrus detection rates and subsequent fer-
tility by precisely timing AI.

Using a modern AAM system (Heatime), in a recent study we found greatest pregnancy 
per AI (P/AI) for lactating dairy cows inseminated within 7 to 24 h after the onset of 
estrus irrespective of type of semen (i.e., fresh vs. conventional semen; Tippenhauer et 
al., 2021). There are only a few studies available, investigating the association between 
certain characteristics of an estrus event determined by AAM systems and timing of AI 
in nulliparous heifers. There are few studies available, however, that suggested delayed 
AI using sexed semen would improve P/AI (e.g. Sales et al., 2011; Nebel, 2018). 
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Therefore, the objective of this observational study was to determine the association 
between the timing of AI and P/AI in nulliparous Holstein heifers inseminated either 
with sexed or conventional semen considering different characteristics of an estrus 
event (i.e., onset, peak, and end) using an AAM system. We expected delaying insem-
ination after onset of estrus would improve P/AI in heifers inseminated with sexed 
semen compared to conventional semen.

Material and methods

Study Design
This study was an observational, retrospective cohort study including 4,265 AI services 
from 2,919 nulliparous Holstein heifers from 6 commercial dairy farms in Northeast 
Germany. The study was conducted from July 2018 until October 2021. All heifers were 
housed in freestall barns. 

Automated Activity Monitoring System
All heifers were fitted with a neck-mounted AAM system (Heatime; SCR Engineers Ltd., 
Netanya, Israel) at the age of approximately 13 months. Raw activity data of each heifer 
was converted into an activity change index (ranging from 0 to 100) by calculating the 
difference of today’s last 2 h of raw activity from the mean of last week’s activity in the 
same period of the day weighted by the standard deviation of this specific heifer. The 
period where the heifer’s activity change index exceeded 35 was considered a sensor 
based estrus event. Onset of estrus was defined as the first time an activity change 
index of 35 was exceeded. End of estrus was defined by the first instance at which the 
index fell below 35 again. The activity change peak index within a sensor based estrus 
event represented the estrous intensity, which was categorized into low (35–89 index) 
and high (90–100 index) based on previous work (Tippenhauer et al., 2021). All parame-
ters were determined for each estrus event and plausible intervals at 8 hour intervals 
from onset of estrus to AI (0 to > 32 h), peak of estrus to AI (-8 to > 32 h) and end of 
estrus to AI (-16 to > 24 h) were calculated for each heifer.

Reproductive Management of Heifers
A list of heifers eligible for breeding based on the activity alert was generated by the AAM 
system, whereas all farms had their threshold for an activity alert set at an index of 35. In 
addition, the responsible AI technician verified heifers with an activity alert to be in estrus 
via transrectal palpation. Based on farm-individual strategies, heifers were inseminated 
with either conventional or sexed semen at different intervals related to the alert (i.e., 
depending on performance of once or twice daily AI). Heifers remained in the study until 
a confirmed pregnancy diagnosis, which was performed by transrectal palpation 38 ± 3 d 
(farms 1, 3) after AI or by transrectal ultrasonography 28 ± 3 d (farms 2, 4-6) after AI.

Statistical Analyses
All statistical analyses were performed using SPSS for Windows (version 22.0, SPSS Inc., 
IBM, Ehningen, Germany). Heifer and insemination data, such as breeding date and time, 
was obtained through the on-farm computer software or it was documented on a list 
that was obtained on a monthly basis. To determine optimum timing of AI considering 
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3 intervals (i.e., onset, peak, and end of estrus to AI), 3 different logistic regression models 
using the GENLINMIXED procedure of SPSS were built. Farm was considered a random ef-
fect, whereas heifer was the experimental unit. Number of AI was considered as a repeat-
ed measure because some heifers had more than one AI from consecutive estrus cycles 
within the observational period. Only parameters resulting in univariable models with P 
≤ 0.10 were included in the final mixed model. Regardless of the significance level, type of 
semen, interval (onset, peak, and end) to AI, and the interaction between the interval to 
AI and type of semen were forced to remain in the final model. The final model therefore 
contained the following fixed effects: heifer’s age at AI (month, continuous), month of AI 
(1 - 12), interval (onset, peak, or end) to AI, type of semen and the interaction between the 
type of semen and the 3 intervals to AI. Variables were declared to be significant when P 
< 0.05. A statistical tendency was declared when P ≥ 0.05 and P ≤ 0.10.

Results and Discussion
The mean (± SD) duration of sensor based estrus activity was 16.0 ± 4.7 h. The mean in-
terval from onset of estrus to AI was 16.9 ± 7.6 h, from peak activity of estrus to AI 10.9 ± 
7.6 h, and from end of estrus to AI 0.8 ± 8.7 h and did not differ between type of semen. 

Figure 1: Pregnancy per artificial insemination (P/AI) (± SEM) for heifers (n = 4,265 AI services) 
inseminated considering different intervals from onset of estrus to AI using a neck-mounted activity 
monitoring system for estrus detection (Heatime; SCR Engineers Ltd., Netanya, Israel). Onset of 
estrus was defined as a heifer exceeding an activity change index of 35. A Bonferroni adjustment 
was used to account for multiple comparisons. Bars with different numbers indicate a significant 
difference (P < 0.05) among time. Therefore, time intervals were classified into numbers (1 to 5) with 
number 1 beginning at the first time interval in ascending order. 

Overall P/AI was 49.1%. Heifers inseminated with conventional semen (51.4%; 
933/1,644) had similar P/AI compared to heifers inseminated with sexed semen (46.9%; 
1,277/2,621; P = 0.14). Heifers at younger age at AI were more likely to get pregnant 
(P = 0.01). Pregnancy per AI was not associated with estrous intensity (P = 0.52). Heifers 
inseminated in the late summer months (i.e., August and September) tended to have 
decreased P/AI (P = 0.08). 
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There was a quadratic effect of the interval from onset of estrus to AI on P/AI. The in-
terval from onset of estrus to AI was associated (P = 0.01) with P/AI, with the greatest P/
AI for heifers inseminated within 9 to 32 h after the activity alert (0 to 8 h: 48.5%; 9 to 
16 h: 52.3%; 17 to 24 h: 53.9%; 25 to 32 h: 55.5%; > 32 h: 35.9%; Figure 1). Whereas the 
interval from peak of activity to AI was not associated (P = 0.58) with P/AI, there tended 
(P = 0.08) to be an association between the interval from end of estrus to AI and P/AI. 
Surprisingly, there were no interactions between the intervals from onset, peak, or end 
of estrus to AI and type of semen on P/AI.

There are only a few studies available, investigating the optimum timing of AI consid-
ering different estrus event characteristics detected by AAM systems in heifers. 

Some studies suggested that delaying AI with sexed semen, thus, closer in time relative 
to ovulation, would optimize reproductive performance. They found increased P/AI for 
heifers inseminated within 16 to 24 h after onset of estrus when using sexed semen 
(e.g. Guner et al., 2020). In another study, however, delaying AI by approximately 12 h 
did neither improve nor reduce P/AI in heifers (Chebel & Cunha, 2020).

Surprisingly, estrous intensity was not associated with P/AI in nulliparous heifers. 
In lactating cows, there is a strong association between estrous intensity and fertili-
ty (Tippenhauer et al., 2021). The reason for this discrepancy remains speculative but 
warrants further research. 

Conclusions
Using an AAM system, inseminating heifers within 9 to 32 h after onset of estrus yield-
ed greatest P/AI irrespective of type of semen (conventional vs. sexed). 
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Abstract
This study introduces the software called Bovine Heat Detection and Analysis Tool 
(BovHEAT), a validated and open-source analysis tool to process automated activi-
ty monitoring (AAM) data for estrus detection. We used activity data collected from 
a neck-attached accelerometer (Heatime, SCR Engineers Ltd., Netanya, Israel) that is 
widely adopted in the dairy industry. Developed with the Python programming lan-
guage, BovHEAT offers fully automatic and scalable processing for estrus detection 
with additional functionality for handling missing values and a plausibility check for 
timing of events. Processed output is provided in an Excel file with result tables in the 
long and wide format. Additionally, a PDF file containing activity change line graphs is 
generated. For validation, we compared the accuracy and time of three different meth-
ods to process AAM data: 1) manual data evaluation (MAN), 2) Excel tool (EXCEL), and 3) 
BovHEAT. Two different datasets from 8 farms (1 farm in Canada; 7 farms in Germany) 
were used. Validation was performed independently by three investigators. In total, 
activity data from 60 cows representing a maximum number of 600 observations (50 
days with 12 observations per day) per cow were used. Manual data evaluation was 
less accurate due to transcription errors, with 13 of 60 cows having at least one error. 
More specifically, 16 out of 110 estrus events were recorded incorrectly. The time to 
process AAM data and transfer the results into a standardized results table for 10 cows 
was 41.0 (range 28 – 53) minutes, 30.7 (18 – 48) minutes, and 11.7 (4 – 16) minutes for 
MAN, EXCEL and BovHEAT, respectively. Without the standardized results table, a fully 
automated run with BovHEAT processing the complete dataset of 5,477 cows, which 
consisted of 361 XLS and XLSX files, took 172 seconds. The results from this study in-
dicate that BovHEAT speeds up processing, requires less user interaction and provides 
additional features. Our aim is to accelerate future research with AAM data and facili-
tate reproducibility via our validated analysis tool. Since BovHEAT is open-source and 
MIT-licensed, it allows customization to support different sensors and manufacturers. 
The BovHEAT tool can be evaluated, downloaded and contributed to on GitHub (https://
github.com/bovheat/bovheat, https://doi.org/10.5281/zenodo.3890126).

Key Words: automated activity monitor, dairy cow, data processing, automation, heat 
analysis

Introduction
The dairy industry has undergone profound changes over recent decades. The number 
of farms has decreased considerably, whereas herd size has increased. The adoption of 



776 Precision Livestock Farming ’22

new technologies by dairy farmers is accelerating to improve efficiency and profitabil-
ity (Barkema et al., 2015). Precision technology (e.g., automated cow activity monitors 
and automated milking systems) helps to collect individual animal data and to provide 
farmers with real-time information that can be implemented in herd management 
(Rutten et al., 2013). These new technologies have been evolving rapidly, and it has 
become difficult for animal scientists to fully utilize the increasing number of mas-
sive and permanent data streams (Cabrera et al., 2020). Useful information needs to be 
extracted from the data to assist in the decision-making process (White et al., 2018). 
Automated activity monitoring (AAM) tools were one of the first adopted technologies 
of so-called precision livestock farming (PLF; Rutten et al., 2013).

Estrus detection for dairy cows in confined housing systems has become a greater chal-
lenge as milk production increases (López-Gatius et al., 2005), and cows are less likely to 
express estrous behavior on dry grooved concrete surfaces (Britt et al., 1986). The estrus 
detection rate in a recent survey of Canadian dairy herds (Denis-Robichaud et al., 2016) 
was below 50%. The proportion of cows truly bred upon estrus detection, however, is un-
clear, as these data were confounded by the use of timed artificial insemination (AI) pro-
tocols. The failure to submit cows for AI not only has a major impact on reproductive per-
formance but also indicates an opportunity to improve profitability (Overton & Cabrera, 
2017). Automated activity monitoring systems have been reported as a useful tool for ac-
curate detection of estrus, which has the potential to increase reproductive performance 
in dairy farms with both cows and heifers (Michaelis et al., 2014). Furthermore, it has been 
shown that distinct characteristics of an estrus event such as estrus intensity provide 
useful predicting information on fertility in lactating dairy cows (Madureira et al., 2015).

Managing and processing data from AAM systems for research and practice purposes 
have become complex and challenging tasks due to the increased volume, variety and 
sampling frequency of the data. One prevailing processing solution is a spreadsheet 
tool called HeatCalc, which has been used in recent publications (Madureira et al., 2015). 
HeatCalc is built in Excel (Office 2019, Microsoft Corporation, Redmond, WA, US) and 
utilizes a sequence of functions, filters, user copy and paste tasks and pivot tables. 
However, the HeatCalc Excel tool lacks: 1) ease of use, as a multitude of manual steps 
have to be performed, 2) flexibility, as the solution is limited by Excel’s functionality, 
and therefore 3) scalability. The use of such Excel-based solutions leads to time-con-
suming and error-prone analysis of AAM data, especially when analyzing large data-
sets. Furthermore, the mentioned processing sequence of the HeatCalc Excel tool has 
not been validated nor has the tool been published in a scientific journal. Therefore, the 
objective of this study was to develop and validate an open-source analysis tool for the 
automated processing of dairy cow activity data from AAM systems.

Development of BovHEAT
We developed an analysis tool, called the Bovine Heat Detection and Analysis Tool 
(BovHEAT), with the open-source Python programming language (van Rossum & Drake 
Jr, 1995) to batch-process multiple AAM files with minimal user interaction and provide 
additional features, including missing data interpolation and PDF visualization of ac-
tivity data.
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Internals and delivery
The analysis tool utilizes the following Python packages: 1) xlrd (https://github.com/py-
thon-excel/xlrd) and xlsxwriter (https://pypi.org/project/XlsxWriter/) to read and write 
both XLS and XLSX files, 2) pandas — data analysis and statistics library (McKinney, 2011) 
for data manipulation including filtering, merging and split-apply combine operations 
(Wickham, 2011) and 3) matplotlib (https://github.com/matplotlib/matplotlib) for visual-
ization and PDF creation.

During the development of BovHEAT, we implemented fully automated unit and inte-
gration tests, which are performed on every code revision. These tests ensure correct 
results for all current and future BovHEAT versions by testing them against the vali-
dated dataset. Installation is not required, as the entire BovHEAT tool is packaged and 
delivered as one single standalone executable file for three commonly used operating 
systems (Windows, macOS and Linux). The executables are built and tested through 
GitHub Actions (https://github.com/features/actions).

Automated activity monitoring (AAM) data
To develop and validate a software tool to process AAM data, we used data from 
a neck-attached accelerometer (Heatime, SCR Engineers Ltd., Netanya, Israel), referred 
to as the AAM system in this paper, to conduct a proof-of-concept study. The AAM sys-
tem was chosen because it is popular in the dairy industry (Michaelis et al., 2013) and 
has been used extensively in different research settings, including reproductive perfor-
mance (Fricke et al., 2014) and health disorders (Stangaferro et al., 2016). Activity and 
rumination characteristics were monitored by the AAM system using tags that record 
the cow’s movement and intensity, as well as rumination. The on-farm computer was 
equipped with the accelerometer software DataFlow II (SCR Engineers Ltd., Netanya, 
Israel), which stored the activity data as aggregated average activity blocks of 2-h time 
periods (12 blocks of 2 hours per day) per cow. The raw activity data from each cow were 
converted by accelerometer software into an activity change index using a proprietary 
algorithm. The algorithm uses the difference between the cow’s momentary mean ac-
tivity and its mean activity of the past seven days, weighted by its standard deviation 
(Bar, 2010). LeRoy et al. (2018) were previously able to explain the algorithm’s calculation 
steps in detail. Index values for activity change range from -100 to 100 index points 
(decreased activity -100 to 0; increased activity 0 to 100).

Two datasets were used, which represented two possible data export schemes. Files 
from the AAM system were exported with the corresponding herd accelerometer soft-
ware DataFlow II. The first dataset contained activity data of 260 Holstein cows from 
May 2018 until April 2019 from the University of British Columbia’s Dairy Education 
and Research Centre in Agassiz, Canada. Activity data for all cows were exported on 
a weekly basis, which resulted in multiple files, each containing activity data from 7 
days. Therefore, in this export scheme, the observations of a single cow are spread 
across multiple XLSX files. The second dataset contained activity data from 7 commer-
cial dairy farms in Northeast Germany representing 5,217 Holstein cows from July 2018 
until April 2020. The activity data were exported for all cows that calved within the last 
7 d on each farm. The files contained the complete activity data from calving until 50 
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days in milk (DIM). In this export scheme, all observations of a single cow were stored 
in one XLSX file. 

Sample activity data files with both export schemes from both datasets can be inspect-
ed in the BovHEAT GitHub and Zenodo repositories.

Estrus parameter definition
Each estrus event can be defined by three different behavioral events in the time se-
quence: onset of estrus (ONSET), peak of estrus activity (PEAK), and the end of estrus 
(END). The onset of estrus is defined as a cow passing a certain level for the activity 
change index. This level is a farm-specific threshold that is defined by the herd manag-
er. An animal eligible for breeding is considered to be in heat as soon as it passes this 
threshold. The end of estrus is defined by the first instance at which the index value 
falls below this threshold again. The intensity of an estrus event can be defined by the 
peak of the activity change index during an estrus event. The duration (DUR) of an es-
trus event can be defined as the interval from ONSET to END.

Source data
The BovHEAT tool automatically detects and imports all folders containing XLS and 
XLSX files exported in the English or German language via DataFlow II. Additional lan-
guages can be added to the analysis tool by creating a translation table for the required 
column headings. Damaged files or files with incorrect column headings will be skipped. 
The user can define the desired threshold for estrus detection and specify an observa-
tion period by selecting DIM values for start and end. To include days before calving, the 
start value can be negative. The calving date is determined by DIM = 0. In the case that 
no observation with DIM = 0 is available (i.e., missing or corrupted), the earliest DIM 
value is used to retroactively calculate the calving date. If multiple lactations of one cow 
are detected in the read data, each lactation will be analyzed individually. Overlapping 
and duplicate observations are detected, and invalid observations are discarded. This 
scenario occurred in our first dataset, when several consecutive files, each containing 
7 days of AAM data, had to be merged. The BovHEAT tool additionally supports unsu-
pervised execution through command-line options (e.g., folder path, start and stop DIM 
value, threshold, language, core count, output file and interpolation limit).

Missing values and short interestrus intervals
The BovHEAT tool addresses missing values through a two-step method. First, missing 
values are interpolated if the number of missing consecutive observations is less than 
3 (i.e., < 6 h). The imputation of missing data, however, should be used with caution, 
as it may lead to incorrect conclusions (White et al., 2018). The interpolation can be 
disabled, and the limit of missing consecutive observations can be changed. As a sec-
ond step, information regarding the percentage of usable activity data in the selected 
observation period is reported in the XLSX results, granting the ability to filter for the 
desired amount of minimum usable data. Future studies need to address whether the in-
troduction of cows with missing data leads to a bias when evaluating AAM profiles 
of cows and their association with biological outcomes. A plausibility check for short 
estrus intervals was added. A flag is set if two estrus events occur within less than 10 
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hours. Short interestrus intervals have been associated with reduced pregnancy per AI 
(Tippenhauer et al., 2021), although the physiological reason is unclear.

Output and visualization
After processing, the results are saved in a single XLSX file that contains two result table 
formats. In the wide-formatted table, each cow is contained in a single row. For each es-
trus event the cow had, several columns of estrus parameters were added. In the long-for-
matted table, each cow can occupy multiple rows, one for each estrus event. This format 
reduces the number of estrus parameters columns. All processed cows are listed and sub-
divided by their ID and lactation number. The tables contain the following information: 
folder name (i.e., farm name), cow ID, lactation number, calving date, warning flag for 
estrus events with an abnormal pattern (i.e., 2 estrus events within 8 h), usable activity 
data within the selected observation period (%), maximum activity change index value, 
and number of estrus events within the observation period. For each estrus event, the fol-
lowing values are calculated: the date and time for ONSET and END, activity change index 
value at PEAK, DIM value at PEAK, date and time for PEAK and DUR of the estrus event.

Additionally, a PDF file is generated containing line graphs showing the activity change 
index for the selected observation period for each lactation of each cow. Estrus events 
are highlighted, and the calving dates are marked within the graph. The searchable PDF 
file contains farm name, cow ID, lactation number, and the percentage of usable data 
for each cow and lactation.

Sample files for the PDF line graphs and the XLSX results with both wide- and long-for-
matted can be inspected in the BovHEAT GitHub and Zenodo repositories.

Figure 1: A sample activity change index line graph with highlighted estrus events and descriptive 

title generated by BovHEAT. The calving date and the user-selected threshold for heat detection are 
marked. These graphs are generated for each lactation of each cow in the processed dataset and are 
saved in a PDF file, allowing the user to check and visualize the activity patterns and calculations 
performed by BovHEAT.
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Validation and processing method
To evaluate the accuracy and functionality of the BovHEAT tool, we compared three 
different methods to process AAM data: 1) manual data evaluation (MAN), 2) the afore-
mentioned HeatCalc Excel tool (EXCEL), and 3) the developed analysis tool BovHEAT. An 
estrus event was reported accurately if all five characteristics were identified correctly: 
timing of ONSET, END and PEAK, PEAK activity change index value and DUR. The vali-
dation was performed independently by three investigators (JL Plenio, A Bartel, S Bor-
chardt). For this independent validation, activity data from a total of 60 cows were used. 
Sixty cows were selected by randomly choosing 30 cows from each of the two datasets. 
They were subsequently subdivided into six groups containing 10 cows each. The max-
imum number of observations regarding activity change data was 600 (50 days with 12 
observations per day) per cow. Twenty out of 60 cows had complete datasets. Among 
the 40 cows with incomplete datasets, on average, 101 observations regarding activity 
change data were missing, ranging from 6 to 360 observations per cow 

To compare the time to process the data and the accuracy of the results among the 
three methods, each 10-cow group was analyzed by the three investigators, each using 
one of the three methods. Each investigator performed the methods in a different or-
der. Organizing and reporting the results into a standardized table was included in the 
time for analyses. The column order and format of the standardized results table was 
designed not to favor any of the three methods. If there was a disagreement among 
the three methods, the truth was determined by revisiting the raw data and reaching 
a consensus between the three investigators.

Statistical analyses to compare the time to process the data of the three methods were 
performed using R version 4.0.0 (R Foundation, Vienna). The time was log transformed 
to achieve a normal distribution. Statistical testing was performed using a repeat-
ed-measures ANOVA accounting for the triple analysis of the six datasets by each of 
the three investigators, followed by a post hoc multiple comparison t-test with Tukey 
correction (R packages emmeans version 1.4.6).

Results
Overall, the three investigators agreed that 110 valid estrus events were to be iden-
tified. The mean (± standard deviation) duration of an estrus event was 11.4 ± 4.8 h. 
The minimum and maximum estrus event duration was 2 hours and 22 hours, re-
spectively. The number of estrus events per cow ranged from zero to six events. Four 
cows had an estrus event with a short estrus interval within the observation period 
and were flagged by BovHEAT. Three cows had no estrus events within the observation 
period. For each estrus event a cow reported, we evaluated the date and time for ON-
SET, PEAK and END, activity change index value at PEAK, and DUR of an estrus event. 
Both EXCEL and BovHEAT correctly identified all estrus events and their parameters. 
Manual data extraction was less accurate due to various human errors, including cal-
culation, transfer and reporting mistakes, with 13 out of 60 cows having at least one 
error (3, 4 and 6 errors per investigator). More specifically, 16 out of 110 estrus events 
were recorded incorrectly. The time to process AAM data and copying the results 
into a standardized results table from 10 cows was 41.0 (range 28 – 53) minutes, 30.7 
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(18 – 48) minutes, and 11.7 (4 – 16) minutes for MAN, EXCEL, and BovHEAT, respec-
tively, showing that BovHEAT considerably shortens the analysis time of the 10-cow 
group, being 3.51 times faster than MAN (P < 0.001) and 2.63 times faster than EXCEL 
(P < 0.001). A minor improvement by a factor of 1.34 was present for EXCEL when com-
pared to MAN (P = 0.196). A greater advantage can be expected for larger datasets due 
to scalability using BovHEAT.

Discussion and outlook
The objective of this study was to develop and validate an open-source analysis tool 
for the automated processing of dairy cow activity data collected from an AAM system. 
Our results indicate that the BovHEAT tool has several advantages compared to manual 
data processing and data processing using the HeatCalc Excel tool that was previous-
ly used by several research groups. We were able to show that processing AAM data 
using BovHEAT required less time, provided more accurate results than manual data 
processing and eliminated potential human errors. We expect that the actual time-sav-
ing benefits for larger datasets will increase as our analysis also included the time 
consumed to copy the output of BovHEAT into a standardized table. However, since 
BovHEAT generates an Excel file with result tables in the long and wide format, this 
step may be skipped, as the data are usable directly after analysis without the need for 
further data transformation. For example, a complete run of the second dataset of 5,477 
cows, which consisted of 361 XLS and XLSX files, took 172 seconds utilizing a computer 
equipped with an 8-core CPU. While incorporating the capabilities of the aforemen-
tioned HeatCalc Excel approach, our analysis tool offers additional features such as 
batch-processing of large amounts of AAM data, handling of missing values and short 
interestrus detection. As shown in our validation of the two datasets, missing values 
seem to be a common issue when processing AAM data. Only 20 out of 60 cows had 
complete activity data from an entire observation period of 50 d per cow. The reasons 
for missing activity data remain speculative. Possible causes are sensor malfunctions, 
data transmission errors or insufficient calibration time after a cow was fitted with 
an AMM system sensor. Contrary to the HeatCalc Excel approach, BovHEAT does not 
require an additional calving date column, as it utilizes the DIM column for calving 
date calculation. As a positive side effect, this allows for the inclusion of cows that 
received a neck collar after calving (i.e., without a calving date or an observation for 
DIM = 0). The additional PDF output, which contains activity change line graphs, helps 
to visualize and understand the activity patterns of the dairy cows. With the provided 
sample dataset and executables for Windows, Linux and macOS, our BovHEAT tool can 
be tested and evaluated immediately.

The presented advantages of our analysis tool could benefit future research using AAM 
data of thousands of animals while facilitating reproducibility. These advantages, in 
turn, support dairy scientists to gain a better understanding of the physiology and be-
havior of dairy cows and to develop new decision support tools to optimize reproduc-
tive management. The BovHEAT tool is released under the permissive and open-source 
MIT license and can be evaluated, downloaded and contributed to on GitHub (https://
github.com/bovheat/bovheat, https://doi.org/10.5281/zenodo.3890126).
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Abstract
Infrared thermography offers a non-contact method to record the emitted heat signa-
tures of animals, however its usage is constrained by high costs and requirement for 
trained staff. To tackle these limitations, we introduce a novel prototype system based 
on small single board computers and low-cost thermal camera units supported by an 
automated data management pipeline that allow continuous and automatic monitor-
ing of livestock. We demonstrate the system using calves reared in single-animal pens. 
The system is composed of sensory platforms and an on-site server, connected wire-
lessly. The sensory platforms are equipped with a passive infrared motion sensor that 
triggers the thermal camera when the calf begins to feed or moves to locations relevant 
for thermal monitoring, i.e. where heat emitting areas such as eyes, ears and muzzle 
are visible. Thermal images are then collected by the server and stored locally or trans-
mitted over the Internet. However, low-cost thermal cameras are inaccurate, up to ±7 
Celsius in farm conditions, according to manufacturer’s data. We explore two methods 
for performing calibration, validated on the eye temperature of calves. We show that 
an accuracy of 0.5°C is attainable using on-site calibration. Field tests of the proposed 
prototype system on a commercial dairy farm showed that it is robust and capable of 
continuous monitoring without interfering with farm operations. 

Keywords: infrared thermography, automatic monitoring, thermal calibration, 
Raspberry Pi, FLIR Lepton

Introduction
Infrared thermography records heat emitted by objects and allows temperature mon-
itoring of bodies, including animals. All objects with temperature above absolute zero 
emit heat, which thermal cameras can passively record from a distance. Passive mon-
itoring is particularly desirable in veterinary settings, where disturbance to animals 
caused during inspection can influence their physiological state and behaviour (Waib-
linger et al. 2004). Several diseases manifest in changes to local (e.g. inflammation) or 
body (e.g. fever) temperature and these changes can be picked up by thermal cameras. 
Abnormal temperatures can appear before more severe clinical symptoms become vis-
ible and early detection can therefore enable timely and milder intervention.

Thermal cameras have been successfully applied to detect and monitor a range of 
pathologies in domestic animals. Examples include early detection of bovine res-
piratory disease in calves (Schaefer et al. 2012), identifying mastitis in sheep (Martins 
et al. 2013) and cows (Machado et al. 2021), and detecting lameness by contralateral 
temperature differences in feet (Alsaaod et al. 2015). The utility of infrared thermogra-
phy has also been demonstrated in equine sports medicine identifying muscle injury, 
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bone fractures and incorrect saddle fit (Talas & Talas, 2017). Thermography can  also be 
used to monitor animal welfare; for example, stress in dogs was found to be correlated 
with increased eye temperature (Travain et al. 2015). Additionally, thermography offers 
a safe and non-invasive method to monitor wild animals, both in zoos and nature (Hils-
berg-Merz, 2008).

However, thermal imaging comes with limitations that affect its utility in veterinary 
medicine. Thermal cameras of high resolution (at least 320x240 pixels) and accuracy 
(not worse than ±2°C) are expensive, ranging between circa €5,000 to €20,000. These 
are typically hand-held cameras that require experienced personnel to operate. While 
they do not require physical contact with the animal, operators need to be present and 
animals, e.g. horses, often have to be taken out from their enclosures for inspection. 
This requirement heavily restricts the assessment of large groups of animals. Due to 
the associated cost and time constraints, infrared thermography in veterinary practice 
tends to be limited to high value animals (e.g. horses and zoo animals). As thermal 
images are heavily influenced by environmental factors (e.g. ambient temperature, rel-
ative humidity) and the physiological state of the animal (e.g. their Circadian rhythm), 
precise calibration and rigorous image analysis are required if only a few images taken 
at a single point in time are available due to assessment limitations.

Recent availability of low-cost computers and associated sensors could offer a solu-
tion to the challenges outlined above. Small single-board computers (e.g. Raspberry 
Pi, Arduino) can be equipped with tiny cameras and housed in robust enclosures that 
tolerate farm environments. These computers are powered with 5V USB cables and can 
transfer data through Wi-Fi therefore they pose no danger to animals or handlers and 
do not require significant infrastructure to be installed. They can be programmed to 
record data automatically and left operational for weeks. This enables continuous data 
collection over extended periods of time without any disturbance to animals. However, 
small thermal cameras available for these sensory platforms come with worse resolu-
tion and accuracy than more powerful hand-held models, therefore careful calibration 
is critical.

In this paper, we demonstrate the utility of sensory platforms designed around the 
Raspberry Pi single-board computer and Teledyne FLIR Lepton thermal camera for con-
tinuous and automatic thermal monitoring of calves on a dairy farm. We tested two 
methods for calibrating the cameras, validated on the surface temperature of calf eyes, 
and show that accuracy of 0.5°C is achievable using on-site calibration.

Material and methods

Equipment
The sensory platform was based on a Raspberry Pi 4 Model B single-board comput-
er (Raspberry Pi Foundation, Cambridge, UK). The platform was equipped with a Tele-
dyne FLIR Lepton 3.5 thermal camera unit (Teledyne FLIR, Wilsonville, OR, USA) using 
a Lepton Breakout Board V2 and connected to the Pi via its general-purpose input/
output (GPIO) interface. A passive infrared motion detector was also added to trigger 
the thermal camera when a calf moved into view and a real-time clock ensured correct 
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timekeeping as the Pi does not include one by default. The Pi and associated sensors 
were fitted into a custom-designed acrylic box for protection (see Figure 1). While the 
Lepton thermal camera comes with a shutter, it is used for internal calibration and 
does not protect the lens. We also found that it is very susceptible to dust, which can 
break down the moving parts. Germanium glass is typically used to protect thermal 
cameras as it is transparent to infrared radiation, however its high price was prohib-
itive for our purposes. We tested several materials to tackle this challenge and found 
that IKEA’s ISTAD resealable bags (IKEA, Delft, Netherlands), made out of polyethylene 
plastic, let infrared waves through without any significant decrease in the resolution of 
the thermal sensor. We cut out 1x1 cm squares from the bag and attached them in front 
of the thermal cameras. The other major adversary to the platforms were insects that 
were attracted to the emitted heat and prospects of shelter. They were deterred using 
balsa wood sheets soaked in lavender oil and attached to the plastic lunch box that 
acted as the outer protective shell for the platform. The sensory units were mounted 
on a custom-made aluminium stand fixed to the calf pen and provided the thermal 
camera a field of view looking at the calves’ feeding buckets from approximately 1 m 
away at a 45-degrees downwards angle (see Figure 1). 

Data collection
Thermal images of seven calves feeding from buckets in single-calf pens were collected 
on a dairy farm in Devon in the UK during May 2021. The calves were fed twice a day, 
morning and afternoon. In this study, we present data collected during the afternoon 
feeding, between 4 and 5 o’clock. Once a calf approached the bucket, the motion detec-
tor triggered the thermal camera to take images approximately 1 frame a second for 8 
seconds (the cooldown period of the motion detector). The image collection loop was 
repeated as long as the calf remained in the field of view of the motion sensor. Imag-
es were first stored locally on a SD card and sent off to an on-site server, a Raspberry 
Pi 4 connected to 2 TB external storage, once a day over Wi-Fi. Thermal images were 
visualised and manually assessed in MATLAB 2021a (MathWorks, Natick, MA, USA). 
Images where the calf was present perpendicular to the camera with the left eye clear-
ly visible were selected for processing. The position of the eye was manually selected 
using a mouse click and the pixel with the maximum temperature was then located 
within an 8 pixel radius. This pixel was treated as the centre of the eye and the average 
temperature was calculated under a 5x5 pixel window around this point, which ap-
proximated the size of the eye on the image (see Figure 1). For each day and sensor, we 
took the median value of 8 randomly picked averaged eye temperatures. Medians were 
selected as they are robust against outliers. Reference eye temperatures of calves, used 
later as calibration and validation data, were also collected during afternoon feeding 
using a Tecnimed VisioFocus VET 06610 non-contact infrared thermometer (Tecnimed, 
Vedano Olona, Italy). We chose this thermometer as it allows non-invasive data collec-
tion and is similarly accurate to rectal thermal measurements. Measurements were 
taken by the farmhand who the calves were familiar with in order to minimise distur-
bance. Ambient temperature and relative humidity of the calf shed was also record-
ed at 5-minute intervals using an EasyLog EL-SIE-2+ data logger (Lascar Electronics, 
Whiteparish, United Kingdom).
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Calibration
According to the manufacturer, Lepton thermal cameras can produce an error of ±7°C if 
the temperature of the assessed object and ambient temperature ranges between 0 to 
30°C (FLIR, 2014). The potential for this magnitude of error makes the Lepton unreliable 
to detect clinically meaningful changes in temperature. For example, the body tem-
perature of healthy calves is typically 38.6 to 39.4°C and considered pyrexic above this 
range (Burfeind et al. 2012). We tested two methods of calibrating the thermal cameras 
in order to reduce the error. The first method, similar to the calibration described by 
Hedge and colleagues (2020), uses an open container of cooling water and a submerged 
temperature sensor. The Lepton thermal camera recorded the average surface tem-
perature of the water between 28 and 40°C from a distance of 1 m. The average was 
calculated using a circle with a radius of 5 pixels centred at the middle of the container, 
while temperature recordings are matched to measurements taken by the submerged 
thermometer. A linear model is then used to calculate the intercept and slope of the 
difference between the Lepton and the reference temperature sensor. Water temper-
atures were recorded indoors with ambient temperature of 20°C and relative humid-
ity of 60%. The second method uses the eye temperatures collected on-site using the 
non-contact infrared thermometer and leave-one-out cross-validation. To adjust eye 
temperatures measured by the Lepton for a given day, we fitted linear models to a set 
number of randomly chosen measurements (5, 10, 15 and 20 days) from other days by 
the same sensor to the associated reference eye temperatures. We then applied the 
resulting linear model to the uncalibrated value and repeated the same process for 
every day.

Statistical analyses
First, we tested whether ambient temperature and relative humidity had a significant 
effect on the model that fitted thermal camera measurements to reference eye tem-
peratures. We used linear mixed effects models with different sensory platforms as 
random variables. This determined whether we included ambient temperature and rel-
ative humidity in further analyses. We measured the effectiveness of calibrations by 
calculating the mean absolute error of fitted data and running permutation tests, using 
10,000 resamples, to compare whether the means were significantly different to the 
mean of the uncalibrated data. All statistical analyses were carried out in R (R Founda-
tion for Statistical Computing, Vienna, Austria) and linear mixed effects models were 
fitted using the lme4 package (Bates et al. 2015).

Results and Discussion
A linear mixed effects model with variable intercepts and slopes for the random variable 
of sensors was a significantly better fit when ambient temperature and relative humidity 
were included as fixed variables (Δdeviance = 4481.2, df = 4, p < .0001). Both tempera-
ture (Δdeviance = 3484.1, df = 3, p < .0001) and relative humidity (Δdeviance = 1767.1, 
df = 1, p < .0001) had significant effects on their own. This meant that while the Lep-
ton is regularly recalibrating itself using its shutter, the thermal images are consid-
erably influenced by varying environmental conditions on the farm. Therefore, both 
ambient temperature and relative humidity were included in linear models fitted when 
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calibrating with the eye temperature data. During the studied period, ambient temper-
ature ranged between 9.2 and 18.9°C while relative humidity fluctuated between 50 and 
88%. Ambient variables were not included for calibrations done with cooling water as 
those recordings were carried out in a stable uniform environment.

Figure 1: (Top left) Images of the sensory platform and (top right) their placement in relation to 
calves. (Bottom) Example thermal images of calves used in the study with black squares marking 
the sampled areas to calculate eye temperatures. The bottom right image also shows how eye 
temperature was recorded for reference

The means and standard deviations of differences of uncalibrated and calibrated eye 
temperatures to references readings per sensor are shown in Table 1. The results of 
the permutation tests showed that the ‘water calibration’ was ineffective in this setting 
(see Figure 2); the mean of absolute error between temperatures calibrated using cooling 
water and the reference eye temperatures was significantly higher than the mean of ab-
solute differences between uncalibrated and reference readings (ΔT = 0.37°C, p = .0003). 
On the other hand, calibrating with values taken at different days yielded a better re-
sult over uncalibrated values if 10 days’ worth of samples were taken (ΔT = 0.81°C, 
p < .0001). Overall, using 15 days was even more effective and produced a significantly 
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lower mean of absolute error than 10 days (ΔT = 0.12°C, p = .0308), however this differ-
ence is clinically less significant. Calibrating with 20 days did not have a significantly 
lower mean in comparison to 15 days (ΔT = 0.02°C, p = .6880). A density plot for each 
type of calibration is shown in Figure 2.

Table 1: Means (and standard deviations) of error between thermal camera readings and reference 
eye temperatures for each sensor. Values are in °C

    Calibrated on

Sensor Uncalibrated Water 5 days 10 days 15 days 20 days

1 1.05 (0.80) 1.47 (0.97) 1.37 (1.22) 0.85 (0.88) 0.64 (0.61) 0.57 (0.60)

2 1.27 (0.83) 1.51 (1.06) 1.34 (1.88) 0.51 (0.34) 0.45 (0.38) 0.46 (0.38)

3 1.10 (0.86) 1.39 (0.99) 1.14 (0.81) 0.68 (0.52) 0.59 (0.49) 0.57 (0.51)

4 1.13 (0.70) 1.94 (1.12) 0.92 (0.83) 0.88 (0.66) 0.57 (0.49) 0.53 (0.49)

5 1.40 (1.06) 1.49 (1.05) 1.27 (1.42) 0.57 (0.49) 0.49 (0.31) 0.46 (0.32)

6 0.52 (0.37) 1.22 (0.84) 0.84 (1.16) 0.44 (0.31) 0.44 (0.33) 0.44 (0.29)

7 1.07 (0.71) 1.10 (0.67) 0.89 (0.97) 0.51 (0.27) 0.46 (0.31) 0.47 (0.27)

Interestingly, the error of uncalibrated readings is still relatively low; less than 2°C 
which is typically the factory quoted error rate for high-end thermal cameras. However, 
we consider that the low error may be a coincidence. The thermal cameras were fitted 
with polyethylene sheets for protection which had an effect of reducing the recorded 
temperatures. Despite the apparent error of <2°C on average, given the unreliable con-
ditions, we argue that calibration is necessary in all circumstances.

While minimising the error is obviously desirable in all settings, the effect of the type 
and magnitude of error is determined by the application. Because our proposed equip-
ment allows rapid collection of large amounts of data over extended periods of time, if 
for example, the error is linear and only the intercept is affected (i.e. the thermal cam-
era consistently over/underestimates the correct temperature by the same amount), 
even an uncalibrated sensor is adequate to track temperature changes within a single 
animal. Temperature readings would be inaccurate, but in a consistent manner and 
abnormal temperatures, caused for instance by fever, could be determined by chang-
es within the subjective time-series rather than by an external threshold (e.g. 39.5°C). 
However, we found that both the intercept and slopes of linear models are affected in 
the case of Lepton cameras, therefore calibration is unavoidable (see Figure 2).

Using on-site calibration, we were able to reduce the mean error to approximately 0.5°C, 
which is comparable to a standard thermometer. In veterinary settings, a temperature 
difference of 1°C could be clinically significant (Turner et al. 1986). Our method yields 
an average error that is lower than this threshold, however errors over 1°C can occur 
occasionally. Therefore, we do not advocate that method could lead to clinical decisions 
per se, but rather consider our application as a prototype for an automatic, non-invasive 
early warning system that could flag potentially ill animals for further inspection.
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Figure 2: (Left side) Reference eye temperatures plotted against measurements without calibration 
(black circle), calibrated with cooling water (grey triangle), and calibrated with randomly selected 
eye temperatures from 15 days (white square). The dashed diagonal line shows a hypothetical 
perfect calibration. (Right side) density plot of mean absolute error for each type of calibration 
performed in the study

Conclusions
Single-board computers fitted with small thermal cameras promise a versatile and eco-
nomic solution for an automatic and non-invasive early detection system for pathologies 
related to temperature changes. Our proposed system, based on Raspberry Pi computers 
and Teledyne FLIR Lepton 3.5 cameras, costs less than €300. This is not only an order of 
magnitude less than hand-held thermal cameras generally available in the marketplace, 
but the system is fully programmable for custom operations. In our example, single-calf 
pens were used to tackle the issue for identifying animals. A sensory platform per animal 
is not economical in a commercial setting and therefore identification is crucial. A Rasp-
berry Pi-based system is advantageous as it can be extended with further sensors, such 
as low-cost visible light cameras or RFID, which could enable identification and allow 
more animals to be monitored by the same sensor (Andrew et al. 2020).

Low-cost thermal cameras are less accurate than expensive ones ‘out of the box’ and 
require calibration to attain more reliable temperature readings. We found that ambi-
ent temperature and relative humidity have a considerable effect on measurements, 
which need to be taken into consideration during calibration. This means that cali-
bration performed in stable environments (e.g. indoors) is not effective and reference 
temperature readings have to be taken on-site over a period of time, enabling posteri-
or calibration of thermal images. We found that taking reference eye temperatures of 
calves for 10-15 days is sufficient to reduce the mean error of thermal cameras to 0.5°C 
and thus enables a system to flag cases that could be clinically relevant and provide 
early warning for farmers and veterinarians. 
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Abstract
Identification of calves affected by Bovine respiratory disease (BRD), one of the most im-
portant disease in calves, is challenging. Therefore, tools for an automated monitoring 
and fast and easy identification of diseased calves would be a breakthrough in health 
management. The aim of this study was to examine the association between BRD and 
behavioral changes detected by an ear-tag based accelerometer system (SMARTBOW, 
Smartbow GmbH / Zoetis LLC) in weaned calves. Accelerometer data were analyzed 
retrospectively from 7 d before to 1 d after clinical diagnosis of BRD. Classified activity 
measures determined by the accelerometer system (active, inactive, high active), lying, 
and rumination times (min/h) were evaluated. As a reference, all calves in the study 
(n=508) were checked by daily observation by use of the respiratory score by McGuirk 
and Peek (2014). Calves with a total score ≥ 4 and rectal temperature ≥ 39.5°C for at least 
two consecutive days were categorized as diseased. Overall, 48 calves were classified as 
diseased. For each diseased calf, at least one clinically healthy control calf was enrolled. 
The data analysis showed a significant difference in high active times between groups, 
with diseased showing less high active times on every day, except d -3. Diseased calves 
showed significantly more inactive times on d -4, -2, and 0, as well as longer lying times 
on d -5, -2, and +1. The results showed the potential of the system to detect disease 
early, but further studies with higher numbers of diseased animals are necessary.

Key words: bovine respiratory disease, calf behavior, accelerometer.

Introduction
Bovine respiratory disease (BRD) is one of the most important diseases in calves in 
dairy as well as in beef production. The disease leads to impaired animal welfare, in-
creased use of drugs (especially antimicrobials), and economic losses. Economic losses 
are due to costs for diagnosis, treatment, increased labor, increased risk for other dis-
eases, impaired development of the calf, loss of the animal, and long term consequenc-
es on, e.g. weight gain, reproduction, and milk production (Adams and McGuirk, 2016; 
Cramer and Ollivett, 2019; Buczinski et al. 2021). One important point is an early detec-
tion of disease on farm. This can lead to fast intervention and consequently minimize 
suffering of animals, use of drugs, and economic losses.

Detection of BRD is mainly based on physical examination of individual animals. This 
is time consuming and often not feasible in larger groups of animals. Hence, clinical 
signs-based scoring systems in groups of animals were introduced, e.g by McGuirk and 
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Peek (2014). New technologies for an automated identification of calves suffering from 
diseases like BRD could improve animal health and welfare monitoring.

In the last few years, accelerometer-based technologies became more and more im-
portant for the automated monitoring of feeding, health and detection of behavioral 
changes (Chapa et al., 2020). These technologies are able to measure and record activity, 
lying, and rumination times to detect changes in behavior that might be indicative of 
diseases and other conditions, e.g. estrus (Schweinzer et al., 2019, Gusterer et al., 2020). 
Recent studies showed the high potential of accelerometers to monitor rumination, 
activity, and lying behavior in calves (Bonk et al., 2013, Krieger et al., 2019, Swartz et 
al., 2020). It has been reported that these behavioral changes can be detected in dis-
eased (diarrheic) calves before clinical signs were evident (Goharshahi et al., 2021). The 
objective of this study was to determine differences in behavior of calves diagnosed 
with BRD and clinically healthy controls kept in groups by use of an ear-attached ac-
celerometer. In practice, this should help to identify affected calves prior to the clinical 
detection of the disease.

Material and methods

Animals and examinations
All calves were equipped with an accelerometer (details see below) approximately two 
weeks before entering the study barn. All animals under study were scored daily by 
observation using a calf scoring system for group-housed calves adapted from McGuirk 
and Peek (2014). The daily scoring included evaluation of cough, nasal and ocular dis-
charge, as well as head and ear position. Each parameter was classified using a four-
point scale where 0 was considered normal and 3 as severely abnormal (Table 1). All ex-
amined parameters were summarized to one score. Calves with a total score of ≥ 4 or at 
least two parameters with a score ≥ 2 were considered for further clinical examination.

Table1: Scoring system and definitions for daily observations in group housed calves adapted from 
McGuirk and Peek (2014).

Score
Observed parameter

Cough Nasal discharge Ocular discharge Head and ear 
position

0 none serous none normal

1 single (≤3), 
induced  unilateral, cloudy small ear flick or head 

shake

2 single, 
spontaneous bilateral, mucus moderate slight unilateral ear 

drop

3 repeated (>3), 
spontaneous

bilateral, 
mucopurulent severe severe head tilt or 

bilateral ear drop

The clinical examination included lung auscultation for respiratory sounds, examina-
tion for dyspnea, and measurement of the rectal temperature. Calves were only defined 
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as diseased if the rectal temperature ≥ 39.5°C and at least one parameter score ≥ 2 were 
present for two consecutive days. Day 0 was defined as the day when BRD was first 
diagnosed, whereas d +1 was the day of confirmation. For each diseased calf, a control 
calf was chosen. Control calves had to be of the same age, with a total score ≤ 1 and 
no abnormalities during clinical examination. In this study, the classified measures 
of the accelerometer, i.e. activity, lying, and rumination time were compared between 
diseased and control calves starting 7 d before BRD diagnosis.

Accelerometer data collection 
A 10Hz accelerometer-equipped ear tag (SMARTBOW, Smartbow GmbH / Zoetis LLC) 
with a size of 52 x 36 x 17 mm and a weight of 34 g was attached to the left ear of the 
study animals. The ear tag collected data every second. Data were wirelessly transmit-
ted from the ear tag vi receivers (Smartbow wallpoints) to a server every 4 sec if a calf 
was active and every 16 sec if a calf was inactive. The continuously recorded accelera-
tion data (raw data) were further processed by algorithms developed by the manufac-
turer. Data classification was based on algorithms originally developed for adult cows. 
Classified data based on these algorithms for lying, standing, active, inactive, high ac-
tive, and rumination were presented visually on a local computer or on a mobile device 
and recorded in the SMARTBOW software. All parameters were presented as minutes 
per hour (min/h) that the animal spent with this activity. Consequently, if the min/h of 
these three parameters were summarized it revealed 60 min. 

Statistical analysis
Accelerometer data were summarized per calf and day starting with d -7 to d +1 rela-
tive to first diagnosis of BRD (d 0). Variables were tested for normality using the Shap-
iro-Wilk test. Averages were reported as mean ± SD. To test for an association between 
the duration of activity level, lying, and rumination of the two groups of calves (dis-
eased and control), the Mann-Whitney U test was performed. P‐value < 0.05 was con-
sidered as significant.

To evaluate the adequacy of the accelerometer data to predict the calves’ health status 
for each day, Lasso regularized multivariate logistic regression models (L1 RMLM) were 
used. No other disease then BRD or special pathogen was taken into account in these 
models.

Results and Discussion
In total, we enrolled 508 calves, of which 48 calves were categorized as diseased by 
observation and scoring. Seven of these calves had to be excluded due to partial data 
losses by the accelerometer system. 

Activity (i.e. active, inactive, high active) for the last 7 d before, up to one day after clini-
cal diagnosis are presented for both groups (diseased and control) in Figure 1. Diseased 
calves showed more inactive times compared to their controls. The differences were 
significant on d -4 (17.1 ± 16.0 vs 15.8 ± 15.3 min/h, P = 0.03), day -2 (18.4 ± 16.6 vs 16.7 ± 
16.4 min/h, P = 0.03), and day 0 (17.4 ± 17.1 vs 15.4 ± 15.9 min/h, P = 0.03).
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Consequently, high active times were shorter in these calves. High active values ranged 
between 0 and 23.0 min/h in diseased and 4.1 to 31.1 min/h in control calves. Differenc-
es between groups were significant on all days, except on d -3.

Lying times were higher in diseased than in control calves. Differences were significant 
only on d -5, d -2, and d+1. Active and rumination times did not differ significantly 
between groups.

Figure 1. High active, inactive, and active times for diseased and clinically healthy control calves 
from d -7 to d +1 relative to clinical diagnosis of bovine respiratory disease (BRD) (d 0); *changes 
between groups with a P < 0.05.

The aim of the present study was to test the accelerometer system as a device to detect 
behavioral changes indicative for BRD prior to manual observation. Previous studies 
showed that the used accelerometer system is a reliable device to monitor lying and 
feeding behavior (Borchers et al., 2016), rumination (Reiter et al., 2018), estrus detection 
(Schweinzer et al., 2019), onset of calving (Krieger et al., 2019), and drinking behavior in 
calves (Roland et al., 2018). 

Depression, decreased activity, decreased feeding and rumination times, increased ly-
ing times, and number of lying bouts have been associated with BRD (Borderas et al., 
2009, Belaid et al., 2020). These changes can be used to detect disease or at least calves 
at risk for diseases by use of accelerometers. In our study, differences in activity and 
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lying could be detected in accelerometer data between diseased and control animals 
up to seven days before the onset of disease. However, the number of diseased animals 
in the study was low. Further studies including a greater number of diseased calves are 
necessary to confirm or disprove our results and to develop an alert system for early 
detection of BRD in calves. In this context, the development of specific algorithms for 
calves to detect age-specific behaviors (e.g. playing behavior) should be considered.

Conclusions
Sensor technology can be a reliable method for early detection of disease, especially 
in group-housed calves where the monitoring of individuals is difficult. The results of 
this study indicate that ear-tag based accelerometers for monitoring lying and activity 
parameters have the potential to discover animals at risk for BRD before the onset of 
clinical signs. Nevertheless, further research is needed with a larger sample size. 
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Abstract
This paper proposes an algorithm to detect bovine respiratory disease (BRD) 24 hours 
before the onset of clinical signs. The algorithm uses signals from a collar, a pedometer 
and an intraruminal bolus. The algorithm using only the collar and pedometer signals 
resulted in Se=75% and Sp=74%; this performance increased to Se=75% and Sp=76% 
when the ruminal temperature signal was added.

Keywords: BRD early detection, Collar and pedometer, model selection, signal 
processing.

Introduction
Bovine respiratory disease (BRD) is the most important health problem in cattle feedlots. 
Therapeutic solutions include the use of antibiotics to reduce the spread of the bacterial 
infection. Indeed, the aetiology of BRD leads to a rapid development of the disease in 
the feedlot if nothing is done to treat an infected young bull, with a decrease in perfor-
mance and even mortality (3% on average related to BRD (Engler et al., 2014)). Thus, BRD 
is the main cause of antibiotic use in cattle feedlots: on average, 20% of fattening animals 
receive antibiotic treatment (Assié et al., 2009). The causes of BRD are known to be mul-
tifactorial. The onset of BRD requires one or more non-infectious factors depending on 
the animals themselves (breed, immunity, etc.) or on the farming conditions (transport, 
housing conditions, feed, etc.). Furthermore, the severity of BRD cases varies greatly, rang-
ing from moderate to severe cases combining local clinical signs (nasal discharge, ocular 
discharge, coughing, dyspnoea, etc.) and general signs (hyperthermia, weakness, anorex-
ia). Again, animal and farm factors play a role in modulating the severity of clinical signs 
(Cusack & Lean, 2003; Duff & Galyean, 2007)2003; Duff and Galyean, 2007. Secondly, the 
detection of BRD cases by the farmer is complicated, often delayed, leading to the spread 
of the disease in the feedlot, and sometimes over-diagnosed. Traditionally, BRD cases are 
detected on the basis of cattle behaviour and appearance, which have limited sensitivity 
(62% (White & Renter, 2009)) and do not allow for early detection (Weary et al., 2009). This 
is because cattle often adopt predatory/prey behaviour and mask early symptoms (Griffin, 
2010). Early intervention is the key to effective treatment of BRD to reduce relapse rates 
and mortality (Ferran et al., 2011)it should be stressed that in early curative antimicrobial 
treatment as in metaphylaxis, the bacterial burden at the infection site is often very low, 
and so the rapid eradication of the bacterial population could result. We investigated the 
impact of early versus later curative administrations of 1 or 40mg/kg of marbofloxacin 
on the survival of mice, the eradication of the targeted pathogen and the selection of 
resistant bacteria in a mouse lung infection with Pasteurella multocida. In this model, for 
a given marbofloxacin dose, the clinical and bacteriological outcomes were better, and 
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the selection of resistance less frequent, for the early rather than for the late treatment. 
Moreover, the early administration of 1mg/kg led to better clinical and similar bacteriolog-
ical (eradication and selection of resistance. Diagnosis based on clinical signs alone may 
not be specific to BRD (Griffin, 2010). Therefore, a large proportion of treated cattle are not 
actually affected by BRD (specificity of clinical diagnosis: 63% (White & Renter, 2009)). An 
increase in the specificity of BRD diagnosis would allow for more prudent use of antimi-
crobials and lower costs of BRD control (Theurer et al., 2015).

The recent development of Precision Livestock Farming (PLF) (Allain et al., 2014), offers 
the possibility of a real-time monitoring and management system for the farmer, with 
the aim of providing a real-time alert when problems occur (Berckmans, 2014). Multiple 
sensor technologies are now available on the market (accelerometer, thermometer, mi-
crophone, video, etc.). They provide measured responses on animals, called bio-signals, 
which can be temperature measurement, GPS position, accelerometer data, real-time 
image analysis, sound analysis or water or food consumption activity. While these tech-
nologies are mainly oriented towards assisting herd management, they also offer inter-
esting prospects in terms of research and development, particularly for better assessing 
health problems. Biosensors aimed at measuring indicators related to the condition 
and health of animals (behaviour, temperature, and coughing) are already the subject of 
numerous studies (reviewed in (Guatteo et al., 2015)). Regarding body temperature, (Tim-
sit et al., 2011)clinical examination was performed by a veterinarian and then repeated 
every 12–24h until the end of RH episode. Fifty-two RH episodes were detected in 22 
animals. High rectal temperatures (40.1±0.6°C used reticulo-rumic temperature boluses 
in young bulls following their entry into a fattening unit. The study showed that 73% 
of hyperthermia episodes could be linked to BRD. Furthermore, the onset of BRD signs 
mainly occurred after the onset of reticulo-rumic hyperthermia episodes, with a time 
lag of 12-36 h. (Schaefer et al., 2007) detected an increase in the orbital temperature of 
juveniles 4-6 days before the onset of the first clinical signs of BRD. Despite these en-
couraging results, all the above studies have two major drawbacks. Firstly, the results 
cannot be used as a predictive model: they have not been validated and consist mainly 
of the presence of significant correlations between the indicators and the appearance of 
clinical signs. Indeed, individual conditions influence the onset and expression of BRD, 
so it is easy to imagine that the model built and tested on the same individuals would be 
less efficient if tested on new individuals. The use of cross-validation is an appropriate 
solution to this problem of over-fitting and will be used in this paper. Secondly, the pre-
vious studies only consider univariate signals and, due to the complexity of BRD, when 
considered separately, these health indicators may not be specific. For example, the 
social behaviour of young bulls, particularly agonistic interactions (e.g. fighting, pawing 
and threatening) and mounts, can lead to an increase in core body temperature for sev-
eral hours. Episodes of fever due to vaccination or diseases other than BRD (e.g. internal 
abscesses) can also lead to an increase in core body temperature (Timsit et al., 2011).

In this paper, we propose a detection algorithm that uses biosensor data as a predictor of 
the onset of clinical signs of BRD. A binary health state based on clinical signs was con-
structed and defined as the gold standard of a sick animal. Then, many variables were de-
rived from the initial sensor signal, called “behavioural data” and used as explanatory vari-
ables. A logistic regression model was fitted to explain the probability of disease occurrence 
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as a function of these behavioural data. To avoid overestimation, the performance of the 
model was evaluated by cross-validation. As there was a large amount of behavioural data, 
the best subset of explanatory variables (giving the best cross-validated performance) was 
sought using a statistical optimisation method known as simulated annealing.

Material and methods

Experimental data
Two herds of 52 Charolais young cattle were observed during 30 days in an experi-
mental fattening feedlots (Etablières farm, Vendée, France). The first herd was observed 
from November 7th to December 6th 2019; the second herd was observed from Novem-
ber 5th to December 4th 2020. The cattles were homogeneous in weight and age when 
arriving at the farm: 313 ± 34 kg and 235 ± 25 days for the first herd and 341 ± 42 kg and 
248 ± 21 days for the second herd. The 52 calves were spread over four pens in the same 
building. When necessary, treatments (of BRD or others pathologies) were adminis-
trered, under the control of the farm veterinarian.

Two types of data were collected: clinical data from veterinary examination and behav-
ior data measured by automatic sensors.

The clinical data consisted in regular rectal temperature measurement and daily clini-
cal examinations (by veterinarian or authorized veterinary students). The daily clinical 
examinations were performed by visual inspection. There were based on a grid de-
signed by veterinarians. This grid included general criteria (appetite, rumen fill score 
and depression) and respiratory criteria (respiratory rhythm (mpm), cough, dyspnea, 
nasal and ocular discharge).

Table 1: Notation grid for the visual clinical inspection. Each criterion was rated according to a scale 
from the healthiest level to the sickest (left to right). The cough strength was an indicator of the 
severity of the respiratory system damage. Generally, a strong cough is painless and corresponds 
to an upper respiratory tract damage when a weak cough is painful and corresponds to a low 
respiratory tract damage (lungs).

Clinical visual criteria Notation scale

Rumen fill score Bounced=0, Flat=1, Hollow=2

Appetite Normal=0, Decreased=1, Absent=2 

Depression Absent=0, Light=1, Severe=2 

Ocular discharge Absent=0, Serous weak=1, Serous moderate=2, Serous 
high=3 

Nasal discharge (quantity) Absent=0, Weak=1, Moderate=2, High=3

Nasal discharge (quality) Absent=0, Serous=1, Mucous=2, Purulent=3 

Respiratory amplitude (RA) Normal=0, Increased=1 

Respiratory frequency (RF) ≤40 npm=0, 41-50=1, 51-60=2, 61-70=3, 71-80=4 

Cough frequency number of events per 5 min observation sequence 

Cough strength Strong=1, Weak=2
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The rectal temperature was measured regularly (herd one: measure on days 7, 14 and 
30; herd two: measure on days 1, 8, 15, 22 and 29). When the animal’s health required 
it, additional rectal temperature measured were performed by the farm staff and those 
data were included in the data set. A clinical score was defined using this clinical ex-
amination as described below. 

The behaviour data consisted in measurement of the calves’ activity by automatic 
sensors. They were equipped with three different sensors: a pedometer (IceQube), 
an accelerometer collar (HeatTime) and a ruminal thermometer bolus (Médria). 
The activities monitored were the activity, the feeding, the rumination and the rest. 
Precisely, the pedometer counted the number of steps in 15 minutes intervals and 
recorded the time and duration of the lying bouts. The accelerometer collar measured 
the time allotted to feeding, rumination and resting for every hour. The ruminal 
thermometer bolus recorded the reticulo-rumen temperature every 5 minutes. The 
ruminal temperature allowed computing the moments of drinks. 

The clinical data were used to create a clinical score. To do so, a general health score 
(GS) was computed as:

GS = Rumen fill score + Appetite + Abatement + Rectal temperature≥ 39.7).

As the rectal temperature was not measured daily, for a given day, say j, the rectal tem-
perature considered was the maximal rectal temperature measured between days j-6 
and j+6 (included).

In the same way, the general health score, a respiratory score (RS) was computed by 
adding the scores of the respiratory criteria, i.e.:

RS =Ocular disch. + Nasal disch.(quantity) + Nasal disch.(quality) +Increased RA + RF + 
(Cough frequency > 0) + Cough strength.

Then, the clinical score was the multiplication of the two previous scores. An animal 
with a positive clinical score necessarily had general and respiratory symptoms. Even 
if it should be interpreted with great care, one can consider that this clinical score in-
creased with the severity of the respiratory illness.

Finally, a binary health variable was defined by setting a threshold on this clinical score. 
For the animal i on day j, the health variable was denoted Yij with Yij = 1 if the clinical 
score was greater than or equal to 4, and 0 otherwise.

Note that others thresholds than 4 could be tested. An animal with a Y= 0 was consid-
ered as healthy and was it was considered as sick when Y= 1.

Since the health variable was daily, the behaviour data were pre-processed to also cor-
respond to daily information. First of all, daily variables were computed.

Second, daily variations with respect to previous “averages” were computed as follows. 
Each variable was gathered on 6 intervals by day: 0h-6h / 6h-9h / 9h-12h / 12h-15h / 
15h-18h / 18h-24h (sum, average or maximum, accordingly to the list above). Then, for 
each variable the magnitude of the daily intra-individual variation was computed. 
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Third, all the previous variables (daily totals or variations) were divided by the maxi-
mum value they reached during all the previous days. Hence, departing from the 8 daily 
measures, 32 explanatory variables were computed.

Finally, for a given day (say j) the values of the 32 variables for days j to j-4 were consid-
ered as explanatory variables. To summarize, an observation of explanatory variables, 
for day j and individual i, consisted in a vector of length .

Prediction model
Let s = (s1,…,sp )∈{0,1}p a p-uple containing only 0 and 1.

Because at a given point in time an individual’s past information is stored in the covar-
iates, we renumber the health variable Yij(i=1,…,N, j=1,…,p) without distinguishing the 
individual and the point in time at which the individual was observed. In other words, 
Yij becomes Yk (k=1,…,Np). We denote xj

k the kth value of the jth explanatory variable. For 
a given s ∈ {0,1}p, the following model was used to predict the health variables

Yk = 1 if ∑p
j=1 sjθjxj

k > c and Yi = 0 otherwise.                                   (1)

The vector s serves as a switch allowing to select variables. In order to avoid overfitting 
a random selection Γ of K values of Yi and of the corresponding covariates were used to 
estimate the parameters (θj). The sensitivity Se(s, Γ, c) and the specificity Sp(s, Γ, c) were 
then computed for each value of c in (1) from the values k ∉ Γ. Next, the average (over 
the different randomly chosen Γ’s ) Sp and Se were computed ; they are respectively 
denoted Se(s, c) and Sp(s, c).

At, the end, for a given choice of explanatory variables (s), the following criterion was 
computed:

U(s) = mi
c
n(1 – Se(s, c))2 + (1 – Sp(s, c))2                                        (2)

Choosing the best set of explanatory variables means minimising U(s). Because s can 
take a large number of values (2p), it is not possible to minimise U by exploring all 
possible values of s. Instead, the different sets of exploratory variables were evaluated 
by exploring randomly the values of s according to the following simulated annealing 
algorithm: if at iteration k, s = s(k), the algorithm moves to s(k+1) with a probability

qβk (s
(k), s(k+1)) = exp (–βk[U(s(k+1)) – U(s(k))]+) q0(s(k), s(k+1))                              (3)

where [a]+ = max (a, 0), (βk) is a sequence going to +infinity with k, and q0 (s(k), s(k+1)) is 
a transition probability function on {0,1}p corresponding to the probability of proposing 
the neighbour s(k+1) of s(k). A general property of this algorithm is that if βk increases slow-
ly enough, it converges toward the values of s where U reaches its absolute minimum.

Two sets of exploratory variables have been investigated. The first set includes all the 
variables constructed from the collar, pedometer and intra-ruminal bolus recordings. 
The second set contains only the variables from the collar and the pedometer.
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Results and Discussion
To save space, we chose to show only the results obtained using the exploratory vari-
ables computed using the signals obtained from day j-3 to j-1. The best performances 
obtained with the models described by equation (1) were respectively Se=0.75, Sp=0.76 
when the ruminal bolus information were included in the model and Se=0.75, Sp=0.74 
without the bolus information. The best model was found after two weeks of parallel 
computation on a PC with a 12-core processor. Table 1. shows that the best models 
need mainly the information recorded the day before the prediction is to be performed. 
Surprisingly, when the ruminal bolus variables are not taken into account for the pre-
diction, less exploratory variables are required.

Table 1: Number of variables included in the best model

J-3 J-2 J-1

With bolus variables 13 11 17

Without bolus variables 6 6 11

The Figure 1. Represents the ROC curves obtained with the best model with and with-
out the bolus data. They were obtained by varying c in the best model. Because a model 
is optimal only for a single value of c, the curves presented in this Figure are not point 
by point optimal. Only the closest point to Se=1 and 1-Sp=0 is optimal.

Figure 1: The solid (resp. dotted) line curve represents the roc curve obtained using (resp. without) 
the intra-ruminal bolus data with the best model. These curves were obtained by varying c in eq. (1)

Overall, although the results of this study are better than those obtained by other au-
thors, at least to our knowledge, the decision rules are not good enough to be used as 
they are. A sensitivity and specificity of about 75% is not sufficient to build a reliable 
livestock management system. However, it is probably not always necessary to have 
decision rules that have high sensitivity and specificity at the same time. For example, 
in the early stages of a farm infection, it is probably better to have high sensitivity even 
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if specificity is lower. On the other hand, if BRD is established on the farm, high speci-
ficity would probably be useful.

This raises questions about the choice of the U function described in equation (2) that 
we have optimised. In this function, sensitivity and specificity have the same weight. In 
this context, it seems to us that a U-function of the form (4) would be much more useful

U(s) = mi
c
n α(Pr)(1 – Se(s, c))2 + β(Pr)(1 – Sp(s, c))2                                (4)

where Pr is the expected prevalence in the herd, α(Pr) and β(Pr) are the weights favour-
ing Se or Sp.

Conclusions
This paper shows that it is possible to detect BRD contamination of an animal at least 
one day before clinical symptoms based solely on information from a collar and pe-
dometer. The results obtained in this study are extremely encouraging even though 
they are mainly based on a human assessment of the clinic (labelling of the animals). 
Perhaps better results could be obtained if the vocabulary and clinical assessment of 
the disease were standardised and/or if the emergence of symptoms could be obtained 
in an automatic, reproducible and continuous manner.
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Abstract
The objective of this study was to determine which algorithm, using machine learning 
techniques, accurately identifies calves destined to be positive for Bovine Respiratory 
Disease (BRD) status. We followed the health of 106 calves for 53±2 days using manual 
health scoring. Calves wore an accelerometer on the rear leg which recorded daily lying 
time, lying bouts, step counts, and an activity index. Calves were offered up to 10 L/d 
milk replacer by an automated milk feeder which recorded daily milk intake, drinking 
speed, and feeder visits. Of these calves, 54/106 were diagnosed with BRD based on two 
abnormal scores from the Wisconsin Health Scoring, and 3 cm2 of lung consolidation 
(day 0). First, we evaluated the potential of Ridge Classifier, linear SVM with Stochastic 
Gradient Descent learning (SGD), Gaussian Naïve Bayes, Decision trees, Adaboost classi-
fier, and a K-Nearest Neighbor’s algorithm (KNN) for accuracy to classify data as positive 
or negative for BRD status using different window sizes (3 to 14d).  The KNN and Deci-
sion Tree algorithms were the most accurate and had high precision and recall for BRD 
labelling correctly using 14d window size. For experiment II, two accurate algorithms 
were tested to identify calves destined to be positive to BRD in 7d prior to diagnosis 
using PLF variables. We found that KNN was highly accurate (80%) at classifying data 
as pre-sick up to -3d prior to BRD diagnosis. In summary, automatically collected be-
haviours and the use of KNN were found to have the potential to identify BRD in calves.

Keywords: precision livestock farming, bovine respiratory disease, automated feeder, 
accelerometer

Introduction
Bovine Respiratory Disease (BRD), an infection of the respiratory tract in cattle, is the sec-
ond leading cause of morbidity in dairy calves in the USA (USDA, 2018), and over 90% of all 
infections were reported by producers to be treated with antimicrobials (Urie et al., 2018). 
In addition, it can take several days before outward clinical signs of BRD status are evident 
in calves when compared to the positive presence of lung consolidation on ultrasound 
(Rhodes et al., 2021). Since judicious use of antimicrobials is imperative for the dairy in-
dustry and affects public perception of the industry (Wemette et al., 2021), there is a need 
to find calves who are potentially at risk for BRD status in a timely manner. 

Sickness behaviour, such as depressed feed intake and reduced activity in mammals 
is a motivational state initiated by a cascade of immune responses (Hart and Hart, 
2019) and this behavioural repertoire precedes clinical signs of BRD in calves (Cantor 
and Costa, 2022). Indeed, we can use automated precision technology devices to record 
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sickness behaviours using an automated robotic feeder, and accelerometer, respective-
ly. For example, using these technologies for the 5 days prior to BRD diagnosis, we 
found that on average, dairy calves destined for BRD declined their feed intakes (e.g., 
milk and starter intakes), and reduced all behavioural activity levels (e.g., increased 
lying times, and reduced step counts and reduced activity indices) when compared to 
healthy calves. However, we know that differences on average between healthy and 
sick groups of cattle cannot be used to find an individual sick calf which is the goal 
behind precision livestock farming data. Thus, we set each calf’s baseline behaviour at 
5 days before BRD diagnosis, and we found that there were relative changes in a calf’s 
unrewarded visits to the feeder, and relative changes in calf starter intake prior to BRD 
diagnosis (Cantor and Costa, 2022). Since we observed significant relative changes in 
behaviour prior to BRD diagnosis, we knew there was the potential to use feeding be-
haviour and activity levels collectively using machine learning techniques. 

Machine learning algorithms are advantageous over linear regression as we can predict 
BRD outcomes over multiple iterations to find the most accurate, and precise algo-
rithm over repeated iterations (Buitinck et al., 2013). Furthermore, we can use machine 
learning techniques to explore the potential of different window sizes to determine the 
most accurate labelling of calves as BRD positive or negative. To our knowledge, only 
one study has explored the potential of machine learning algorithms (e.g., decision 
tree) to indicate calves as BRD positive or negative, but a moderate sensitivity was ob-
served (Bowen et al., 2021). Thus, we aimed to explore the potential of Ridge Classifier, 
linear SVM with Stochastic Gradient Descent learning (SGD), Gaussian Naïve Bayes, 
Decision trees, Adaboost classifier, and a K-Nearest Neighbour’s algorithm (KNN) for 
accuracy to classify data as positive or negative for BRD status using different window 
sizes (3 to 14). For experiment II, we evaluated the potential of two accurate algorithms 
from experiment I to indicate calves destined for BRD status in the 7 days leading up to 
BRD diagnosis using automatically collected features. 

Material and methods

Experimental data
We followed a cohort of 106 calves born at the University of Kentucky Research Dairy 
daily from birth until 2 weeks post-weaning (90 d) for disease outcomes including navel 
infection, diarrhea, and Bovine Respiratory Disease (BRD) status. For this study, we only 
included calves for the preweaning period which occurred from training to drink milk 
from an automated feeder (Forster-Technik, Engen, Germany) at 3 ± 2 days of age until 
50 days later. Calves could consume up to 10 L/d milk replacer (Cows Match, Purina, 
MN, USA) from the feeder, and calves also had free access to grain (starter) from a sep-
arate automated feeder (Forster-Technik, Engen, Germany). The feeders recorded total 
daily intake, and the milk feeder also recorded drinking speed and visits. All calves also 
wore an accelerometer (IceQube, IceRobotics, Edinburgh, Scotland) on the rear left leg 
which tracked activity levels such as lying time, lying bouts, step counts, and an activ-
ity index based on acceleration and total movement. 

We scored calves for signs of BRD  daily (McGuirk and Peek, 2014). Twice weekly, we 
also weighed the calves and scanned both sides of the calf’s lungs to assess for lung 
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consolidation (Dunn et al., 2018). A calf was diagnosed with BRD status when the calf 
was positive on the manual system (McGuirk and Peek, 2014) and had lung consolida-
tion ≥ 3 cm2 (Dunn et al., 2018). All calves on the first day of BRD diagnosis were labeled 
as day 0 in the dataset. All BRD positive calf days were labelled sequentially (day 1, day 
2, day 3 etc.,) until cured when lung consolidation resolved, and the calf was negative 
for signs of BRD status. The 7 days prior to BRD diagnosis was labelled as pre-sick data 
as day -7 until day -1 prior to BRD diagnosis.

Statistical analysis
We had previously observed that BRD status was associated with feeding behaviour 
and activity levels for the 5 days before BRD diagnosis in preweaned calves, and that 
calves had relative changes in individual behaviours (Cantor and Costa, 2022) when 
controlling for season, weight, and sex. Specifically, we observed that there were associ-
ations of BRD status with decreased milk intake, starter intake, unrewarded visits, step 
counts, and the activity index and increased lying times when compared to healthy 
calves (Cantor and Costa, 2022). Since these automated features might serve as indi-
cators of BRD status in the calves, we included milk intake, starter intake, unrewarded 
visits, step counts, the activity index, and lying times as automated feature inputs into 
the algorithm. We also included sex, season, and weights as manual features into the 
machine learning algorithms since we knew these variables were associated with BRD 
status in the calves. We labelled the data by day, where BRD positive days were when 
a calf had positive BRD status (day 0 onwards) and BRD negative days were when the 
calf was negative for BRD status. We labelled the 7 days prior to BRD diagnosis for all 
BRD positive calves as pre-sick data and excluded this data from the first experiment. 

For all experiments, cross-validation was performed for 10 iterations and the average 
accuracy and standard deviations of these 10 iterations are reported. For experiment I, 
we were interested to determine which window size (size 3 to 14) of feeding behaviour 
and activity level data (mean and SD) was required to classify these calves most accu-
rately as BRD positive or BRD negative using the automated feature data, and the man-
ual features. We ran 10 iterations of the following algorithms Ridge Classifier, linear 
SVM with Stochastic Gradient Descent learning (SGD), Gaussian Naïve Bayes, Decision 
trees, Adaboost classifier, and a K-Nearest Neighbour’s algorithm (KNN) for accuracy, 
precision, and recall classifying data as positive or negative for BRD status using differ-
ent window sizes. 

For both experiments, we left out the pre-sick data to train the algorithms to classify 
BRD status using 70% of the dataset. For experiment I where the algorithms classified 
data as BRD positive or BRD negative, testing was performed with the remaining 30% of 
the dataset, excluding the pre-sick data. For experiment II, the pre-sick data was used 
to test algorithm performance. 

For experiment II, we took the two best performing algorithms from experiment I to as-
sess for algorithm accuracy to label pre-sick BRD data for the 7 days prior to BRD diag-
nosis. We ran 10 iterations for both algorithms (mean ± SD) using the best performing 
window size from experiment I to standardize each feature.
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Results and Discussion
Each window size represented indicated that the KNN was the superior algorithm ac-
curacy, precision, and recall performance for classifying the data as positive or negative 
for BRD status, and a window of 14 yielded the best results for all algorithms Table 1. 
Figure 1 presents the algorithm performance (mean ± SD) for Ridge Classifier, linear 
SVM with Stochastic Gradient Descent learning (SGD), Gaussian Naïve Bayes, Decision 
tree, Adaboost classifier, and a K-Nearest Neighbour’s algorithm (KNN) for accuracy to 
classify data as positive or negative for BRD status using different window sizes (3 to 14) 
across 10 iterations. In brief, KNN and decision tree were the most accurate in Figure 1.

Table 1: Identification results of the machine learning algorithms for classifying data as positive 
for Bovine Respiratory Disease (54/106 preweaned calves) or negative using a window size of 14. 
Automated input features were feed intake, visits, lying time, step counts, and activity index, and 
manual features were weight, season, and sex.

Algorithm 
(mean ± SD) Accuracy Sensitivity Specificity 

K-Nearest Neighbour 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

Ridge Classifier 0.80 ± 0.01 0.82 ± 0.02 0.77 ± 0.02

Stochastic Gradient Descent 
Learning 0.74 ± 0.03 0.73 ± 0.03 0.75 ± 0.07

Gaussian Naïve Bayes 0.78 ± 0.02 0.80 ± 0.02 0.75 ± 0.02

Decision Tree 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01

Adaboost Classifier 0.84 ± 0.02 0.85 ± 0.02 0.85 ± 0.02

Figure 1: The algorithm performance (mean ± SD) for Ridge Classifier, linear SVM with Stochastic 
Gradient Descent learning (SGD), Gaussian Naïve Bayes, Decision tree, Adaboost classifier, and 
a K-Nearest Neighbour’s algorithm (KNN) for accuracy to classify data as positive for BRD status 
(54/106 calves) or negative for BRD using different window sizes (3 to 14) across 10 iterations.
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Our findings indicate that a KNN algorithm at a window size of 14 was nearly perfectly 
accurate at classifying data as BRD positive or negative of the dairy calves followed in 
this experiment. Diagnosing BRD in a timely manner is important as BRD compromises 
calf productivity during disease advancement, suggesting it compromises calf welfare 
(Rhodes et al., 2021). The findings in this study contrast with Bowen et al., (2021), who 
selected a decision tree algorithm, and a smaller window of data to classify BRD status 
in calves using similar input features to our study. We hypothesize that our results dif-
fer from Bowen et al., (2021) because while we also used automated feeding behaviour 
and activity level data, we had additional feature information such as grain intake, and 
an activity index to input into our models. For example, we previously observed that 
calf starter intake and relative changes in calf starter intake was a robust feature for in-
dicating BRD status (Cantor and Costa, 2022), and BRD relapsed status in calves (Cantor 
et al., 2022). Similarly, we also included seasonal information and weights as manual 
feature inputs for these experiments. Thus, it is possible that our results differed from 
Bowen et al., (2021) because we had additional information to feed into our algorithms 
which improved the ability of the algorithm to classify BRD status with a near perfect 
accuracy, precision and recall when compared to the other algorithms tested in this 
experiment. This agrees with a review by Cockburn (2020), and a systematic review by 
Slob et al., (2020), they suggested that the addition of information which partially ex-
plains variation in the dataset improves model accuracy and data output for managing 
cattle using machine learning techniques on farm.

For experiment II, we selected the KNN and decision tree algorithms for their ability to 
label pre-sick data accurately for the 7 days prior to BRD diagnosis using a window size 
of 14. As depicted in Figure 2, the KNN had high accuracy 80% as early as 3 days prior 
to BRD diagnosis, compared to the negligible accuracy of the decision tree algorithm.

Figure 2: The ability (mean ± SD 10 iterations) of a K-nearest Neighbour’s algorithm (KNN) and 
a decision tree algorithm (DT) to accurately classify pre-sick calves (54/106) for the 14 days before 
diagnosis of Bovine Respiratory Disease on day 0.
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To our knowledge, this was the first study to quantify those calves destined for BRD status 
could be identified with moderate accuracy up to 3 days prior to diagnosis. Our findings 
with our decision tree algorithm were very similar to Bowen et al., (2021), who used decision 
tree and observed only moderate accuracy 60% of calves at one day prior to BRD diagnosis. 
Thus, it is possible that a KNN better predicts BRD status in calves. We believe the KNN was 
the most accurate algorithm for indicating calves destined for BRD in this study because 
the KNN is useful for time series data since it uses a consistent number of neighbours to 
make predictions, thus handling correlated data in proximity accurately. For example, days 
that were farther away from BRD diagnosis such as days -14 to days -10 were no better than 
chance since this information was more closely related to healthy calf data than that of 
a calf destined to be sick, and a KNN can accommodate this relationship using the clos-
est neighbours to place weight on correlated relationships. In contrast, our decision tree 
algorithm labelled data without consideration of neighbours, potentially subjecting this 
algorithm to higher error (Charbuty and Abdulazeez, 2021). However, the novelty in these 
findings is that behavioural data surrounding the 3 days prior to BRD diagnosis is closely 
related to BRD status. Thus, a KNN may be useful for algorithm development to capture 
calves destined for disease in real time to generate alerts. We suggest there is the poten-
tial to improve calf welfare if the KNN is further developed for incorporation of real-time 
use on farm. This will add to the value of the automated feeder data and accelerometer 
technology, potentially encouraging producer adoption (Drewy et al., 2019). Furthermore, 
for this study, we only incorporated automated features which were associated with BRD 
status from our mixed linear models (Cantor and Costa, 2022). Our future research aims to 
incorporate all automated features collected by the precision technology devices into the 
KNN, to use feature extraction techniques to determine which features should remain in 
the KNN, and to also weigh these features by cost in future experiments to further explore 
the utility of this data for indicating a calf destined for BRD status.

Conclusions
We found that a K-Nearest Neighbour’s algorithm had the highest accuracy, precision, 
and recall using a window size of 14 to classify data as BRD positive or negative. Fur-
thermore, when compared to a decision tree algorithm, the KNN had the most superior 
accuracy performance for classifying calves as predestined for BRD status, with mod-
erate accuracy up to 3 days before disease diagnosis. We suggest that the KNN should 
be further explored as a potential alert for indicating calves with BRD in commercial 
settings.  This is particularly useful as adding value to precision technology data may 
encourage the adoption of such technologies on farm, and farms using automated milk 
feeders have been observed to offer more milk to calves. 
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Abstract
The Vienna Surface Tester (VST, patented by Schramel and Peham, University of Vet-
erinary Medicine, Vienna) was developed for measuring the mechanical properties of 
sport surfaces such as turf or riding arenas. It uses a bowling ball (6.15 kg) equipped 
with two accelerometers and calculates impact acceleration, stiffness, and energy re-
turn. Impact velocity ranges from 1.0 ms-1 to 4.5 ms-1. Current methods for estimating 
the hardness of lying surfaces for cows are quite subjective. Hence, the main objective 
of this study was to evaluate whether the VST is suitable for measuring the properties 
of different kinds of bedding materials as used in cattle farming. Further aims were to 
determine the inter-observer-reliability and the inter-device-reliability. The different 
materials for this evaluation were sand, horse manure, bark mulch and rubber mats. 
A wooden frame with the standard dimensions of a cubicle was filled with those ma-
terials one after another. Six measurements per floor type were carried out by two ex-
aminers with two devices in a crossover design. Results showed significant differences 
(p < 0.001) between stiffness values of different surfaces. The mean stiffness values for 
distinct materials were 21.4 kNm-1 (sand), 55.1 kNm-1 (horse manure), 99.1 kNm-1 (bark 
mulch), 475.0 kNm-1 (soft rubber mat) and 1394.2 kNm-1 (hard rubber mat). The overall 
inter-device-variability was 2.52 %, correlation coefficients were CCC > 0.99 and rs = 0.99 
for comparative measurements with both devices. These findings indicate that the VST 
is suitable for measuring the stiffness of different lying surfaces.

Keywords: bedding materials, dairy cows, evaluation, floor properties, surface testing

Introduction
Quality and management of cubicles are essential aspects in dairy farming. Dairy cows 
spend approximately 8 to 16 h/d lying down (e.g., Jensen et al., 2005; Charlton et al., 
2015) and 35 to 175 min/d standing in cubicles (Stefanowska et al., 2001). Recognized 
benefits of longer lying times include increased feeding and rumination activity. Dur-
ing lying, the claws can dry and are relieved. Increased standing times, e.g., in the alleys 
bear the risk of developing claw disorders and injuries (Vokey et al., 2001). In addition, 
the blood supply of the udder is ameliorated in lying position, which increases the met-
abolic rate and milk production (e.g., Munksgaard & Løvendahl, 1993; Delamaire et al., 
2006). As already described in previous research, the type of lying surface has a major 
influence on cubicle quality and lying times (Tucker et al., 2009). Cows prefer, and spend 
more time lying in well bedded, soft and dry cubicles (e.g., Tucker & Weary, 2004; Reich 
et al., 2010; Wolfe et al., 2018). The focus of this study was on the sensor-based, objective 
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assessment of the softness/hardness of different bedding materials. For a long time, 
only subjective methods were available to assess the hardness of lying surfaces, such 
as the ’knee drop test’ (Nordlund & Cook, 2003) and observation of the cows’ standing 
up and lying down behaviour (Wechsler et al., 2000). In recent years, various sensor sys-
tems have been developed in order to assess the quality of lying surfaces. One possibil-
ity is to measure the lying times of cows to draw indirect conclusions on the comfort 
around resting (e.g., Henriksen & Munksgaard, 2019; Leach et al., 2022). The other option 
is the direct measurement of floor properties with devices such as the Clegg hammer 
(Fulwider & Palmer, 2004; Villettaz Robichaud et al., 2020). The Vienna Surface Tester 
(VST) is another sensor system that provides objective measurements of surfaces and 
floors. It was developed by Schramel and Peham at the University of Veterinary Medi-
cine in Vienna and has been primarily used for measuring the mechanical properties of 
sport surfaces such as turf or riding arenas. It is an adopted bowling ball equipped with 
two accelerometers. As it is operated in free fall, the measurements are not influenced 
by friction losses. The main objective of this study was to evaluate whether the VST is 
suitable for measuring the hardness of different types of bedding materials as used in 
cattle farming.

Material and methods

Experimental sites
The study was carried out in two steps. The first part took place in July 2021 on a large 
commercial dairy farm in northern Germany, using the following bedding materials: 
horse manure, bark mulch and a soft rubber mat. The second part of the study took 
place at the Teaching and Research Farm (VetFarm) of the University of Veterinary Med-
icine Vienna in Austria in February 2022, where sand and a soft rubber mat were tested. 

Vienna Surface Tester
The Vienna Surface Tester (VST) is a sphere with a weight of 6.15 kg that is equipped 
with two accelerometers. It calculates impact velocity, impact acceleration (Gmax), stiff-
ness (spring rate) and several other parameters. For this study, only the impact velocity 
and stiffness values were considered. According to the standard operating procedure 
(SOP), the sphere has to be dropped repeatedly from random heights. At least 14 drops 
are necessary to complete one measurement. This is required to determine the surface 
parameters under different loads and to take the variability of natural surfaces into 
account. The sphere has to be dropped at different spots of one measurement plot (e.g., 
area of one square meter), because every drop can already alter the floor compaction. 
A color LED bar indicates the status of measured data. It displays whether two valid 
drops were measured and stored at all required heights. Data are stored on a micro-SD 
card in csv format. 

Study design
For the whole experiment, five different types of floors, two devices and two examiners 
were available. For the standardisation of the experiment, a wooden frame with the 
dimensions of a standard cubicle (20 x 200 x 120 cm) was used to surround the differ-
ent materials to ensure a standardised thickness of each material. A wooden slat with 
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a measurement tape was used as a measuring aid to facilitate dropping the device from 
seven distinct heights. Six measurements were carried out per bedding material with 
each device, this were three per person. For one measurement carried out by one ex-
aminer, both devices were dropped alternatingly across the test cubicle. As the surface 
of most of the materials changed visibly after each drop, this approach was chosen to 
enable direct comparability of the devices. The preparation of the floors prior to the 
start of a measurement was dependent on the properties of the material and the way 
each individual bedding material is used in cubicles under practical conditions (loose 
filling or filling and compaction). The rubber mats did not need specific preparations 
before and between measurements. The 25 x 25 cm soft rubber mat was placed on an 
even concrete floor, surrounded by padding material (for protecting the VST). The ’hard 
rubber mat‘ used for the evaluation is laid out in the barn alleys of the VetFarm.

Data pre-processing
Data of both VST devices were merged in Microsoft Excel (MS Excel 2016, Microsoft Co-
operation, Redmond, USA), according to the chronology of the experimental procedure. 
Coding variables were added to identify the device, the examiner, the floor type, the 
drops belonging to one measurement (continuous number), and the measurements 
from each device for direct comparison (measurement number). Comments regard-
ing issues while dropping the ball or technical difficulties were documented in the 
spreadsheet. After a validity check, drops were arranged in pairs, sorted by ‘measure-
ment-number’, ‘LED-number’ and time in order to compare the two devices directly. 

Statistical analysis
Statistical analysis was carried out with SPSS (version 27, IBM Corporation, Armonk, 
NY) and with R (version 4.0.4, Copyright 2021, The R Foundation for Statistical Com-
puting). The stiffness measures of both devices were tested for normal distribution 
using Shapiro-Wilk test. Lin´s concordance correlation coefficient (CCC) as well as 
Spearman´s rank correlation coefficient (rS) were calculated for the paired drops of the 
VST, i.e. device_01 and device_02 across, the entire dataset. Descriptive statistics were 
calculated for each floor type separately. Wilcoxon-test was performed to test for sig-
nificant differences of the stiffness between the five floor types. Linear regression anal-
ysis was conducted on floor-level and on measurement-level for the comparison of the 
two devices as well as for the comparison between the two examiners. The regression 
coefficients were used to calculate the stiffness (k) values at given impact velocities  
(v0 = 2 ms-1 and v0 = 4 ms-1) with the formula of linear equation, 

 (1)

where k is the stiffness, v is the impact velocity, a is the slope and b is the intercept of 
the linear equation. Percentage differences of both devices at the same impact velocity 
were calculated in Excel using the formula,

 (2)
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with kd1 as the stiffness value (calculated as described above) for device_01 and kd2 for 
device_02. Percentage differences of both examiners at the same impact velocity were 
calculated in Excel using the formula, 

 (3)

with ke1 as the stiffness value (calculated as described above) for examiner_01 and 
ke2 for examiner_02. For the comparison of the two examiners, only measurements on 
rubber mats (soft rubber mat and hard rubber mat) were included for analysis, as these 
surface types are not likely to change significantly due to the drops. The setting for the 
comparison of the two devices on other materials did not allow the direct comparison 
between the examiners, as the surface had to be restored and prepared between the 
measurements of the different examiners. A Bland-Altman plot was created for the 
comparison of the two devices on measurement-level for the stiffness measures calcu-
lated at v0 = 2 ms-1 and v0 = 4 ms-1. 

Results and Discussion
After data pre-processing, 408 data points from each device were available for analysis. 
For each of the five floor types there were six valid measurements per device. The stiff-
ness values were not normally distributed across the dataset. There was high agree-
ment of stiffness values between the two devices (CCC > 0.99; rS = 0.99). The means ± 
SD for each floor type were 21.4 ± 7.9 kNm-1 (sand), 55.1 ± 14.9 kNm-1 (horse manure), 
99.1 ± 31.9 kNm-1 (bark mulch), 475.0 ± 90.9 kNm-1 (soft rubber mat) and 1394.2 ± 584.9 
kNm-1 (hard rubber mat). Although the mean values can only offer a rough overview of 
the data, it is useful to show the major differences between the different floor types. 
Table 1 provides more details of the absolute stiffness values calculated by using linear 
regression for two different impact velocity values.  

Table 1: Absolute stiffness values in kNm-1 at given impact velocities (v0) and R2-values in direct 
comparison between the two devices (D_01 and D_02) stratified by floor type.

Floor type v0 = 2 ms-1

D_01, D_02
v0 = 4 ms-1

D_01, D_02
R2

D_01, D_02

Sand 19.6, 18.8 24.0, 24.0 0.1, 0.1

Horse manure 49.6, 47.2 67.2, 66.2 0.3, 0.4

Bark mulch 78.0, 78.0 138.4, 131.1 0.7, 0.7

Soft rubber mat 400.9, 409.3 594.7, 596.7 0.9, 0.9

Hard rubber mat 929.3, 881.6 2160.3, 2128.5 > 0.9, > 0.9

The stiffness values of the five floor types differed significantly (Wilcoxon-test: p < 0.01). 
With softer bedding materials (sand, horse manure), the stiffness values did not in-
crease significantly at higher impact velocity. This indicates that the properties of these 
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surfaces are closer to the characteristics of an ideal spring than other materials with 
higher R2-values. An R2-value of zero would describe a horizontal line and therefore 
show the properties of a spring constant. Thus, it can be concluded that sand and horse 
manure are more favourable lying surfaces for cows in terms of stiffness.

Percentage differences
The difference of stiffness measures (calculated by regression analysis) between the 
two devices was on average 3.24 % at an impact velocity of 2 ms-1 and 1.80 % at an im-
pact velocity of 4 ms-1 across the five floors. We aimed to standardise as many factors as 
possible for the direct comparison between the devices, e.g. by performing alternating 
measurements with both devices at the same condition of the test cubicle as described 
above. Although we worked through the materials after each measurement as stand-
ardised as possible, it cannot be excluded that there were minor differences across the 
bedding materials, which lead to randomly different measurements. One of the main 
reasons for using the measuring aid was the aim to minimise possible confounding 
factors.

Despite the above-mentioned issues, no difference greater than 6 % (range: 0.01 – 
5.48 %) between the devices across the floors were observed. Hence, the agreement of 
the devices is considered as suitable for practical use as well as research purposes. 

For the calculation of the difference between the two observers, 36 paired stiffness 
values calculated by regression analysis were used. Examiner_01 had on average 1.73 % 
greater values compared with examiner_02. This small difference indicates that results 
of different examiners are comparable.

Figure 1: Bland-Altman plot for stiffness values calculated at v0 = 2 ms-1 and v0 = 4 ms-1 

According to the Bland-Altman plot in figure 1, a high agreement between the two de-
vices across all measurements was observed. 

Conclusion
The results of this study show that different bedding materials used in cubicles on 
commercial cattle farms can be objectively evaluated using the Vienna Surface Tester. 
Furthermore, high agreement was observed between two different devices. Considering 
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the high inter-observer agreement, it can be concluded that the results obtained by dif-
ferent trained examiners using different devices are comparable and can be considered 
as valid. Further research should focus on the practical application of the VST in dairy 
cow barns in relation to animal health and welfare topics, as this study only examined 
different types of bedding materials under standardised conditions outside of the barn. 
Cow preferences of certain bedding materials and the change of mechanical properties 
over time under practical conditions are research questions that could be addressed in 
future using this device.
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Abstract
This paper presents a novel idea of converting farm animal locomotion into electrical 
power for enabling precision livestock farming applications with autonomous power. 
A brief description of the problem is presented followed by a review of the state-of-the-
art. Further on numerical modelling and experimental methodologies are presented 
which are used to analyse the proposed concept and produce a proof-of-concept. Fi-
nally a wearable prototype is built and tested in-lab and on-field with free grazing Finn 
cattle.

Keywords: electromagnetic induction, energy harvesting, kinetic energy, precision 
livestock farming, wearables, wireless sensor networks

Introduction
In this paper, research progress and results emerging from the first two-year period of 
work on project ENTRAP - ‘Energy harvesting for precision agriculture applications’- 
will be disseminated. This is a pioneering project, aimed at developing a kinetic energy 
harvesting (KEH) device for converting livestock locomotion into electrical power thus 
enabling a wide range of precision agriculture (PA) and precision livestock farming (PLF) 
applications with autonomous power. 

Precision livestock farming 
PLF is a key staple of the PA concept and relies on extensive utilization of wireless com-
munication and wireless sensor network (WSN) technologies (Jawad, H. M. et al. 2017). 
The usual generic WSN architecture consists of miniature battery powered nodes or 
motes embedded with sensing, communication and/or processing modules for edge 
computing (Figure 1, Left). Nodes can transmit data to the gateways which are con-
nected to a mainframe data processing unit and/or communicate with each other. For 
enabling the PLF concept, the nodes are then placed on individual animals and used 
to record numerous animal attributes (health, metabolism etc., Neethirajan, S. 2017), 
as well as to monitor and control animal behavior with virtual fencing (Campbell, D. L. 
M. et al. 2017). Some of the commercially available devices are being marketed under 
these brands: Nofence, Digitanimal, Moomonitor+, Cattlewatch, Silent Herdsman, Afi-
Act, SMARTBOW etc.
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Figure 1: Left: a generic WSN cycle, Centre: a magnetic levitation electromagnetic induction energy 
harvester, Right: locations of instruments for locomotion logging trials

WSN: power and ecology
Most of these PLF sensors are to be driven worldwide by billions of batteries with lim-
ited lifetime, which once depleted, need to be replaced and recycled. The EU is home 
to more than 343 million of ungulates (E. Heidorn et al. 2017) and if half of these were 
utilized in a PLF concept requiring a finite lifetime battery - 170 million batteries would 
have to be produced and replaced in application defined intervals. This practice pro-
duces a hindering impact on the agricultural sustainability due to low recycling rates 
and high environmental burdens caused by battery production (E. Olivetti et al. 2011). 
A long-lasting alternative to finite lifetime batteries is energy harvesting. WSN nodes, 
depending on the application requirements, usually require power ranging from tens 
of µW to 100 mW in application specific intervals. An energy harvester coupled with 
a power management integrated circuit (PMIC) has been proven to provide as much.

Harvesting kinetic energy from the animal body
Energy harvesting is the process of converting ambient energy, like sunlight, water 
flow, heat or vibrations into electrical energy for powering low power. The most ele-
gant and mature form of energy harvesting is photovoltaics, but extensive research has 
also been performed on thermoelectric, RF, triboelectric and kinetic energy harvesting 
(Shaikh, F. K. and Zeadally, S. 2016). Mechanical systems have been thoroughly studied 
as a power source in the last two decades, but much less attention has been directed to 
the energy of bio-mechanical systems such as animal bodies. Most inertial KEH devic-
es require to be operated at a specific excitation frequency, while animal locomotion 
occurs stochastically in the range of 0-10 Hz so a low frequency KEH design must be 
considered. Based on the current state-of-the-art and recent findings, the most prom-
ising KEH solutions in this frame are inertial electromagnetic (EM) devices (Joon Kim, 
K. et al. 2010), with novel triboelectric generators also showing promise. The simplest 
device design to be considered is in fact the 1-D inertial EM harvester consisting of 
a cylindrical tube, in which a permanent magnet can travel axially, where the springs 
can be mechanical or magnetic (Figure 1, Centre). When excited by an outside source of 
vibration, the tube establishes motion marked with y(t). In response to inertial forces, 
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the central magnet then travels back and forth inside the tube with relative motion 
z(t). The springs are defined by end stops in the shape of permanent magnets arranged 
so that they act with a repulsive force Fm on the moving magnet. As the magnet is 
traversing the tube, voltage is induced in the coil wrapped around the tube. The accom-
panying electric circuit shows the EM KEH as an AC generator connected in series with 
coil resistance Rc, coil inductance L and electric load represented by an equivalent load 
resistance Rl (usually a WSN sensing node and a PMIC). In this frame, the possibilities 
of converting human locomotion to electrical power for powering assistive wearable 
technologies have been thoroughly studied (Gljušćić, P. et al. 2019). As far as non-hu-
man animals are concerned, KEH research has been limited. The premise of project EN-
TRAP is that the existing human KEH technologies can be easily transferred and used 
on other animals with an increase in inertial masses and device dimensions while still 
maintaining a small and light footprint (below 200 g).

Material and methods
This section includes a short description of animal locomotion measurements, the 
simulation tool developed to estimate available powers and materials and methods 
used for the design of the prototype and measurement devices used for field trials. 

Animal locomotion measurements and analysis
To define a precise design of a KEH device best suited for a specific species of animal, 
field measurements were performed the details of which are presented in a separate 
work presented at this conference (‘Kinetic energy harvesting potential of grazing 
livestock’). Here we offer a brief description of the methodology used at the Ahlman 
dairy Farm (Tampere, Finland). Locomotion of two Finncattle cows was measured in 5 
consecutive trials via three Axivity wireless acceleration loggers attached to the cow’s 
neck, marking weight and front leg strap (Figure 1, Right). The underlaying idea was to 
obtain locomotion profiles, analyse them and calculate Fast Fourier Transforms (FFT) 
to extract frequency information associated with animal movement. These frequencies 
would then be a starting point for designing cattle KEH devices akin to methods of 
eigenfrequency matching in mechanical systems. Based on the envisioned harvester 
concept and measurement results, the front leg strap location was chosen as suitable. 
This was decided due to strong accelerations of vertical leg locomotion which also co-
incides with the longitudinal axis of the EM KEH device. A cow’s step (Figure 2, Left) can 
vary greatly but through all the measured steps several frequencies were identified as 
interesting, first the ~1 Hz walking frequency and second the interesting higher order 
harmonic identified in a cow step around ~8 Hz (Figure 2, Right). The latter was chosen 
to test the hypothesis of a frequency matched KEH device which are generally more 
easily designed for higher than lower resonant frequencies. 

KEH device design and simulation

In the last two decades, many KEH devices have been investigated (Wei, C. and Jing, X. 
2017). The EM harvester has proven to be well suited for random meso-scale operation 
such as harvesting animal locomotion. Numerous EM KEH designs have been investi-
gated due to simplicity, device lifetime and low resonant frequencies (Khan, F. U. 2016). 
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These devices have been mostly analytically modelled as single degree of freedom 
spring- mass-damper systems coupled with analytical solutions of magnetic fields and 
experimentally obtained magnetic force values. For the purpose of this work, a 2D ax-
isymmetric finite element model simulation has been developed and tested. The flux 
linkage of the coil and the electromagnetic force acting on the moving magnet are 
calculated for fixed values of the magnet position and the coil current using a series of 
magnetostatic solutions. These coupled together with equations of motion and electric 
circuit equations allow for simulation of any type of excitation as previously reported 
in T. Kivimäki et al. 2021 where this methodology was put to test in designing a car tire 
EM KEH. For the purpose of this research a sensitivity analysis was performed over a set 
of parameters from which it was found that the number of turns N, coil dimensions dC 
and load resistance Rl have optimal values. The gap between the coil and the magnet, t, 
also influences power generation and should be as small as possible. Final dimensions 
of the laboratory prototype are presented in Figure 3, Left & Table 1.

Figure 2: Left: Cow step profile, Right: Frequency information of a single cow step

Figure 3: Left: Harvester schematic, Centre: 3D model, Right: 3D printed prototype
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KEH Device prototype
The harvester structure and cow leg attachments were designed with Fusion360 3D 
modelling software (Figure 3, Centre). The Prusa I3 MK3 3D fused deposition modelling 
(FDM) printers were used in the FabLab facility of Tampere University to manufacture 
the parts with PLA (for the tube, coil and spring magnet attachments) and PETG fila-
ment (for the leg strap casing) totalling in 7 separate parts. The tube was printed in two 
separate parts for the purpose of achieving a suitable orientation of deposited print 
material (for lowest possible friction between the magnet and the tube) as well as the 
possibility of reworking the inside of the tube with fine wet sanding paper and smooth-
ing out surface roughness resulting from the FDM process. Once assembled, the inside 
of the tube was also coated with Teflon spray before the magnet was inserted. Printed 
coil former elements were slid across the harvester tube and placed at specific points 
where the magnetic flux density of the PM is strongest. Two coils in series, each with 
1500 turns, were wound by using a modified coil winding machine QIPANG FZ-180 us-
ing enamelled magnet copper wire with a diameter of 0.1 mm resulting with total coil 
resistance of 515 Ω. The magnets used were commercially available N42 grade strong 
NdFeB magnets with dimensions specified in Table 1. 

Table 1: KEH device dimensions as seen in the left of Figure 3

Parameter Value Unit Description

hT 40 mm Tube length

dT 22.6 mm Tube diameter

N 3000 – Number of turns

dC 10 mm Coil height and width

c 5 mm Coil distance equilibrium

d 0.1 mm Coil wire diameter

t 0.8 mm Wall thickness

d 20 mm Distance between magnets

hSM 2 mm Spring magnet height

dSM 6 mm Spring magnet diameter

Rl 1000 Ω Load resistance

hMM 10 mm Moving magnet height

dMM 20 mm Moving magnet diameter

m 0.024 kg Moving magnet mass

Power management and communications module
KEH devices produce alternating currents which require rectifying and conditioning if 
they are to be used for powering electronic devices requiring specific DC voltage levels. 
For this project we selected a miniature PMIC - SparkFun Energy Harvester Breakout 
board based on the Linear technologies LTC3588-1 (Figure 4, Left). This PMIC rectifies AC 
sources with an integrated full wave bridge rectifier and has an over voltage protective 
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shunt. It is intended to be used with an output capacitor for buffering charges from 
intermittent energy sources. Output voltage is selected by solder pins on the board, 
and for this purpose a, 3.3 V output voltage was selected. For capacitor dimensioning 
purposes, 10 mW of maximum required energy was assumed. Based on the formula for 
energy calculation available on page 13 of the datasheet (Linear Technology, 2015) and 
assumed capacity of the output capacitor of 2200 µF, a power of 13.24 mW was calculat-
ed. An nRF52840 Bluetooth USB dongle was chosen (Figure 4, Left) as a communication 
module due to in-built capability of using external power and ease of configuration via 
USB connection and the NRF Connect software. The beacon transmission setting was 
set at minimal frequency of 10 Hz. 

Portable data acquisition and data logging
To determine the dynamics of the prototyped KEH device and its coupling to cattle leg 
locomotion, a portable and lightweight data acquisition and data logging device was 
required. A suitable commercial device which could simultaneously log induced volt-
age and acceleration is still not available, so a custom device was built. The custom de-
vice is based on the Adafruit Feather M0 Adalogger development board (Figure 4, Left), 
with in-built microSD card logging and battery powered operation (a 3.7 V, 550 mAh, 
LiPo battery was used). An additional Adafruit MMA8451, 3D accelerometer breakout 
board was chosen for measuring acceleration of the cow’s leg. Harvester voltage output 
(VKEH) was set to be measured with the onboard analog to digital converter (VADC) with 
0 - 3.3V input levels. To achieve this, the harvester’s output voltage was reduced with 
a voltage divider and offset into positive with onboard reference voltage set to 1.65 V 
(Vref) (Figure 4, Centre). The system was then simulated with the LTspice software with 
a damped sine wave used as the input signal (Figure 4, Right).

Figure 4: Left: Used components, Centre: Voltage divider, Right: LTspice simulation

Results and Discussion

Laboratory experiments: Shaker and human excitation
The shaker experiments shown in Figure 5, Left, were designed according to the sche-
matic in Figure 5, Centre (detailed in T. Kivimäki et al. 2021). Frequency sweeps were 
performed to investigate resonant frequencies. Figure 5, Right displays the results: ‘v1’ 
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harvester version has two full size spring magnets and resonance at 10.5 Hz; ‘v2’ has 
the top magnet lifted 5 mm from the moving magnet equilibrium resonating at 9 Hz; 
‘v3’ uses a smaller top spring magnet (diameter 1 mm, height 2 mm) and resonates at 
7.25 Hz while ‘v4’ had the top magnet removed without a further significant frequency 
shift. Configuration ‘v4’ without the top magnet was used in further tests.

Figure 5: Left: Harvester mounted on a shaker, Centre: Experiment schematic, Right: Measurement 
results displaying 4 different harvester variants

The nRF dongle energy dissipation was measured with the harvester connected to the 
PMIC and manually shaken to charge the capacitor. The energy required for the dongle 
cold start-up was 6.9 mW while a single beacon transmission consumed 49 µW (Figure 
6, Left). The dongle transmission distance was determined experimentally at a diam-
eter range of ~35 m. Shaker tests were also performed at 7 Hz, 2 V sine excitation lev-
el, during which the time required to charge the capacitor was measured. In average 
it took 28.05 mW during 188 s to charge the capacitor from a completely discharged 
state. Then the PMIC releases a portion of the energy, and the next charge requires less 
energy – 13.24 mW during 40 s. Finally, the harvester was strapped to a student’s leg 
for a stepping test. Here the charging from a discharged state took ~39 steps with each 
following charge taking ~15 steps (Figure 6, Centre). 

Figure 6: Left: nRF dongle power consumption, total consumption and detail of single transmission, 
Centre: Lab walking test, Right: Open cow leg strap assembly 
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Field experiments: Ahlman dairy farm (Tampere, Finland)
Two field experiments were performed at Ahlman dairy farm (Ahlmanin koulun saatio, 
Tampere, Finland). In the summer season the herd is allowed to freely graze in a ro-
tational grazing scheme. A three-year-old eastern Finncattle cow Pinja was chosen as 
a test subject. In the first experiment the harvester was tested for leg locomotion cou-
pling. The casing was 3D printed with PETG filament (Figure 6, Right). The whole device 
mounted on the front leg (Figure 7, Left), including the harvester, PMIC, logger and the 
rugged outer casing weighed ~0.2 kg. The subject seemed undisturbed by the wearable 
and moved unhindered. The device proved to withstand harsh conditions and clear col-
lisions with farm infrastructure and the experiment resulted with 1 hour of logged data. 
From the analysis it was observed that the accelerometer’s Z axis (gravity) often reaches 
its ±6g limit while in such cases the harvester induces over 20 V. Total log of the exper-
iment displays beautiful coupling of the harvester to leg locomotion (Figure 7, Centre). 
Single step analysis reveals that when the cow steps on the ground, a high deceleration 
impact occurs. The harvester trails behind with a positive and negative peak and rings 
down brought into a free vibration state. A second field trial took place with the same 
test subject. This time the nRF dongle was used as well powered solely by the PMIC. 
Bluetooth traffic was monitored via laptop with Wireshark software and a nRF52840 
dk transceiver. nRF Bluetooth LE packet sniffer app was also installed on two mobile 
phones. It proved impractical to follow the subject with a laptop and thenceforth mobile 
phones were used for continuous scanning of Bluetooth traffic. With this we were able 
to recurrently capture the ‘Test beacon’ signal (Figure 7, Right) which would occur when 
the cow would change position (5-15 steps). Based on the intensity of motion the ‘Test 
beacon’ would stay visible from 10 seconds up to a full minute.

Figure 7: Left: Trial device, Centre: Voltage (b) and leg motion (o), Right: Sniffer log

Conclusions
This paper details the development of a KEH device for converting locomotion of 
a cow’s front leg into electrical energy for powering or recharging of IoT PLF devices. 
A device was built and tested in laboratory and field trials in which it was proven that 
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it can successfully power wireless transmissions of a Bluetooth beacon and output 
~13 mW of accumulated electrical power after 5-15 cow steps. The device is based on 
a moving magnet mechanism which comes into motion with each step taken by a cow. 
Animal KEH has its drawbacks - the device produces energy only during movement. 
This makes it suitable for free grazing scenarios where the animals change position 
frequently to forage. At this point the tested KEH generator can be used for recharging 
PLF devices and increase battery lifetimes. Some low power - low transmission fre-
quency devices could even be made autonomous. Power generation is influenced not 
only by the amount and intensity of movement but also by the mounting position. In 
the laboratory stepping experiments, changing the position from the side to the back 
of the calf resulted with an increase in harvested powers. Further research is required 
to identify which position on the leg is the most suitable for harvesting maximum lo-
comotion energy while still retaining comfort and wearability. Novel EM KEH architec-
tures will be tested as well on other locations besides the cow’s leg (collar, ear).
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Abstract
In recent years, scientific research and development activities have focused on the ap-
plication of Precision Agriculture techniques. This approach determines an increase in 
the sustainability of productions together with a quantitative and qualitative increase 
in agricultural products. In this context, smart glasses for augmented reality (ARSG) 
represent a useful tool to provide on-farm information in real-time, that facilitates and 
assist agricultural operators during on-field activities.

The aim of this work was to bridge the technological gap between the identification of 
animal RFID (ear tag; rumen bolus) and the real-time access to individual animal infor-
mation. Specifically, the research team developed a prototype called ‘SmartGlove’ (SG) 
that combines the functionalities of an RFID reader with ARSG.

This tool was designed as an operator’s wearable device equipped with a function for 
reading the animal’s RFID identification code and for communicating with the ARSG, 
via Bluetooth connection. The identification code retrieves the information related 
to the individual animal through a custom application specifically developed for the 
ARSG.

SmartGlove has enabled the farmer to enhance the RFID identification system to ac-
cess and monitor (hand-free) the animal information (milk production, health status, 
etc.) displayed in augmented reality on ARSG devices. This innovative system allowed 
to make timely decisions in the management of farms, reducing the required work-
force while improving productive performances, in line with animal welfare and preci-
sion livestock farming principles.

Keywords: Animal identification, AR headset, PLF tool, Electronic identification, Ear 
tag, Rumen bolus. 

Introduction
Since the first patent of radio-frequency identification (RFID), in 1975, the technology 
has spread in a large variety of contexts. Over the years, multiple reviews and surveys 
have been published exploring the use of RFID from various perspectives, such as the 
use for the Internet of Things (IoT; Khoo, 2010), the aviation industry (Mishra, 2010), the 
healthcare-related context (Yao et al., 2011). In the European Union, electronic identifi-
cation of sheep and goats has been mandatory since January 2010 (Reg. CE n. 21/2004), 
while it is voluntary for cattle. Nowadays, three types of RFID tags are adopted for an-
imal identification: ear tags, rumen bolus applied by oral ingestion, and subcutaneous 
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glass or plastic tags. For cattle, sheep and goats, the code structure and the operating 
frequencies must be compliant with the International Organization for Standardiza-
tion (ISO 11784:1996 and 11785:1996), which were firstly defined and adopted in the 
early 1970s (Kampers et al., 1999) and then approved by the International Committee 
for Animal Recording (ICAR, 2005). At present, there are no defined standards for pigs. 
Most of the tags work in a frequency between 124.2-135 kHz and can store from 112 to 
128 bits. The low frequency used corresponds to a low distance of reading, around 0.5-
9 m. (Floyds, 2015). The process of reading RFID tags (transponders) can be carried out 
through a handheld device with an extended antenna of about 30~50 cm or with a fixed 
device located in a strategic point of the farm (e.g., the entrance of the milking room) 
representing the transceiver. The communication protocols accepted by the ISO are 
two: Full-duplex (FD), and Half-duplex (HD). The two protocols differ in the frequency 
used, and in the method of information exchange. The FD method communicates the 
information while the transceiver activates the transponder. Whereas the HD method 
communicates information after that the transceiver stopped transmitting the activa-
tion field to the transponder (ISO 11785). 

The farmer, thanks to Precision livestock Farming (PLF) technologies, store multiple 
information about every single animal like biometrics and historical productive and 
reproductive data that can be used in the decision-making processes (Halachmi et al., 
2019). In particular, the planning of an adequate system of data collection and consul-
tation, about individual animal performances, might support business investments to-
wards the most productive animals and might allow identifying the subjects that limit 
the average efficiency of the farm and need to be managed separately. Access to such 
information can be particularly laborious and time-consuming, involving a considera-
ble number of human resources (Caria et al., 2020). To successfully meet this objective, 
operators must be highly prepared and equipped with efficient technology for support-
ing the decisional-making process. In the last years Augmented Reality Smart Glasses 
(ARSG) showed high potential in supporting operators during various tasks such as 
assembly, maintenance, quality control, and material handling (De Pace et al., 2018; 
Caria et al., 2020; Chandan et al., 2021). Augmented Reality (AR) represents a high-in-
terest topic for many kinds of industries since its capability to increase the amount of 
information available to operators, overlaying digital contents to the real world, in form 
of text, images, icons and video. The use of AR and ARSG has shown successful results 
concerning both work productivity and quality (Paelke, 2014; Syberfeldt et al., 2016). 

The aim of this study was to develop a wearable mobile system to read RFID tags and 
associate the animal identification code to a database that can be displayed in AR, 
bridging the technological gap related to animal identification and real-time informa-
tion visualization and consultation.

The SmartGlove system
The developed system framework is composed of four main components: tags or tran-
sponder, SmartGlove (SG) or transceiver, Augmented Reality Smart Glasses (ARSG), and 
management Software (ST) both for ARSG and SG.
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The SG is a prototype hardware composed of an Arduino Control Unit with integrated 
Bluetooth, an RFID reader chip, a Lithium-polymer 3.7 V battery, and a 134.2 kHz anten-
na. All the components are enclosed in a 3D printed case that can be used as a bracelet, 
with the antenna extended in the back of the hand (Figure 1). This SG hardware repre-
sents a TRL3 (Technology Readiness Level; proof-of-concept demonstrated) prototype 
that will be improved in future stages.  

Figure 1: SmartGlove prototype. Hardware case (left) and RFID antenna (right). 

Table 1: Epson Moverio BT-300 smart glasses’ main features and components. 

Item BT300

Processor 4 Core 1.44 GHz Intel Atom

Flash memory 16 Gbytes

Operating System Android 5.1.1

Display Binocular Si-OLED 24 bit color, 1.280x720

Field of View 23°

Sensors Gyroscope-accelerometer-magnetometer (3 axis), lux sensor

Connectivity GPS, WiFi, Bluetooth, microUSB

Camera 5 Megapixel

Battery Lithium polymer

Battery Duration 4 h

Controller input Joypad (touch pad)

Weight 69 g

The ARSG used to visualize the information related to the tags are EPSON Moverio BT-
300 (BT300). The BT300 features are listed in Table 1. To connect the AR headset to the 
SG a dedicated mobile application was developed, which connects the identification 
code received from the SG to a database containing individual information about the 
identified animal (productive, reproductive, and health data).
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Material and methods
Laboratory tests were carried out to evaluate the SG operating performances. The tran-
sponder activation distance and the time interval required to visualize the data on the 
BT300 display were measured. Moreover, two types of transponders were used i.e., ear 
tag and rumen bolus (Figure 2). The rumen bolus used was made in ceramic with a cy-
lindric shape (67.4 x 17.3 mm) and a weight of 52 g. Inside the bolus, there is the encap-
sulated HDX transponder. The ear tags adopted have an HDX transponder. The BT300 is 
provided by a binocular optical see-through display where the augmented information 
related to the transponder code is projected. 

Figure 2: Rumen bolus (left) and ear tag (right) transponders used for the trials.

Activation distance 
The transponder activation distance by the SG was measured by performing laboratory 
tests. During the measurement process, the transponder was gradually brought closer 
to the SG antenna and left for 3 seconds at determined distances (50 cm, 20 cm, 10 cm, 
5 cm, 4 cm, 3 cm, 2 cm, and 1 cm). For each distance were carried out 20 reading pro-
cesses and the positive/failed responses were recorded. A correct reading consists of 
the transponder activation and the transceiver response. The test was performed using 
both the ear tag and the rumen bolus transponders.

Reading time
The time interval required to visualize the animal’s information, associated with the 
transponder code, on the ARSG was evaluated. The reading time was measured starting 
from the transponder activation until the information appeared on the BT300 display.  

This interval was measured 20 times both for the ear tag and rumen bolus transponder. 
The maximum distance between the transponder and the reader for each reading was 
2 cm.
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Software and user interface development
In this section, we discuss the implementation of the mobile and augmented reality 
interface for interacting with the SmartGlove data. The solution consists of different 
modules: a Kotlin application for the BT300 AR headset, and MicroPython module read-
ing the SG data. The software solution consists of three parts: the SG, the database, and 
the AR headset interface. We control the glove through an Adafruit board connected 
to an RFID antenna. It reads the rumen bolus tags or the ear tags for recognizing the 
animal and sends the identifier to the AR headset through a Bluetooth connection. In 
turn, when the interface receives a new identifier, it displays the complete information 
about the animal in the database. The database structure is quite simple. It consists 
of a shared Google Sheets spreadsheet that farmers can freely modify in all its fields, 
for adapting to their needs. The only assumption in the structure is having the RFID 
identifier as the first column in the spreadsheet, which acts as the primary key. We 
can upload a copy of the shared spreadsheet in the interface application as a Comma 
Separated Values (CSV) for offline working and synchronize the changes back when the 
network is available.

Figure 3: The interface of the application. From top left to center bottom: a) the connection status of 
the glove; b) the “Connect” button; c) the “Update Database” button; d) the resulting data table from 
a scan; e) the “Parameters” button, used to show or hide columns from the result table.

Through the AR headset interface, farmers can access the database on the field, and 
it can be displayed as an overlay on their field of view in the real world through the 
headset’s screen. At startup, the application shows the interface in Figure 3, enabling 
the glove scanning features through the “Connect” button. By pushing it, the headset 
will search for the SG, automatically establishing a connection, and exchanging the in-
formation required by the GATT protocol for the Bluetooth Low Energy devices, which 
saves the SG battery. Once connected, the farmer can use the SG for scanning the bolus 
or the animals’ ear tags. When it reads an RFID, the application checks the code against 
all saved entries in the database. If it finds a match, the application retrieves all the re-
lated data and present it to the farmer in a tabular fashion, as depicted in Figure 2. If the 
farmer scans for a tag that is not in the database, or any error occurs during the scan 
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the application shows a proper error message. It is possible to configure the number 
of columns in the database the farmer needs to display.  By pressing the “Parameters” 
button, the application shows the list of all the columns in the spreadsheet, together 
with buttons for showing or hiding the related information. Indeed, we expect that the 
database structure may change over time and that different farmers may require par-
ticular pieces of information.  Finally, since we foresee that a stable connection may be 
lacking in the field (e.g., rural areas, poor reception, etc.), the internal database in the 
application is a copy of the Google Sheets spreadsheet, converted as a standard SQLite 
database. This allows querying data without a connection, at the cost of an explicit 
request for synchronization by pressing the “Update Database” button. The application 
notifies the farmer when any problem occurs during the update of the database, or 
when the application has no locally saved data.

Results and Discussion
Table 2 reports the results of the activation distance test performed in the laboratory. It 
was observed that the maximum useful distance from the SG to ear tags and to rumen 
bolus was 5 cm but with a low success rate (5 % and 25 % respectively). A higher reading 
rate was observed at 3 cm (success ≥ 60 %), up to a reading rate of 100 % at 1 cm.

Table 2: Success rate of transponder activation (ear tag, bolus) in relation to the distance between 
transponder and transceiver (SmartGlove). N = 320

 Success Rate (%)

Distance (cm) Ear Tag Rumen bolus

50 0.0 0.0

20 0.0 0.0

10 0.0 0.0

5 5.0 25.0

4 10.0 15.0

3 70.0 60.0

2 100.0 75.0

1 100.0 100.0

The results reported in Table 2 underline how the distance between the SG’s anten-
na and the RFID tags should be small in order to identify the specific animal tag. Al-
though 1-3 cm activation distance might be acceptable for the ear tag, this distance 
range might not be suitable for the bolus tag as this is located in the animals’ rumen 
(sheep, goat, cow).

Table 3 reports the results of the reading time test, where the time required to visualize 
the augmented information on the BT300 display, after the transponder activation, was 
evaluated. It was observed for both types of transponders used that the reading time 
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was in the range of 2 seconds. In addition, the maximum time required to visualize the 
animal-specific information in augmented reality was 3 seconds using the ear tags and 
2.86 seconds using the rumen bolus.

Table 3: Average times of transponders code (ear tag, bolus) reading by the SmartGlove and 
visualization of the information in augmented reality on smart glasses. SD = standard deviation. 
N = 100.

Reading time (s)

  Ear Tag Rumen bolus

Mean 2.16 2.22

SD 0.37 0.27

min 1.59 1.23

max 3.00 2.86

The time range recorded could be considered acceptable as the waiting time to activate 
the transponders through the SG antenna and then visualize the desired information 
overlayed to the specific animal. The responding times measured in the tests are in 
line with what has been observed in other experiments related to the identification 
and selection of animals with physical markers and visualization of information in 
augmented reality (Caria et al., 2019). Moreover, the maximum time (3 s) needed for 
the visualization of the animal data is a reasonable timeframe to accomplish farmers’ 
operations, in line with their routinary activities. The developed system could be im-
plemented in different farming contexts, both by farmers and technicians. The farmer 
may identify animals during the selection process, reading tags with the SG and visu-
alizing the information through the ARSG. This would enable the detection of the most 
productive subjects or isolate animals with sub-clinical health problems directly in the 
field. In the same way, technicians could have the updated status of the animals e.g., 
during the pregnancy checking process updating their status during work.

Conclusions
In this paper, the development of a prototype RFID wearable reader was described. The 
aim of this device was to bridge the technological gap between the electronic identifica-
tion of livestock animals and real-time access to individual productive, reproductive, and 
health information. Specifically, the SmartGlove was developed by combining the func-
tionalities of an RFID reader with augmented reality smart glasses. In this way, the animal 
information was available in any part of the farm and superimposed, in real-time, to the 
specific animal. The laboratory tests underlined promising operating performances of the 
SmartGlove. Anyway, further, improvement will be focused on upgrading the rumen bo-
lus reading performances. This device represents a preliminary step in the development 
of a more comprehensive and automated system for precise animal and livestock farm 
management. SG will enable farmers to enhance the RFID identification system to access 
and monitor (hand-free) the animal information displayed in augmented reality on ARSG 
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devices. This innovative system allowed to make timely decisions in the management of 
farms, reducing the required workforce while improving productive performances, in line 
with animal welfare and precision livestock farming principles.
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Abstract
Interest in Bluetooth Low Energy (BLE) as a proximity sensor has increased in recent 
years, but few studies have investigated its potential in an outdoor environment or 
as a means of localisation. A purpose-built device was designed for the study, which 
aimed to conduct a calibration to assess the relationship between the Received Signal 
Strength Indictor of a BLE beacon and BLE reader to develop a distance prediction mod-
el. This was then utilized in a series of static beacon and on-sheep studies, using a mul-
tilateration approach to determine a beacon’s location within a field environment.

Keywords: bluetooth, BLE, proximity, localisation, sheep

Introduction
Animal location and proximity can provide valuable information regarding landscape 
and resource use, animal performance, behaviour, and social contacts (Maroto-Molina 
et al., 2019)animal tracking solutions based on global positioning systems (GPS. How-
ever, many of the technologies currently used to collect these characteristics can be 
costly and impractical to implement in an extensive sheep system due to the low value 
of individual animals, and typically large flock sizes (Umstätter et al., 2008). Still, en-
hanced connectivity options through the introduction of the Internet of Things (IoT) 
and low power wide area (LPWA) networks, along with development in technologies 
such Bluetooth Low Energy (BLE) present opportunities for development of real-time 
monitoring within extensive systems. 

Studies in recent years have begun to explore the potential of  BLE within animal 
monitoring (Makario & Maina, 2021; Maroto-Molina et al., 2019; Nyholm, 2020), and 
as a means of examining the ewe-lamb relationship, such as to determine maternal 
pedigree (Sohi et al., 2017; Waterhouse et al., 2019). Commercial options utilizing Blue-
tooth as an alternative to traditional mothering up and genomic testing are also avail-
able (e.g., Smart Shepherd). In comparison with options such as GNSS, BLE could offer 
a cheaper and less power-intensive alternative. However, the use of BLE as a means of 
animal monitoring and localisation, particularly within extensive systems is still in the 
early stages of development. 

The purpose of this study was therefore to firstly assess the relationship between the 
Received Signal Strength Indicator (RSSI) of BLE beacons and their distance from a BLE 
reader. Then utilising this calibration, to explore whether a field location could be 
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obtained through a series of static and on-sheep beacon tests to explore the potential 
of BLE as a means of localisation. 

Sensor and BLE device design
A purpose built Wearable Integrated Sensor Platform (WISP) was developed for the 
study, commissioned from Scotland’s Innovation Centre for Sensor and Imaging Sys-
tems (CENSIS). The WISP consisted of multiple sensors including GNSS receiver, accel-
erometer, and BLE reader. Each WISP was programmed to record and report data on 
a 5-minute duty cycle, both in real-time via LoRa (where gateway coverage was avail-
able) and to an 8 MB Flash Drive. The multi-sensor kit was contained within an IP65 
enclosure, weighing an average total of 333 g, and was designed for use as both a static 
BLE reader, or as a wearable on-animal device. 

BLE can operate most simply as beacons which transmit (called advertising) their 
unique ID, and readers which collect these IDs and the beacon’s RSSI, reported at mi-
nus values (in units of dBm, decibels per milliwatt).

The BLE reader (BLE 4.2) within the WISP was designed to report the identity and RSSI 
of the 16 ‘closest’ beacons seen within a duty cycle. The receiver would scan for 30 
seconds, then idle for 30 seconds. During each scanning window the RSSI of any bea-
con seen was added to that of any previous adverts. At the end of the duty cycle the 
beacons were sorted based on their average RSSI (e.g., Total Power (sum of beacon RSSI) 
/ No. of Adverts (No. of time beacons seen by WISP)). The 16 beacons with the highest 
average RSSI were the ones then reported by the WISP for that duty cycle. 

Alongside the WISP, BLE 5.0 beacons were used throughout the series of studies, which 
had a reported advertising distance of up to 130 m (Bluetooth 5.0 Low Energy proximity 
Mini beacon, Shenzhen Feasycom Technology Co., Ltd). These were pre-programmed 
with a beacon identity and set to an advertising interval of 1285 ms.

BLE distance calibration

Materials and methods
The calibration study was conducted in field conditions at Auchtertyre Farm, SRUC’s Hill 
and Mountain Research Centre, near Crianlarich, Scotland. Six WISPs were attached to 
an electrical fence post located at a central point in the field, with 8 beacons attached to 
posts located at log intervals ranging from 1-128 m from the WISPs. Beacons were left 
in position to obtain a total possible 5 RSSI readings per distance for each WISP-beacon 
pairing, before being rotated to the next post. This was repeated for 4 different device 
height combinations, with WISPs and beacons tested at heights of 0.7 m (representing 
~ewe standing height) and 0.3 m (~ewe lying / lamb height). Hence a total of 240 possi-
ble RSSI readings per distance could be obtained for each group. 

Results and discussion
The device height was found to have an impact, with a decline in the number of bea-
cons reported occurring at a shorter distance in WISPs at the lower height of 0.3 m, 
which appeared to reach its distance limit at ~32 m. At WISP heights of 0.7 m the limit 
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was between 32-64 m, declining at a slightly shorter distance when beacons were lo-
cated at a height of 0.3 m. Only 11 out of 240 beacons were reported at 64 m across the 
study, and only when both devices were at heights of 0.7 m. Further analysis to obtain 
a distance prediction based on RSSI therefore included observations from 1-32 m only.

Figure 1: Change in RSSI over distance (WISP height 0.7m / Beacon height 0.7m)

An example of the relationship between RSSI and log distance for 1-32 m (based on 
both devices being located at 0.7 m) is shown in Figure 1. Whilst demonstrating the de-
cline in RSSI with increasing distance from the BLE reader, it also highlights the fluctu-
ation in RSSI reported per distance. This was similarly observed across all device height 
groups, but particularly when both devices were at a height of 0.3 m. RSSI can vary 
significantly depending upon a variety of factors, including transmission power, en-
closure and device orientation, as well as the operating environment (Townsend et al., 
2014).  The reported RSSI is also influenced by path loss; the natural decrease in signal 
strength of a wave over a given distance, and shadowing; whereby obstacles between 
the receiver and transmitter cause absorption, reflection, scattering, and diffraction 
(Nyholm, 2020). Hence in a field environment the RSSI is likely to fluctuate depending 
upon the surroundings, and beacon position on the sheep relative to the BLE reader. 

Distance prediction model
A distance prediction model was developed based on the regression:

 (1)

(R2
Adjusted = 0.7529, F(1,1375) = 4193, P < .0001), when both devices were at a height of 0.7m. 

This was used to create a distance prediction equation of:

 (2)

For the calibration data the predicted distances were then calculated, and the mean 
predicted distance plotted against the actual beacon distance. As distance increased, it 
was found that the model underestimated the actual distance:

 (3)
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(R2
Adjusted = 0.9587, F(1,4) = 117.1, P < .001), hence an adjusted prediction model was also 

generated, whereby:

 (4)

Localization of static BLE beacons

Materials and methods
To determine whether RSSI could be used as a means of localisation in a field setting, 
a further static test was conducted at Firth Mains Farm, Roslin, Scotland (Moredun Re-
search Institute). The aim was to examine whether a beacon’s location could be estab-
lished through a multilateration approach, using the predicted distance, or adjusted pre-
dicted distance from multiple WISPs. In this instance 6 WISPs were attached to fence 
posts along 2 adjoining paddocks at a height of 0.7 m; 2 WISPs along the width of the pad-
docks, and 4 along the length of the outer fence line. Sixteen beacons were then attached 
to posts (also at a height of 0.7 m) laid out in a grid-like array approximately 60 x 90 m. 

A 2-hour window of data was selected and reviewed to determine which WISPs had re-
ported which beacons and compare variation in the reported RSSI. There was very little 
fluctuation in RSSI for each WISP-beacon pairing, with a maximum difference of 6 dBm, 
and average of 2.21 dBm. The mean RSSI was therefore used to calculate the predicted 
and adjusted predicted distance from each WISP to compare models. Field boundaries 
were established based on coordinates of corner and mid-paddock fence posts, and the 
location of WISPs plotted based on their mean GNSS coordinates. 

To illustrate the methods used to estimate beacon location this section will go through 
an example for one of the beacons (Beacon E). A visual assessment was first conducted 
by plotting circles around each WISP (whereby the predicted / adjusted predicted dis-
tance was the radius). The circle for each WISP is therefore given by:

 (5)

Figure 2: Comparison of resulting intersection of circles using the a) predicted distance and 
b) adjusted predicted distance. Straight lines represent field boundary.  
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846 Precision Livestock Farming ’22

Figure 2. shows how the intersecting circles of both distance predictions compared for 
Beacon E, which was reported by 5 of the 6 WISPs (L1-6).   

Figure 3: Estimated beacon locations based on a) any points where circles intersected and fell within 
the field boundary b) the mean location of potential points (those in 3.a) in comparison with the 
actual beacon location. 

Where pairs of WISPs resulted in overlapping circles, the intersection of these circles 
was solved to generate potential beacon locations using:

 (5)

where: a = 1st WISP Longitude / b = 1st WISP Latitude / c = 2nd WISP Longitude / d = 2nd WISP 
Latitude / D = distance between 1st and 2nd WISP / r0 = 1st WISP predicted or adjusted predicted 
distance / r1 = 2nd WISP predicted or adjusted predicted distance.

In this case, the intersecting pairs of WISPs resulted in 8 potential locations for Beacon 
E, but only 4 fell within the field boundary for both prediction models (Figure 3.a). The 
mean estimated beacon location was then calculated based on the mean of locations 
within the field boundary. Figure 3.b shows the mean predicted location in relation to 
the actual beacon position for Beacon E. The predicted distance resulted in an estimat-
ed location 17.33 m from the actual location, and the adjusted predicted model 15.21 m.

Results and discussion
In the same way, this was conducted for each of the 16 beacons, using both models 
where possible. Based on the distance prediction and adjusted distance prediction, 
beacon locations were able to be estimated for 11 and 12 beacons respectively. The oth-
er beacons were unable to be solved either due to being reported by too few WISPs or 

log 10 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) =  −2.494050 + (𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ∗ −0.045394)  

𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 10−2.494050+(−0.045394∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 2.18817 + (0.63999 × 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)  

𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 2.18817

0.63999
 

(𝑥𝑥𝑥𝑥 −𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵)2 + (𝑦𝑦𝑦𝑦 −𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵)2 =
𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥𝑥𝑥 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵1,2 =
𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵

2 + 
(𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵)(𝑓𝑓𝑓𝑓02 −  𝑓𝑓𝑓𝑓12)

2𝐷𝐷𝐷𝐷2 ±  2
b –  d

D2 𝜕𝜕𝜕𝜕 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑦𝑦𝑦𝑦 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵1,2 =
𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑃𝑃

2 + 
(𝑃𝑃𝑃𝑃 − 𝑏𝑏𝑏𝑏)(𝑓𝑓𝑓𝑓02 −  𝑓𝑓𝑓𝑓12)

2𝐷𝐷𝐷𝐷2 ∓  2
a –  c

D2 𝜕𝜕𝜕𝜕 

𝜕𝜕𝜕𝜕 =
1
4
�(𝐷𝐷𝐷𝐷 + 𝑓𝑓𝑓𝑓0 + 𝑓𝑓𝑓𝑓1)(𝐷𝐷𝐷𝐷 + 𝑓𝑓𝑓𝑓0 − 𝑓𝑓𝑓𝑓1)(𝐷𝐷𝐷𝐷 − 𝑓𝑓𝑓𝑓0 + 𝑓𝑓𝑓𝑓1)(−𝐷𝐷𝐷𝐷 + 𝑓𝑓𝑓𝑓0 + 𝑓𝑓𝑓𝑓1)  
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the resulting circles not intersecting. The initial distance prediction resulted in beacon 
locations ranging from 2.38-44.63 m from the actual beacon location, with a mean dis-
tance of 32.55 m. Whilst the adjusted distance prediction did not produce any results as 
close to the actual location; adjusted predicted distances ranged from 6.53-32.38 m, the 
mean predicted distance from the actual beacon was slightly closer at 28.5 m. 

One issue highlighted during the analysis was that some beacons may have been on 
the edge of the BLE distance limit, reporting a very low RSSI and underestimating the 
distance, whilst another WISP could predict the same beacon within very close range 
(i.e., within a few meters). However, where the radius is such that these circles do not 
intersect, a more typical proximity based measurement of locating the beacon to with-
in a defined range may still be possible based on the WISP with the highest RSSI.

On-sheep localisation

Materials and methods
The final stage in the study was to test the localisation method on-sheep. Data from 
a larger project being conducted at Moredun Research Institute was provided for anal-
ysis. This study was conducted within the same 2 paddocks (~1.4 Ha) utilised for the 
static beacon localisation. In this case, 9 WISPs were attached to fence posts; 4 fitted 
along the length of both outer fence lines, and an additional WISP located at the gate 
between paddocks.  Twenty-four weaned lambs (Texel x mule) were fitted with a BLE 
beacon, with 12 lambs additionally fitted with GNSS (i-gotU 200 / i-gotU 600). 

A sample of data from the same day was selected for 3 lambs, where at least 3 WISPs 
had reported that lamb’s beacon within a 5-minute timeframe, and where the lamb 
appeared to be stationary. A lamb was determined to be stationary on the basis that 
the GNSS location was consistent for at least 6 minutes prior to the timestamp of the 
first WISP reporting, through to the timestamp of the last WISP. Potential lamb loca-
tions were then generated using the multilateration approach described, based on the 
adjusted distance prediction. This was chosen as the adjusted model provided more 
promising results at longer distances in the static tests and provided better overlap of 
intersecting circles in initial analysis of the lamb data. 

Results and discussion
A predicted lamb location was generated in all 3 instances. The beacon for Lamb 1 was 
reported by 3 WISPs, with all 3 pairs producing intersecting circles, resulting in a total 
of 6 potential lamb locations, 4 of which fell within the field boundary. Both Lamb 2 and 
3 were also reported by 3 WISPs, however, only 2 pairs produced intersecting circles. 
This resulted in 4 potential lamb locations for both lambs: 2 within the field boundary 
for Lamb 2, and 3 for Lamb 3. Figure 4. shows the final mean predicted location for 
each lamb, compared with the actual location from the GNSS. The distance between 
the predicted and actual lamb location was 18.38 m, 35.12 m, and 3.91 m for Lambs 1, 
2, and 3 respectively. 

To further examine the difference between the predicted and actual lamb location, the 
distance between each reporting WISP and the actual lamb location was calculated. On 
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average the difference between the adjusted predicted distance and actual distance re-
sulted in an overestimation of 5.46 m. The largest difference occurred for Lamb 2, with 
a particularly large overestimation of almost 35 m by WISP 22, and the largest under-
estimation of 11 m by WISP 23. When the RSSI of the preceding timestamp of WISP 22 
was checked (lamb stationary for 4 minutes) there was a difference of 18 dBm between 
the reported RSSI. This could be a result of individual device variation or a shadowing 
effect due to the field environment. Underestimation by WISP 23 is possibly a result of 
reaching the edges of the BLE readers capacity and operating in distances beyond that 
of the calibration data used to generate the initial distance prediction.

Figure 4: Mean adjusted predicted lamb location vs actual location within paddocks. 

Conclusions
The results of the study indicate that BLE could be utilised as a means of sheep lo-
calisation in outdoor environments. Whilst the multilateration approach is reliant on 
obtaining RSSI readings from multiple readers at a similar timepoint, it could provide 
more information regarding localisation and movement than simple proximity rang-
es or presence/absence. Due to device variation and environmental factors within the 
field there is likely to be variability within the distance estimates produced. However, 
being able to locate a sheep to within ~30 m within a field environment is a step in the 
right direction. The level of accuracy required in localisation is likely to vary depending 
upon the system and intended application. However, as BLE technology continues to 
develop, and ranges increase, this could provide greater scope for BLE to be applied as 
a means of animal localisation within more extensive systems. 
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Abstract
We investigated the effects of gastrointestinal nematode (GIN) challenge on activity 
in first season grazing lambs exposed to two levels of infection. Ewes and their twin-
born lambs were turned-out to graze in two permanent pasture enclosures naturally 
contaminated with GIN. Animals in the dewormed group (DW) were drenched monthly 
with ivermectin, whereas the other group (NT) was left untreated. At weaning, lambs 
were allocated to one out of four groups based on weight and sex (NT-E, n = 15; NT-
R, n = 15; DW-E, n = 14; DW-R, n = 14), in four ley enclosures. Activity patterns were 
monitored with IceQube-sensors from 7 days pre-weaning until 49 days post-weaning. 
Body weight was monitored weekly, whereas faecal egg counts (EPG) were investigated 
every four weeks. Statistical analyses were performed in RStudio, using mixed models 
with repeated measures. Weekly recordings was treated as a period. Average lying time 
had an interaction between parasite exposure and period (P = 0.0013), with NT having 
a 101 ± 31 min shorter daily lying time compared with DW. Motion Index had an inter-
action between parasite exposure and period (P = 0.0001) with NT having a lower daily 
MI compared with DW. Both weight gain and EPG levels differed (P < 0.0001) between 
groups. In conclusion, this study shows that lying time and MI of lambs around wean-
ing was affected by nematode infections. This indicates a potential use of automated 
behaviour recordings as a diagnostic tool for detection of nematode parasites in lambs.

Keywords: Accelerometers, Activity, Behaviour, Gastrointestinal nematodes, Health 
monitoring, Sheep

Introduction
Infections with gastro-intestinal nematode (GIN) parasites is a global problem in pas-
ture-based sheep herds and it is associated with reduced animal health and welfare 
which affect farm productivity and profitability (Charlier et al., 2020). Current control 
practices of GIN infections depend largely on use of anthelmintic drugs, often in con-
junction with grazing management strategies (Sutherland & Scott, 2010). However, mis-
use of these drugs has led to a widespread development of drug-resistant worm popu-
lations (Rose Vineer et al., 2020). This underlines the need for sustainable management 
approaches that minimize overuse of anthelmintic drugs and thereby the selection for 
anthelmintic resistance (AR) (Velde et al., 2018). Targeted selective treatment (TST), where 
only individual animals within a group are treated, has been proposed as a sustainable 
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long-term strategy to yield individual benefits to animal health and at the same time 
decrease the risk for AR (Charlier et al., 2014). Several indicators have been proposed, i.e. 
faecal egg counts (FEC), weight gains and other production traits, as well as pathophysi-
ological indicators such as the FAMACHA© system. However, the implementation of TST 
approaches is today limited on commercial farms and the future integration is dependent 
of user-friendly, reliable and affordable indicators. Sickness behaviour has been suggest-
ed as an applicable indicator for monitoring various diseases in animals. Furthermore, 
deviating feeding behaviour and general activity can provide specific information about 
an animals health and welfare (Weary et al., 2009). The advancement of Precision Live-
stock Farming (PLF) enable real-time monitoring of such behaviours (Berckmans, 2017) 
and could potentially be utilized to monitor GIN challenge. However, the knowledge of 
responses in host activity in relation to GIN infections in ruminants is today limited and 
needs to be developed before it can be integrated in parasite management (Vercruysse 
et al., 2018). To date there are only a handful of studies assessing activity patterns with 
a sensor approach as an indicator of GIN infections in sheep on pasture. Burgunder et al. 
(2018) observed with 3D-accelerometers that GIN infected sheep exhibited a smaller be-
havioural complexity compared with dewormed animals, suggesting that organizational 
patterns of their behaviour changes with GIN infections. Ikurior et al. (2020) showed that 
sheep naturally infected with strongyles had a lower activity level compared with de-
wormed animals after 42 – 46 days on pasture. Moreover, first season grazing (FSG) steers 
infected with GIN showed a lower activity level compared with dewormed animals as 
well as a higher number of conducted lying bouts 74 – 86 days after turn-out (Högberg 
et al., 2019). In addition, FSG steers inoculated with Ostertagia and Cooperia at turn-out 
showed a longer lying time the 40 first days on pasture as well as a higher number of 
steps day 62 – 69, compared with dewormed animals (Högberg et al., 2021).

Material and methods

Animals and Experimental design
The study took place at Götala Beef and Lamb Research Centre, Sweden (58° 42′N, 13° 21′E; 
elevation 150 m MSL) from April 25th until August 13th 2019. A total of 34 multiparous 
ewes with two lambs of each sex from the same commercial herd were included. The ewes 
consisted of 23 pure Dorset breed and 11 Dorset and Swedish Finewool cross-breeds. The 
study consisted of two periods, one pre-experimental period of five weeks from turn-out 
until three weeks pre-weaning followed by an experimental period with data collection 
lasting to seven weeks post-weaning. At turn-out, ewes with their twin-born lambs were 
allocated to one out of two pre-experimental groups (NT, not treated, and DW, dewormed). 
The ewe groups were balanced for breed, body weight (NT: 68.9 ± 9.5 kg; DW: 72.9 ± 13.2 kg), 
body condition score (NT: 2.8 ± 0.5; DW: 3.0 ± 0.4) and age (NT: 3.8 years; DW: 3.5 years). 
Ewes in group DW were dewormed prior to turn-out with 0.2 mg ivermectin (Ivomec® vet, 
oral suspension) per kg body weight and thereafter at four-week intervals, whereas their 
lambs were dewormed four weeks after turn-out and thereafter at four-week intervals 
until the end of the experiment. Two ewes from NT and three ewes from DW were treated 
for mastitis six to seven weeks prior to weaning and were excluded from the study. One 
ram lamb in group NT was treated with benzylpenicillin (Penovet® vet) and meloxicam 
(Metacam® 20 mg / ml) for lameness, six weeks post weaning. Altogether 58 lambs were 
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used in the experiment. Each group was released into one of two similar permanent pas-
ture enclosures, naturally contaminated by sheep with strongyle nematode larvae the 
previous year. At weaning, lambs were allocated to one out of four groups based on sex (E 
= ewe; R = ram) and experimental group (NT-E, n = 15; NT-R, n = 15; DW-E, n = 14; DW-R, n 
= 14). Each experimental group was allowed to graze in one of four non-contaminated 1.0 
ha ley enclosures, whereas ewes were removed.

Activity measurements, sampling and parasitological examination
One week prior to weaning all lambs were fitted with IceQube® 3D-accelerometers (IceR-
obotics Ltd, Edinburgh, UK; Validated for use in lambs by: Högberg et al., 2020) on the left 
hind leg above the fetlock. Sensor dimensions were 55 x 55 x 27 mm and 75 g. The tri-axial 
accelerometer operates using a sample rate of 4 Hz with a time resolution of 15 min, with 
a 9-day internal memory. The accelerometers continuously recorded Standing (indicates 
whether the animal is upright or not), Lying (indicates whether the animal is lying down 
or not), Lying bouts (indicates the start of a lying bout) and Motion Index (the measured 
net acceleration, indicates total activity). Recordings from IceQubes, expressed as minutes 
per 24 h and lying bouts per 24 h, were downloaded at weekly intervals from one week 
before weaning and then for the seven consecutive weeks, using the download station 
IceReader, when the animals were handled. In the data analyses, recordings from the 
same lambs (i.e. 7 days of data) was treated as a period, generating a total of eight peri-
ods. Recordings from the first day of period 1 and last day of period 8 was not included 
so that each analysed day contained 24 h of data. Body weights of lambs were registered 
on a digital scale three weeks from prior to weaning and thereafter every week for ten 
weeks. In connection with weighing, rectal faecal samples were collected i) three weeks 
prior to weaning, and ii) one week iii) five weeks, and iv) seven weeks post weaning. Faecal 
egg counts (FEC) was determined using a modified McMaster method based on 3 g fae-
ces dispersed in 42 mL saturated NaCl, providing a minimum diagnostic sensitivity of 50 
strongyle eggs per gram (EPG) faeces. In addition, remaining faecal slurry was transferred 
into 15 ml sterile tubes (Sarstedt, Nümbrecht, Germany) and stored at -18°C. Total DNA 
was then extracted using the NucleoSpin DNA Stool kit®, following the guidelines issued 
by the manufacturer (Macherey Nagel, Germany). The proportions of Haemonchus spp. and 
Teladorsagia spp. DNA copies situated in the internal transcribed spacer region 2 (ITS2) of 
the ribosomal RNA gene array were then determined in relation to the universal strongyle 
egg DNA copies in duplex reactions using a droplet digital (dd)PCR assay (BioRad), as de-
scribed earlier by Elmahalawy et al. (2018). 

Statistical analysis
The statistical analyses were performed using RStudio. Assumptions of variance homo-
geneity and normal distribution of residuals of the data were checked by inspection of 
residual plots. Differences in activity were analysed using mixed models, with repeated 
measures using the LME function in the NLME package. For IceQube data GIN exposure 
level (NT, DW), and experimental period (1-8) were treated as fixed factors with the ex-
perimental group and individual as nested random effects. Start weights were treated as 
a covariate in the model. Data from one animal in group NT-R, treated for lameness, was 
excluded from period 6 until the end of the study. To account for time autocorrelation, 
a continuous autoregressive structure for a continuous time covariate (CorAr1) was fitted 
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for the model. Pairwise differences were compared with ANOVA in the NLME package. 
Differences between experimental groups during the different periods were compared 
using Tukey’s pairwise comparisons with the emmeans package. BWG and EPG were an-
alysed in a repeated measure mixed model with GIN exposure level (NT, DW) and day as 
fixed factors and the experimental group and individual as nested random effects. A con-
tinuous time covariate (corAr1) was also fitted to account for autocorrelation.

Results and Discussion
Average daily lying time had an interaction between GIN exposure and period (P = 0.0013), 
that was most pronounced from day -7 until day 7, with mean lying times being 667 ± 244 
in NT and 760 ± 257 in DW, during these days, respectively (Fig.1a). The pairwise compar-
isons for each period did not show any differences. Motion Index had an interaction be-
tween GIN exposure and period (P = 0.0001), that was most pronounced from day 0 until 
day 14, with mean Motion Index being 11836 ± 250 in NT and 13156 ± 278 in DW, during 
these days, respectively (Fig.1b). The number of lying bouts recorded was not affected 
by GIN exposure (P = 0.51) or exposure by period interaction (P = 0.82) (Fig.1c). The mean 
body weight (Fig.2a) seven days prior to weaning did not differ between exposure groups 
(P = 0.58) and was 28.1 ± 4.68 kg in NT and 28.7 ± 3.7 kg in DW, respectively. The average 
body weight gain (BWG) was on average 19.1 % higher (P < 0.0001) in DW (362 ± 5 g) com-
pared with NT (304 ± 6 g). Strongyle eggs were present in both experimental groups at day 
– 21 from weaning. The FEC (Fig.2b) was higher (P < 0.0001) in NT than in DW throughout 
the study, decreasing from day – 21 to day 7. The highest FEC in DW was observed at day 
– 21. Haemonchus spp. was found in both experimental groups, with 7 % of animals in DW 
and 100 % of animals in NT being positive at least on one occasion. Teladorsagia spp. was 
found in all animals on at least one occasion.

In this study strongyle nematode eggs were observed in both groups three weeks pri-
or to weaning, but FEC was higher in NT compared with DW throughout the study. T. 
circumcincta and H. contortus were identified as the two most abundant pathogenic spe-
cies. The relatively low EPG levels in combination with predominantly low proportions 
of H. contortus, indicates moderate infections with this parasite also in NT animals. Still, 
we observed a difference in BWG throughout the study period with the daily weight 
gain in DW being 75 ± 18 g higher than in NT. Furthermore, no clinical signs of parasit-
ism, such as diarrhoea and anaemia, were observed. Together, this implies a moderate 
subclinical course of disease also in NT. Despite all of this, our results indicate that the 
differences in GIN infections generated herein had effects on the activity patterns in 
lambs and that could be registered with commercially available on-animal sensors. 
Animals in NT had a lowered MI compared with DW throughout the study. This finding 
is in agreement with those of Ikurior et al. (2020) that also detected a reduced activity 
in sheep challenged with subclinical levels of GIN. Similarly, FSG steers inoculated with 
O. ostertagi and C. oncophora at turn-out and further exposed to larvae on pasture, had 
a reduced activity compared with dewormed animals (Högberg et al., 2019). Previously, 
a reduction in activity in grazing steers have been suggested to be linked with a dose 
dependent mucosal damage mainly associated with O. ostertagi infection (Högberg et 
al., 2019). The lambs in the present study were primarily exposed to Teladorsagia spp. 
that inhabit the same niche in sheep as O. ostertagi in cattle, with similar pathological 
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effects on the host (Sutherland & Scott, 2010). This further underlines the possibility 
of a connection between nematode induced mucosal damage in the abomasum and 
deviation in host activity patterns. There was also an exposure by period interaction 
on lying time with NT animals having a shorter daily lying time compared with DW 
throughout the study. This is in direct contrast with the findings of Högberg et al. (2021), 
where FSG steers challenged with a subclinical infection of GIN had a longer daily lying 
time during the 40 first days after infection, compared with dewormed animals. Again, 
this emphasises the need for species-specific interpretation of associated sickness be-
haviour for different host-parasite relationships. In addition, the differences in lying 
time patterns observed in the lambs studied herein was present already at the start of 
recording. This indicates that the influence of GIN infection on the activity patterns in 
sheep may arise early and could be explained by the difference in FEC levels observed 
three weeks prior to weaning, reflecting a manifest GIN infection. This underlines the 
potential use of behavioural variation as an early indicator of GIN infection, as sug-
gested by Szyszka et al. (2013). In contrast, long term differences in activity may have 
a more limited value for the implementation of a TST-system. However, more studies 
are clearly needed to determine the relationship between infection levels and indi-
vidual behavioural responses, under varying exposure conditions. Nevertheless, in our 
study the variation of FEC within NT was moderate reflecting minor variations in GIN 
infection levels between the animals in this group. This underlines that individual var-
iation needs to be taken into account when developing PLF-systems evaluating treat-
ment thresholds that can be used in parasite control programs.

Figure 1: a) Duration of mean lying time ± SD (min / 24 h), b) mean Motion Index ( / 24 h), and 
c) mean number of lying bouts (no. / 24 h) in four groups, based on sex (E = ewe; R = ram) and 
experimental group (NT = not treated; DW = dewormed), of first season grazing lambs exposed to 
overwintering strongyle larvae at pasture. One experimental group (DW) (red) was dewormed with 
Ivomec® (0.2 mg kg−1) monthly (DW-E, n = 14; DW-R, n = 14), exposing them to a lower parasite 
challenge compared with DW (blue) (DW-E, n = 15; DW-R, n = 15).
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Figure 2: a) Mean body weight ± SD, b) Mean gastrointestinal nematode faecal egg counts (EPG) ± SD in 
four groups, based on sex (E = ewe; R = ram) and experimental group (NT = not treated; DW = dewormed), 
of first season grazing lambs exposed to overwintering strongyle larvae at pasture. One experimental 
group (DW) (red) was dewormed with Ivomec® (0.2 mg kg−1) monthly (DW-E, n = 14; DW-R, n = 14), 
exposing them to a lower parasite challenge compared with DW (blue) (DW-E, n = 15; DW-R, n = 15).

Conclusions
This study constitutes an attempt to evaluate the effects of multispecies nematode para-
sitism on the activity level in grazing lambs in connection to weaning, using commercial-
ly available on-animal sensors. The results show that the activity measurements lying 
time and Motion Index differed between NT and DW, despite that infection levels were 
considered to be low also in NT. Although additional research regarding individual varia-
tion in connection to GIN infections is needed, we have demonstrated the potential use 
of automated behaviour recordings as a diagnostic tool for detection of major nematode 
infections of sheep to be integrated into future parasite control programs.
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Abstract
Recent advances in sensor technologies and data analysis helped monitoring animal 
behavior over long time periods. This is particularly interesting to study the link be-
tween behavior and animal health. In this work, we studied the capacity of Creole 
goats to avoid feces on pasture. We developed an experimental framework, composed 
of a small pasture of 12x12=144m2 with two zones of 6x2=12m2 infested with feces, 
and a monitoring system, based on a time lapse camera, taking pictures every 20s from 
6:30 to 18:00. A set of 3,800 images were manually labeled to (i) train a Yolo based neural 
network, ables to detect goats on the images and (ii) train a resNet50 neural network, 
ables to identify the goats present on pasture. We used the framework to monitor the 
location of four Creole goats, selected for their various colors, to make automatic an-
imal identification easier. We were able to determine when the animals were on the 
infested areas or not. Goats were allowed to graze for two weeks, separated from more 
than 2 months. Goats were worm free when grazing started and the level of infection 
was evaluated after grazing, using fecal egg count. Goats were detected in 88% of the 
cases and the precision for animal identification was estimated to 95%. Although goats 
exhibited various level of avoidance, it increased for all goats during the second grazing 
week, and the level of increase was proportional to the level of infection resulting from 
the first grazing week.

Keywords: Image Analysis, goats, fecal avoidance.

Introduction
Goats are an important resource mainly for meat and milk production, with approxi-
mately 94% of the animals located in Asia and Africa. Infection with gastro-intestinal 
nematodes (GIN) parasites is one of the main health constraints, responsible for re-
duced performances production and increased mortality, especially in young animals 
and adult females, during the periparturient period. In the past, GIN management suc-
cessfully relied on systematic anthelmintic (AH) treatment. Unfortunately, resistant 
GIN populations to AH were gradually selected (Kaplan and Vidyashankar 2012). Thus, 
it is now widely admitted that relying only on AH is not a sustainable strategy. To de-
sign alternative strategies adapted to farmers constraints, modeling could be an inte-
resting tool, in order to simulate infestation dynamic, compare, and optimize manage-
ment strategies. One of the main challenge to model GIN infection dynamic is to model 
ingestion, i.e. the timing and quantity of ingested larvae. Larval ingestion is related to 
animal behavior and recent developments in precision livestock farming tools offer 
new opportunities, especially to characterize behavior, and to study the relationship 
with GIN infection.
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In this article, we proposed an experimental framework to study a particular aspect of 
animal behavior concerning feces avoidance, based on automatic monitoring of the 
animals using image analysis (Li et al. 2021). Convolutional neural networks (CNN) are 
generally the most adapted image analysis tool and has been used successfully, mostly 
for pigs (Marsot et al. 2020; Zheng et al. 2020; Gan et al. 2021), but also for goats (Bonneau 
et al. 2020; Jiang et al. 2020; Su et al. 2021). Several methods for cattle monitoring also 
successfully identified animals using deep-learning technics (Qiao et al. 2019; Achour 
et al. 2020). The main advantage of using CNN is that powerful models, trained on mil-
lions of images and designed by research teams with relevant engineering skills, are 
available free of charge. Then, new users can almost directly use these CNN, just by 
retraining some parameters in order to be able to detect and classify their objects of in-
terest. In this article, we proposed to use YOLO (You Only Look Once - Redmon and Farha-
di 2017) associated with resNet-50 (He et al. 2016) to detect and identify the animals.

Material and methods
All animal care handling techniques and procedures were approved by the French Eth-
ics Committee n°069 (Comité d’Ethique en Matière d’Expérimentation Animale des An-
tilles et de la Guyane, CEMEAAG) authorized by the French Ministry of Higher Education, 
Research and Innovation. The experiment was performed at the INRA Experimental 
Facilities PTEA (Plateforme Tropicale d’Expérimentation sur l’Animal) according to the 
certificate number A 971-18-02 of authorization to experiment on living animals issued 
by the French Ministry of Agriculture.

Experimental setup
The objective of the study was to monitor goats while grazing an experimental pasture, 
where the location of feces infested with GIN was known, in order to study their ability 
to avoid feces. The experiment was first conducted during Week 1, from April 12th 2021 
to 19th, and repeated during Week 2, from June 28th 2021 to July 5th. The same pasture 
and animals were used for the two weeks.

We designed an experimental pasture of 12mx12m=144m2, with two infested areas 
A and B, of 2m×6m=12m 2 each (see Figure 1). A total of 900g of infested feces with GIN 
were dropped homogeneously within each infested area. Feces were dropped manually 
13 days before grazing on Week 1 and 10 days before grazing on Week 2, to maximize 
the number of infective larvae on pasture during grazing. The feces level of infection 
was measured using fecal egg count (FEC), in eggs per gram of feces (EPG, Aumont, 
Pouillot, and Mandonnet 1997). FEC was estimated from 10 different feces samples, for 
Week 1 mean FEC was 567 eggs/g and was 4431 eggs/g for Week 2.

To ensure that animals were not infested with GIN before grazing on Week 1 and 2, they 
were drenched using anthelmintic. Treatment efficacy was controlled by measuring the 
FEC one week before grazing. After grazing animals were maintained together in a stall 
and were fed with dry hay to avoid parasite ingestion outside of the grazing week. After 
grazing, the animals level of infection was finally assessed using FEC, at least every 
week, starting 8 days after grazing.
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Animals

Four male Creole goats were selected to maximize color differences between individuals. 
The first goat, referred as white, had a black coat with white color patches on the belly, 
weighted 34.13kg and was 16 months old at the beginning of the experiment. The second 
goat, referred as brown, has a brown coat with a black strip on the back, weighted 33.93kg 
and was 12 months and 17 days old. The third goat, referred as black, had a homogeneous 
black coat, weighted 31.62kg and was 12 months and 17 days old. The last goat, referred 
as red, had a reddish brown coat with a black strip on the back, weighted 39.92kg and was 
12 months and 11 days old. The animals from different sire origins, were raised at pas-
ture and exposed to natural GIN infection, until the first stage of the experiment.

Figure 1: Pasture setup. The white dashed zones with solid lines are infested areas A and B. The 
white dashed square with dashed lines is the resting area. During experiment, we placed water and 
a sheet of metal inside this area to produce shade. On Week 1, we used the camera located on the 
bottom right corner of the pasture and on the bottom left on Week 2

Recording behavior with time-lapse cameras
We used a construction time-lapse camera (Brinno TLC2000 pro 2018), setup to take one 
picture every 20s from 6:30 to 18:00. The analysis of the images acquired during Week 
1, showed that the camera was facing the sun during sunrise, decreasing the quality of 
the images. The location of the camera was adapted accordingly for Week 2. Animals 
were grazing the paddock continuously but we were only able to record during daylight. 

Animal detection
To detect animals, a common approach was used, based on the CNN YOLO v2 (Redmon 
and Farhadi 2017), known to run fast, with high accuracy and high learning capacities. 
For image feature extraction, we trained YOLO based on resNet-50 (He et al. 2016). In 
very few cases, YOLO returned more than 4 detections, mostly when multiple bounding 
boxes was associated to the same animal. When more than four bounding boxes was 
found, a non-max suppression method was used to remove the overlapping bounding 
boxes (i.e. rectangles around the detected objects).
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Animal identification
The results of the YOLO detection stage was a set of bounding boxes, (xa, ya, wa, ha)a = 1…n, 
around the detected animals, where xa and ya were the column and row numbers of the 
top left corner of the bounding box number a. wa and ha were the width and height of 
the bounding box, and n was the number of bounding boxes/detected animals. We then 
moved to the next step: identify the animals inside each bounding box.

This second step is an image classification problem, with 4 different classes, white goat, 
brown goat, black goat and red goat. There is several CNN that are available free of charge, 
and trained on more than one million of images to perform image classification with 
common objects such as dogs, stop signs or humans. However the network architec-
ture and most of the layers can be directly used to recognize new classes, which is 
known as transfer learning. We also used resNet-50 with only the parameters of the 
last 10 layers being re-trained. When labelling the training images for YOLO, the color 
of the animals was also labeled. Thus the 3,820 training images labeled for YOLO were 
used, to extract 12,236 images with color labels. In total, approximately 3,400 images 
were available for the white goat and 2,900 images for the other goats.

Compared to other image classification problem, an extra information was available: 
two detections cannot be in the same class. Instead of using the prediction of the CNN 
directly, we used it to compute the probability of each bounding box being from an 
animal of the four different colors. For each bounding box number a, (xa, ya, wa, ha), the 
CNN associated a set of probabilities (pa

white, p
a
brown, p

a
red, p

a
red). A score was then calculated 

for each possible color configuration of the bounding boxes. If ca is the color of the 
bounding box number a, the score of a configuration (c1, …, cn) is simply the sum of 
the probabilities of the bounding boxes to be in that colors:

Finally the color configuration with the highest score was chosen, to ensure that each 
color class was associated to a maximum of one detection. 

Evaluate detection
To evaluate the capacity of the method to detect and identify animals, a MATLAB ap-
plication was designed to select randomly an image on the data bank and displayed 
the detected animals with their estimated color. For each color (i.e. white, brown, black 
and red), the user first selected if the animal was detected, non-detected or absent (i.e. 
inside the resting area). When the animal was detected, the user also had to record its 
true and estimated color. A second script was designed to manually record the location 
of the missed detection.

We ran the application to control more than 600 images for each Week. In order to as-
sess the capacity of the method to detect the animals, we computed the percentage of 
detected animals. In order to assess the capacity of the method to identify the animals, 
we compared the estimated and true color of each detection. Then we evaluated the 
sensitivity and precision for each color class.
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Fecal avoidance capacity
To characterize the capacity of the animals to avoid infested areas, the number of times 
each animal was detected on the infested and non infested areas was computed. In 
order to compare the two quantities, the number of detections was normalized by the 
surface area of each zone, which provided a number of detections per m 2. Finally, the 
avoidance index was defined as the ratio of the number of detections per m inside the 
non-infested and the infested areas:

Whered dnia is the number of detection inside the Non-Infested Area and dia is the num-
ber of detection inside the two Infested Areas A and B.

An avoidance index >1 means that the number of detections per m 2 was strictly high-
er for the non-infested area. The greater was the avoidance index, the greater was the 
feces avoidance. Note that avoidance of freshly dropped feces is not accounted for. 

Statistical analysis
In order to quantify the animals level of infection after grazing, FEC was determined on 
a regular basis. To summarize this information, we used the logarithm of the are under 
the FEC curve (LAF). The LAF allowed the characterization of the infection dynamic over 
the entire measurement period. The LAF increased with the animal level of infection.

The correlation between the individual LAF obtained on Week 1, denoted LAFi for an-
imal i = 1,…,4, and the increase in the weekly avoidance on Week 2, denoted AVi, was 
studied using the Pearson’s correlation coefficient. It is equal to:

Where μ and σ are the mean and standard deviation. 

Results and Discussion

Animal detection and identification
The white goat had the highest detection rate (95% - See Table 1). The white coat patch-
es on the belly of this goat was highly discriminant and certainly helped the detection 
and identification by the algorithms. The red and black goats had similar detection 
rates (89.45% and 87.9% respectively), whereas the brown goat was the one with the 
lowest detection rate (79.4%). Most of the missed detections were located on the part of 
the pasture farthest from the camera. It has also been noted that missed detection was 
highest between 6:00 to 8:00 during Week 1, due to sunrise. 

The sensitivity and precision of the animal identification method are available Table 1. 
The average sensitivity was close to 95% for each week. We observed confusion between 
the brown and red goats, which had similar shade. There was also some confusion 
between black and white goats, which had most of the coat of black color. When the 
white coat patches on the belly was not visible, the identification method recognized 
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the white goat as the black one. As for the detection method, a better sensitivity and 
precision during Week 2 was observed, due to camera position.

Tableau 1: Percentage of detected animals using Yolo, as well as sensitivity and precision of the 
animal identification method

Animal detection Animal Identification

Week 1 Week 2

Week 1 Week 2 Sensitivity Precision Sensitivity Precision

White 95% 95% 98.9% 95.7% 99% 97.6%

Brown 78% 80.8% 95.9% 85.9% 94.4% 94.1%

Black 84.3% 91.5% 89.4% 95.7% 94.2% 96.7%

Red 86.8% 92.1% 92% 97.6% 95.7% 95.1%

Average 86% 89.9% 94% 93.7% 95.8% 95.9%

Post-grazing level of infection
The FEC remained relatively low (< 4,000 EPG) after Week 1 (see Figure 2. a and b). The 
brown goat had the highest FEC value (mean FEC = 2653 eggs/g). On the last FEC meas-
urement, the black and white goats had relatively similar FEC values, close to 2,000, 
although the white goat had lower FEC at the beginning (mean FEC = 934 eggs/g for the 
white and 1,467 eggs/g for the black). The FEC of the red goat did not exceed 700 eggs/g, 
which could be considered as a low level of infection.

Figure 2: Individual fecal egg count (FEC), in eggs/g of feces, for Week 1 (a) and Week 2 (b), as 
a  function of the number (Nb) of days after grazing stopped. Individual avoidance index during 
Week 1 (c) and Week 2 (d) 
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After Week 2, the level of infection of the black goat was high with FEC value close to 
17,000 eggs/g (mean FEC = 11,415 eggs/g). The FEC of white and brown goats were sim-
ilar, with a maximal value close to 3,000 eggs/g (mean FEC = 1,679 eggs/g for white and 
1,342 eggs/g for brown). A peak of FEC (4,290 eggs/g) for the red goat was observed 21 
days after the grazing period. Thereafter, the FEC decreased to reach levels similar to 
the white and brown goats (mean FEC = 1,473 eggs/g).

Avoidance capacity
The weekly avoidance index increased between Week 1 and 2 for all the animals (see 
Figure 2. b and c). The weekly avoidance index increased by 76%, 207%, 142% and 60% 
for the white, the brown, black and red goat respectively. Interestingly, the greater LAF 
value was observed during Week 1 and the greater weekly avoidance index was ob-
served during Week 2. The Pearson’s correlation coefficient between the LAF on Week 
1 and the increase in the weekly avoidance index on Week 2 was 0.93. In line with this 
result, for sheep, it has been shown that the avoidance capacity increased with the lev-
el of infection (Hutchings et al. 1999; Cooper, Gordon, and Pike 2000).

Conclusions
In this study, we provided a conceptual framework to study goats behavior at pasture 
and tested it to study the interaction with parasitism. This framework is based on au-
tomatic animal monitoring using image analysis, to detect and identify the animals 
on the images, allowing to record the spatial coordinates of the animals over time and 
derive interesting indicator, such as the avoidance index. Overall, image analysis could 
be a useful tool to monitor animal behavior on pasture. The main advantages being 
the low cost of the cameras and no handling of the animals. With more developments, 
it could be expected that a variety of variables, such as locations, activities or animal 
interactions, could be computed from only one sensor, the camera. However, using 
image analysis remains technical, as it needs to train specific deep neural network, 
which could be complicated for non-specialist. In this work, we showed that animal 
identification was possible, thanks to the various colors of the individuals. This might 
not be possible for generic studies and automatic identification remains a major con-
straint for grazing goats. By now, GPS combined with accelerometers probably remains 
the easiest solution to get continuous individual data. However, ou study demonstrated 
that image analysis is a potential alternative, and future improvements could open 
new perspectives for monitoring animal behavior.
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Abstract
Monitoring of body condition and/or morphological changes is essential for optimal 
management of ewe health and welfare, but also production and reproduction per-
formance. However, due to implementation difficulties (handling, workload, skills and 
training), body condition scoring is rarely implemented on sheep commercial farms. 
New technologies based on three-dimensional (3D) shape analysis combined with elec-
tronic identification could solve this issue. The purpose of the present study was to 
develop, test and validate a device that can record and analyse 3D body shapes of shorn 
ewes. Manual measurements on 12 Vendéen breed ewes (gold standard) were com-
pared to measurements from the 3D images. Height at withers (HW), chest circumfer-
ence (CC), chest depth (CD) and chest width (CW) were registered. Correlations between 
3D device and manual measurements were 0.37 for HW, 0.80 for CC, 0.80 for CD and 0.82 
for CW. For the 3D system, the repeatability standard deviation ranged from 1,53E-03 to 
1.65 (coefficient of variation (CV) from 1,54% to 3,77%) and the reproducibility standard 
deviation ranged from 2,36E-04 to 0,77 (CV from 0.3% to 1.17%). Repeatability values are 
very close between the two methods, and 3D device measurements are more repro-
ducible than manual measurements. In the future, automatic determination of ewes 
body condition score thanks to this technology will be tested, as well as the possibility 
of measuring new phenotypes such as the volume or the surface, which are of many 
interest in ewe selection and production.

Keywords: 3D imaging, precision livestock farming, body measurement, sheep, 
sensors

Introduction
Ewe weight, body condition score (BCS) and morphology are important indicators for 
monitoring animal health, reproduction, feed and production (Yakubu, 2009). They al-
low changes in the condition of the animals identification which make possible the 
detection of health or feeding problems, for example. However, due to the large size of 
sheep flocks, the measurement of BSC or weight can be time-consuming, which severe-
ly limits their use by farmers. Automatic solutions exist in sheep for weight measure-
ment (e.g. weighing crate) but their cost remains high and not yet very accessible on 
farms. Besides weight measurement, which can be automated, the methods for meas-
uring morphological traits and body condition score are still manual.
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In the case of small ruminants, imaging methods seem to be interesting and inexpen-
sive solutions for monitoring the morphology and condition of animals (Menesatti et 
al., 2014). 3D imaging, a recent technology in animal husbandry, has shown interesting 
results on the implementation and accuracy of morphology traits measurements and 
body condition score estimation of dairy cows (Le Cozler et al., 2019). 3D imaging could 
be a solution to meet the time and cost constraints of sheep farmers.

The aim of this study is to develop and validate a prototype for automatic acquisition 
of 3D images of ewes.

Material and methods

Device and 3D images
The OtoP 3D prototype was developed in partnership with the 3DOuest company in 
their laboratory in Lannion and then installed on the Digiferme® of Le Mourier in 
Saint-Priest-Ligoure, France. The prototype is based on a fixed arch which five cameras 
embedded (Figure 1). A sixth camera is present at the rear to improve image accuracy of 
the lower back and rear of the animal, which are the areas of interest for BCS. The cam-
eras work with active stereo, i.e. by projecting an infrared test pattern that facilitates 
the matching of the left and right images for distance map inception. The cameras 
have a horizontal of 85° and a vertical viewing angle of 58°. The 6 cameras are synchro-
nised with each other to capture a complete image of the animal. The 3D image capture 
time is less than one second. It can be activated by an operator on a computer or direct-
ly through the identification of the animal by the RFID (Radio-frequency identification) 
antenna placed at the front of the prototype. The ewes are contained between two 
wide-mesh nets to limit the impact of restraint on image quality. Two doors, one at the 
front and one at the back, allow the management of animal flow. 

Figure 1: OtoP 3D prototype and installation 

The images captured from each camera are sent as a distance map to the computer. 
A Poisson reconstruction algorithm is used to reconstruct 3D images of the ewes from 
the distance maps. The quality of the images is then improved by removing environ-
mental artefacts, filling in uncaptured holes and homogenising the 3D surface. Manual 
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verification and correction was applied to some images to remove environmental fea-
tures. A sorting of the images was carried out to remove the images that could not be 
used because of the movement of the sheep.

Animals and measurements
The measurements were done in June and July 2020, on 12 ewes of the Mouton Vendéen 
breed from Le Mourier experimental farm (87, France). For each ewe, the measurements 
were done manually on live animals and on 3D images from the OtoP 3D prototype. The 
measurements taken were Wither Height (WH), Chest Width (CW), Chest Depth (CD) 
and Chest Circumference (CC). Two additional measurements, Volume (V) and Surface 
(S) area, were measured on the 3D images. 

Five 3D images of each animal were acquired for repeatability and reproducibility. For 
the manual method, three repetitions of measurements by one operator were per-
formed as well as three repetitions by three operators for the reproducibility of the 
manual method. For the measurements from the 3D images, repeatability was carried 
out on 5 redundant measurements by the same operator and reproducibility on five 
different operators. The 3D images were processed with the Metrux2α® software de-
veloped by 3D Ouest.

Data analysis
Repeatability and reproducibility of the two methods (manual and from OtoP 3D proto-
type) were evaluated. The aim of repeatability is to evaluate the error generated when 
estimating an indicator several times on the same sample with the same methodolo-
gy, in the same environment, over a short period of time. It was estimated by making 
measurements five times the same day, from the OtoP 3D prototype with the same ewe. 
Reproducibility aims to assess the same error but under varying environmental condi-
tions. It was estimated with twelve ewes scanned or with four different operators, with 
only one measurement per 3D image. The 3D variations were corrected to account for 
the effect of animals in extracting ANOVA model residues. The coefficients of variation 
for repeatability (CVr) and reproducibility (CVR) were evaluated as CVr = (σr / μr) * 100 
and CVR = (σR / μR) * 100, where σr and σR are respectively the standard deviations of 
the corrected 3D measurement for the repeatability and reproducibility datasets and μr 
and μR are respectively the average 3D measure of the repeatability and reproducibility 
data. With the same idea, repeatability of the manual method was estimated by mak-
ing measurements three times the same day, by the same operator with the same ewe. 
Reproducibility was estimated by making measurement by three operators with twelve 
ewes, with only one measurement per ewe. All the data analysis were performed using 
the statistical software R.

Results and Discussion

Validation: Comparison between 3D images and manual measures
The measurements obtained from the 3D image of an animal were compared with those 
collected manually on ewes. Each average measurement on 3D images was per animal 
subtracted from the manual measure average. A confidence interval was calculated 
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for each measurement: if it is not centred on 0, this means that a bias exists between 
the two methods. The amplitude of this interval provides information on the average 
deviation in centimetres. A coefficient of variation was also calculated to estimate this 
deviation in percent.

Table 1: Comparison between 3D images and manual measures

3D average – Manual average WH CW CD CC

Confidence interval 95% [-1.16 ; 3.06] [1.48 ; 3.1] [1.39 ; 2.72] [5.34 ; 8.57]

Amplitude (cm) 4.23 1.62 1.33 3.23

Standard deviation (cm) 3.15 1.20 0.99 2.41

Coefficient of variation (%) 5.09 4.49 2.98 2.47

The confidence intervals are positive, except the wither height: 3D imaging generally 
overestimates the measurements compared to the manual method. This bias can be 
explained by the wool that is captured on the 3D images for the measurements but is 
crushed with the tools for manual measurements (Table 1).

However, the deviation remains small, maximum 4.23 cm for wither height. The co-
efficient of variation shows a low variation, less than 5%. The 3D imaging seems to be 
a precise way to get measurements from ewes (Table 1). 

Repeatability

Table 2: Repeatability of the two methods

Measurement
Average

Repeatability

Standard 
deviation

Coefficient of 
variation

Wither Height (WH)
Manual 61.86 1.71 2.76

OtoP 3D 63.04 1.65 2.62

Chest width (CW)
Manual 26.04 0.89 3.43

OtoP 3D 28.38 1.07 3.77

Chest depth (CD)
Manual 32.54 0.32 0.99

OtoP 3D 34.73 0.8 2.3

Chest Circumference (CC)
Manual 94.58 1.29 1.36

OtoP 3D 101.9 1.56 1.54

Surface (S) 
Manual – – –

OtoP 3D 1.41 0.05 3.22

Volume (V) 
Manual – – –

OtoP 3D 0.08 1.53E-03 1.97

The automatic volume and surface measurements show the variability resulting from 
the 3D images cleaning. The others show the variability of the manual steps (cleaning 
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and measurements on 3D images). In both cases this variation is small, less than 2% 
(Table 2). The 3D imaging method with the OtoP 3D prototype appear to be repeatable. 
The coefficients of variation of manual method and OtoP 3D method are similar for the 
repeatability except for the chest circumference. This can be explained by the different 
positions of the animals on the 3D images and the difficulty of finding a reliable refer-
ence point to make the measurement on the 3D images.

For Otop 3D method, the values of reproducibility are quite comparable to those for re-
peatability. Changing operators seems to have no impact on the measurements on 3D 
images. The variations observed for the manual method are higher than repeatability 
variations. The manual measurement of an animal seems to be hardly reproducible, 
and a real difference exists from one operator to another depending on his experience 
and habit (Table 3).

Reproducibility

Table 3: Reproducibility of the two methods

Measurement
Average

Reproducibility

Standard 
deviation

Coefficient of 
variation

Wither Height (WH)
Manual 60.63 6.14 10.13

OtoP 3D 66.12 0.77 1.17

Chest width (CW)
Manual 25.40 3.75 14.78

OtoP 3D 29.01 0.17 0.57

Chest depth (CD)
Manual 31.78 4.40 13.86

OtoP 3D 32.93 0.51 1.56

Chest Circumference (CC)
Manual 93.22 7.31 7.84

OtoP 3D 97.74 0.26 0.27

Surface (S) 
Manual – – –

OtoP 3D 1.51 0.02 1.6

Volume (V) 
Manual – – –

OtoP 3D 0.08 2.36E-04 0.3

Conclusions
The 3D images taken by the OtoP 3D prototype allowed the acquisition of the ani-
mal’s measurements with almost the same measurments than manual method. These 
3D measurements are not totally identical to the manual measurements, but they are 
comparable. They are generally overestimated because they are less adaptable to the 
animal’s morphology and wool. These measurements, like manual measurements, are 
very repeatable for an operator. OtoP 3D measurements are not subject to operator bias 
and are much more reproducible than manual measurements. 3D imaging makes it 
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possible to immortalise the animal at a given moment, and this allowed to keep safe 
operators and get more repetable and reproducible measurements. This new technol-
ogy is very promising and it possible to consider many valuations as automatic BCS, 
automatic and low cost estimation of body weight, measurement of the surface and / 
or the volume of the animal…
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Abstract
We used a published simulation model to create a herd of cows, simulate several milk-
ings for those cows and create quarter milk flowrates for each milking to derive quarter 
and cow milking durations and box duration in an automatic milking system (AMS). 
Then, we applied several teatcup removal settings to the simulated quarter milkings to 
predict their impact on quarter and cow milking duration and box duration in an AMS. 
The settings were teatcup removal at 0.2 kg/min, 0.4 kg/min and 0.6 kg/min; or 20%, 
30% and 50% of the quarter’s 30 s rolling average milk flowrate. 

Quarter milking duration was reduced by 9% for teatcup removal at 0.4 kg/min and 19% 
for teatcup removal at 0.6 kg/min compared to 0.2 kg/min. Box duration was reduced by 
4.4% for teatcup removal at 0.4 kg/min and 6.5% for teatcup removal at 0.6 kg/min com-
pared to 0.2 kg/min. Quarter milking duration was reduced by 7% for teatcup removal 
at 30% of the average milk flowrate and 16% for teatcup removal at 50% of the average 
milk flowrate compared to 20%. Box duration was reduced by 3% at teatcup removal of 
30% of the quarter average milk flowrate and 8% at teatcup removal of 50%, compared 
to 20%. These results show that the quarter milk flowrate simulation model is a useful 
tool to examine the effect of milking management practices on milking efficiency of 
AMS.  

Keywords: teatcup removal, quarter milk flowrate, simulation, automatic milking 
system, milking efficiency

Introduction
Milking represents one the most important tasks on dairy farms, accounting for rough-
ly a third of the farm’s total labor demand (Deming et al., 2018). Farms using Automatic 
Milking Systems (AMS, robots) usually require a large initial capital investment which 
results in the need to achieve high levels of milking efficiency to justify the technology 
used. In AMS, an important driver of profitability of the system is related to the milk 
harvested by the robot each day. This, in turn depends on the number of cows milked 
and the number of milkings per cow per day (Castro et al., 2012). Since the box-style 
AMS can milk one cow at a time, each individual milking is important and therefore 
milking management strategies that can optimize cows milked per day and milk har-
vested per AMS/day have an impact on system profitability. Strategies such as increas-
ing the teatcup removal setting (i.e., testing different milk flowrate switch-points for 
teatcup removal; Krawczel et al., 2017; Silva Boloña et al. 2019) can reduce individual 
milking duration and optimize the capacity of the AMS. Additionally, quarter milking 
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information has become available with the use of AMS which creates the opportunity 
of exploring milking management practices at the quarter level to improve milking 
efficiency.

Some of the challenges around testing different teatcup removal settings in cows 
milked with AMS are related to the lack of repeatability of experiments, difficulty to 
control for certain parameters (for example milking interval) or the requirement of 
long periods of observation (Halachmi et al., 2009). Therefore, sometimes it is preferable 
to resort to modeling techniques or simulation. 

The objectives of this research were to use the model developed by Silva Boloña et al. 
(2022) that simulates a herd of cows with several milkings and each with their quarter 
milk flowrates in 1 s intervals, to apply different teatcup removal settings and predict 
its impact on quarter and cow milking duration and box duration in an AMS.

Material and methods
The model developed and published by Silva Boloña et al. (2022) simulates a herd of 
cows, each with an assigned parity, days in milk (DIM) and cow milk production rate 
(kg/hr). Additionally, we simulated several milkings for those cows by randomly as-
signing a milking interval to each milking. Multiplying milking interval by the cow’s 
milk production rate, allowed for estimation of accumulated milk yield available for 
harvesting at each milking. Each quarter of the cows was assigned an accumulated 
quarter milk yield considering the proportion contribution of front and rear quarters 
to total milk yield. With the data of milk available for harvesting at each milking at the 
quarter level, we were able to simulate quarter milk flowrates in 1 s intervals (kg/min) 
for each milking. 

Quarter milk flowrates were used to estimate quarter milking duration. By adding an 
attachment time for each quarter, we estimated cow milking duration as the time from 
the first quarter attached to the last quarter detached. Finally, we modelled box dura-
tion by adding a random preparation time to each cow milking (see Figures 1 and 2). 

We used the simulation to evaluate the effect of teatcup removal settings on quarter 
and cow milking duration and box duration. By applying this model we can test the 
impact of several milking management strategies on milking efficiency and therefore 
expand its usefulness. We modeled a set of quarter level absolute milk flowrate-based 
settings on the simulated milkings. These consisted of removing teatcups at 0.2 kg/min, 
0.4 kg/min and 0.6 kg/min. We also modeled a set of quarter level percentage-based 
settings that consisted of removing the teatcups at 20% of the quarter’s 30 s rolling 
average milk flowrate, 30% of the quarter’s 30 s rolling average milk flowrate and at 50% 
of the quarter’s 30 s rolling average milk flowrate. Results were analyzed with a mixed 
model to assess the effect of treatment on quarter and cow milking duration and box 
duration. The mixed model accounted for the fixed effects of treatment, DIM, parity, 
milking interval and the random effect of cow. 
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Figure 1: Workflow of the simulation model. The model created a herd of n cows with their 
corresponding parity, days in milk and cow milk production rate. Several milkings of each cow were 
simulated by assigning a milking interval to each cow milking. Milking interval multiplied by cow 
milk production rate resulted in cow accumulated milk yield. Each quarter was assigned a fraction 
of cow accumulated milk depending on position to obtain quarter accumulated yield. This value 
helped construct quarter milk flowrates for each cow milking. With the milk flowrates, quarter 
milking duration was calculated.

Figure 2: Calculation of cow milking and box durations in the simulation model
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Results and Discussion
We found statistical difference between all the teatcup removal treatments on quarter 
milking duration, cow milking duration and box duration. For quarter milking duration 
we found a 9% difference between using a 0.4 kg/min switch-point compared to 0.2 kg/
min. Milkings under the 30% teatcup removal treatment had 4% shorter cow milking 
duration than in the 20% teatcup removal treatment. Additionally, we found a 3% dif-
ference in box duration between teatcup removal at 20% of the rolling average milk 
flowrate and 30% of the rolling average milk flowrate. The treatment where teatcups 
were removed at 50% of the average milk flowrate had a 6% and 10% lower cow milking 
duration compared to the 20% and 30% treatments respectively. Results of this applica-
tion of the simulation model are summarized in Table 1. 

Table 1: Effect of quarter teatcup removal settings on quarter milking duration, cow milking 
duration and box duration

Treatment 20% 30% 50% 0.2 kg/min 0.4 kg/min 0.6 kg/min P-value

Quarter milking 
duration (s) 259a 241b 218c 209a 190b 170c < 0.001

Cow milking 
duration (s) 498a 480b 450c 419a 403b 387c < 0.001

Box duration (s) 590a 573a 543b 512a 495b 479c < 0.001

0.2 kg/min = teatcup removal at 0.2 kg/min; 0.4 kg/min = teatcup removal at 0.4 kg/min; 0.6 kg/min 
= teatcup removal at 0.6 kg/min; 20% = teatcup removal at 20% of the average flow rate; 30% = teatcup 
removal at 30% of the average flow rate; 50% = teatcup removal at 50% of the average flow rate. 
Different letters represent differences at the α=0.05 level

Application of the teatcup removal settings to the simulated milkings showed simi-
lar results to other trials in the literature for cow milking duration and box duration 
(Krawczel et al., 2017; Silva Boloña et al. 2020). The absolute magnitude of some of these 
effects (as opposed to the percentage magnitude) was different between our simulation 
results and the ones obtained by Silva Boloña et al. (2020) trial, most likely due to differ-
ent experimental conditions leading to basal differences in milking duration and milk 
yield. However, these results show that the model can be applied to predict the impact 
of certain milking management strategies on milking efficiency. 

Conclusions
We used a previously developed simulation model that simulated several milkings of 
a herd of cows. These milkings were simulated based on quarter milk flowrates which 
helped estimate quarter and cow milking duration and box duration. We applied sever-
al quarter teatcup removal settings to this simulation. Model application showed that 
quarter milking duration could be reduced by 9% when increasing the flowrate for teat-
cup removal from 0.2 kg/min to 0.4 kg/min. By using a teatcup removal setting of 20% 
of the quarter’s rolling average milk flowrate, quarter milking duration was 4% longer 
than by using 30% of the rolling average flowrate. 
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Abstract
The use of accelerometers is an integrated part of available commercial systems for 
monitoring dairy cows. Because ear-tagging of cows is required by law, and braces and 
belts constitute additional materials and costs, the Intelligent Ear Tags project intends 
to investigate the utility of acceleration data collected by ear tags for monitoring pur-
poses. Ear tags were placed on 14 lactating cows between October 31, 2020 and Jan-
uary 6, 2021, for a total of 558 cow-days. Acceleration data in three dimensions were 
recorded at a rate of 10 hertz and sent by RFID to a server, resulting in 864000 rows of 
data/day. Cameras were placed in the barn, so selected behaviours could be associated 
with the data. To ascertain the synchronization between timestamps from the data and 
video-servers, all ear tags were shaken in front of a camera for 10 seconds. The start 
and end-time of each shaking bound in the videos and of the corresponding distur-
bance in the data were compared. In this paper, we aim to describe the procedures and 
challenges related to ensuring the quality of the collected data. A total of 320 (57.4%) 
cow-days of data passed the quality test, 208 (37.3%) datasets were not generated, and 
30 (5.4%) did not meet data quality standards. Main challenges included inconsistent 
timestamps, battery life, temporary interruption in transmission, missing values, and 
unnatural linarites in the data.

Keywords: accelerometer, dairy cattle, data quality, ear tags, monitoring 

Introduction
The daily behaviours and activity patterns of cows are closely connected to their health 
status and productivity (Bikker et al., 2014), and changes in those patterns have been 
used as an indication of oestrus or the onset of diseases (Yeikser et al., 2012; Hendricks 
et al., 2020). The previous two decades have seen an increase in research and commer-
cial products in the field of wearable electronic monitoring technologies (Hendricks et 
al., 2020), which can be used in farming environments, allowing cattle to be monitored 
without interfering with their natural behaviour (Borchers et al., 2016). Accelerometers 
are the most common type of device used for this purpose, with several commercially 
available options of leg braces, nosebands, collars, or ear tags (Caja et al., 2016; Chapa et 
al., 2020; Hendricks et al., 2020). Since, by EU regulation (2019), all cows need to be ear-
tagged, a system based on ear tags makes for an option that does not require the extra 
equipment necessary for the other devices. For precision monitoring to be efficient, the 
measurements collected by the accelerometers must be accurate, and the data gen-
erated by them must be reliable. Past studies have mainly focused on validating the 
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algorithms and the predictive ability of ear tag-based monitoring systems (Pereira et 
al., 2018; Bikker et al., 2014; Borchers et al., 2016; Chapa et al., 2020), but an evaluation of 
the quality of the acceleration data produced by the ear tags is not yet readily available 
or published. The Intelligent Ear Tags project (GUDP, J.nr. 34009-17-1249) includes the 
objective of investigating the utility of acceleration data collected by ear tags for mon-
itoring purposes.

Material and methods
The data analysed here corresponds to the latest iteration of the ear tags produced. 
Previous prototype batches were evaluated in the same manner described here, but 
failed at earlier stages.

Acceleration data
The data were collected at a Danish dairy herd located in northern Funen, Denmark. 
The herd was composed by 340 dairy cows, 380 heifers and 10 bulls, all pure- or cross-
bred Danish Holstein. ADXL363 accelerometers (Analog Devices Inc., 2013) were placed 
inside plastic ear tags and encased in epoxy resin, to reduce the exposure to shock, 
water and other substances. 

The tags registered acceleration in G-force units (multiples of 9.82 m/s2) in three di-
mensions (X, Y, Z), and transferred the data by radio frequency (RFID) to a server located 
in the barn. The data were recorded at a rate of 10 hertz, meaning one row every 0.1 
second, and corresponding to 864000 rows of data over a period of 24 hours. The data 
files were automatically uploaded to a Dropbox account once a day. 

A set of seven tags (from here on referred to as 71-75, 77 and 79, or Group 1) were initial-
ly mounted on dairy cows between the 31st of October and 13th of November, 2020.  Tags 
72, 75, 77 and 79 did not function from the start, so they were discarded from further 
descriptions and analyses. A second set of six tags (70, 76, 78, 80, 81 and 82, Group 2) 
were placed on November 17th, and the last five tags (83-87, Group 3) were placed be-
tween November 26 and January 6. In total, 14 tags attempted to collect data during 65 
days (not all tags running simultaneously), resulting in 558 cow-days.

Data quality assessment
Each ear tag produced one dataset every 24 hours. Four main types of data issues were 
evaluated, before a dataset was considered useful: dataset creation, number of rows, 
missing data and presence of non-intended linear blocks.

Dataset creation
For every cow-day, a data file in a proprietary .dat format should be present in the 
Dropbox folder. Before the data could be used, the .dat files were converted to .csv for-
mat using the program TagLogConverter version 3.5, a proprietary software developed 
by the company producing the ear tags. Instances where a dataset was not available, 
or when a .csv file could not be produced due to corrupted .dat files, were considered 
under this category. 
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Number of data rows
Failure in the number of rows comprises instances when the converted .csv file con-
tained less than 864000 rows. The ear tags should be able to store at least 24 hours of 
data before transmitting, in order to avoid data loss in cases where transmission fails, 
or when the cow is temporarily located too far from the RFID receiver. The batches of 
data contained in this buffer should be automatically transmitted when the tag is in 
range again. However, the dataset is created by initially reading the timestamps of the 
first and last observations for the day, and building an array to fit the data collected 
between those two. Missing observations in the beginning or at the end of the day may 
result in datasets which are shorter than expected. A dataset was considered complete 
enough to be used when more than 90% of its rows were present.

Missing data
The accelerometers were calibrated to a measurement range of ±2 G, so expected val-
ues should be in that range. After the initial dataset array was built, all fields were filled 
with the value 20, and then overwritten with actual observations. Whenever a pulse 
was transmitted, but no values were received, the fields remained filled with the num-
ber 20, indicating a missing value. Datasets were considered usable if they contained 
less than 10% missing values.

Linear blocks
Instances occurred (and the reason is still unclear) in which rows contained linear in-
terpolations of values generated by the ear tag between two real values. Those blocks 
were identified by running linear regressions over a moving window of 10 seconds (100 
rows). The data was considered as fitting a linear model when an R2 value of 0.8 or high-
er was estimated. As those were not considered true values, a dataset was considered 
usable if it contained less than 10 % of rows belonging to linear blocks.

Video data
Five cameras were placed under the roof covering the whole length of the barn section 
where the tagged cows were housed. Those cameras recorded 24 hours per day, and the 
video files were stored online in a server belonging to the company responsible for the 
video monitoring. The videos could be playback or downloaded using XProtect Smart 
Client (Milestone, 2019).

Calibration of video and acceleration timestamps
The client software used to play recorded video displays the time directly, while the 
data sets sampled from the ear tags contain timestamps for each recorded sample. 
Both systems provide timestamps with a resolution down to one millisecond. Since the 
two systems are provided by different suppliers, it was important to ensure that they 
were time-synchronized in a manner befitting this project. In order to investigate and 
determine potential time discrepancies, which needs to be accounted for in post-pro-
cessing, a synchronization experiment was performed before tagging the cows. 

A shaking session was defined as the process of shaking all the tags available on that 
day, following the procedures described next. For each session, all tags were aligned 
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on the floor, and made to stand still for at least 10 seconds. Each tag was then picked 
up and, after standing still for 10 seconds, shaken with the arm standing up, so the 
start and finish of the shaking bound was detectable on the camera image by the arm 
shooting up, and then down again. The tags were identified by a sign with the tag’s 
number being held up at the same time as it was shaken. The signs were held by a per-
son standing next to the person shaking the tag. Each tag was shaken for 10 seconds, 
stopped for five seconds, and shaken for another 10 seconds. Five seconds standing 
still were then awaited, before setting the tag down again. The next tag was picked up, 
and the process was repeated until every tag had been shaken. Depending on the time 
availability on the day, between one and three shaking sessions were performed, with 
intervals between sessions varying between 30 minutes and 1 hour.

Analysis of the calibration tests
The datasets from the ear tags provide acceleration in three dimensions. For the pur-
pose of this experiment, those were unified as their Root-Mean-Square (RMS) value, to 
depict a dimensionless curve of the accelerations over time. 

The video client was used to determine the exact video-time for when each shaking 
session started (arm shooting up) and ended (arm coming down again). Those time 
points were used to colour plots of the acceleration RMS curves, where a perfectly cali-
brated match would have the colour changing precisely when the RMS oscillations de-
noting the shaking started and ended. This approach made it possible to calculate the 
lag between the systems, and to test whether the mismatches were constant or would 
drift over time between sessions. Differences of up to one second were considered ac-
ceptable.  Figure 1 illustrates how mismatches between the timestamp of the ear tags 
and the videos were determined.

Figure 1: RMS values during a calibration experiment for one ear tag from a previous iteration. The 
two sets of vertical dashed lines indicate the start and stop of two shaking bouts. The colours indicate 
the events taking place on the video at each time, according to the time stamps from the videos. 
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Orange: Before experiment starts. Green: 1st shaking bout. Red: holding the tag still. Purple: 2nd shaking 
bout. Brown: the tags sitting in the box after the experiment. A mismatch of 29 seconds is seen. 

Results and Discussion

Data quality assessment
The summary of when tags were placed and a qualitative evaluation of their perfor-
mance is shown in Figure 2. Of the expected 558 cow-days, 320 (57.35%) contained data 
of acceptable quality. The largest observed issue was when datasets were not produced, 
because the ear tags stopped working due to a short battery life. This was responsible 
for the loss of 208 of the expected cow-days. The tags were running for an average of 
25.50 days (median 25, range 5-51), and produced, on average, 22.86 days (median 22.5, 
range 5-48) of useful data during that time (Table 1). 

Figure 2: Overview of the experiment. Blocks with the letter “x” indicate days with acceptable data. 
Grey blocks indicate days when datasets where not produced. The letter “M” indicates more than 
10% of missing data, “R” indicates more than 10% of missing rows, and “L” indicates more than 10% 
of unnatural linearities. Empty blocks indicate the tags were not mounted.
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A total of 10 (1.79%) datasets contained less than 90 % of the expected number of rows. 
The overall mean percentage of rows observed was 97.92 %, and among datasets which 
failed the test, this number was 38.55 %. A total of 23 (4.12%) datasets contained more 
than 10 %, missing values. The average percentage of missing values per dataset was 
3.25%, and among those with more than 10 % missing, it was 44.65 %. Also, four tags 
(0.72 %) had more than 10 % of linear blocks in at least one of the three dimensions. 
Two of the linear block issues occurred for dimension Y (13.93 % and 10.74 % of linear 
blocks) and two for vector Z (10.61 % and 13.23 %). Several instances were present, in 
which missing rows and missing values were observed concurrently. 

Group 1 tags worked during a relatively short time. Tag 71 functioned normally until 
November 13 (in a total of 14 days), when it was removed for diagnostics, before more 
tags could be mounted. Based on what was observed in tag 71, the other tags under-
went a re-working of the battery soldering method, to try and prevent early failure, 
before Groups 2 and 3 were mounted on the cows.

Table 1: Number of days running and producing acceptable data for each ear tag

Group Tag Days running Days with useful data

n %

1 71 14 14 100.0

1 73 9 8 88.9

1 74 5 5 100.0

2 70 33 32 97.0

2 76 37 33 89.2

2 78 37 26 70.3

2 80 26 26 100.0

2 81 51 48 94.1

2 82 35 33 94.3

3 83 17 17 100.0

3 84 31 22 71.0

3 85 20 17 85.0

3 86 24 23 95.8

3 87 18 16 88.9

The second and third groups of tags had longer lives, albeit still shorter than the in-
tended six to eight weeks. Tag 81 was the only one that continued to produce mostly 
acceptable datasets until the 6th of January, but it was a special case; during the whole 
period while it was mounted on the cow, it only transmitted seven datasets on sporadic 
days. When it was dismounted, the data was downloaded directly from its memory, 
and that is why there are so many useful data days for this tag. Also, its battery most 
likely lasted longer than the other tags because it did not regularly transmit data. So, 
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although the performance for acceleration measurement and data collection functions 
was good, the tag did not work from the point of view of automatic monitoring.

Calibration of video and acceleration timestamps
As with the data quality, Group 1 needs to be described separately from Groups 2 and 
3. On the 27th of October, tags 71, 73 and 74 were tested, showing an average delay of 2.7 
seconds, which was considered substandard, but consistent over all tags. On the 29th 
of October, the tags were tested again, and had an average of 5.4 seconds delay, again 
consistent over all tags. These results pointed to a clock-drift, which happens when the 
local server clock goes out of sync with official time. Depending on how frequently the 
server time is synchronized with a public time-server, the delay tends to systematically 
increase until the next synchronization event.  Before Groups 2 and 3 were tested and 
mounted, the issue was fixed by increasing the frequency of time-checks between the 
two servers. Groups 2 and 3 were tested on November 11th and 17th, and Group 3 again 
on November 26th. There was no indication of clock-drift between the three days, with 
average daily delays of 0.9, 0.8, and 0.8 seconds, respectively. The overall average delay 
for these groups was 0.8 seconds, and the variation around that value for each tag can 
be seen in Figure 3. Tag 84 tended to show higher delay values than the other tags, but 
the difference was not significant (p = 0.2). It should also be kept in mind that, although 
the value range seems to fluctuate in the figure, these are decimals of seconds, and 
therefore, the delay for all tags in those groups was considered acceptable and consist-
ent both within and between tags.

Figure 3: Delay in seconds for ear tags from Groups 2 (70, 76-82) and 3 (83-87). Values in each box 
show the mean for that tag. Dark horizontal lines show the median, and whiskers show 1.5x the 
interquartile range.

Conclusions
Considering the number of days actually running, most tags performed quite well, 
when it comes to producing acceptable data, and nearly all instances of quality loss 
started happening when the battery started failing. Some tags still produced data-
sets after “blanking” for some days, but they were mostly useless. Studies focused on 
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a relationship between quantitative measurements of battery life left and the quality 
of data produced could be useful, so commercial products based on this system would 
interrupt data transfer when the tag starts failing. This makes battery life the most 
challenging aspect of this process, particularly if it is expected that data pre-process-
ing or prediction algorithms run inside the tag in the next steps of this project, as that 
would increase battery consumption and shorten the tag’s life even further. It should, 
naturally, be noted that these were prototypes, and challenges, as well as further im-
provements, are an expected part of the process. However, the authors recommend 
that, whenever other studies intend to use raw acceleration data, particularly with as-
sociated video or audio features from different systems, a similar process of data qual-
ity and between-system time-synchronicity checking is followed.
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Abstract
Recent advances in Computer Vision (CV) have yielded great improvements in tasks such 
as Pose Estimation (PE) and Activity Recognition (AR) and their application to the field of 
Precision Livestock Farming (PLF) have the potential to enable truly non-intrusive animal 
monitoring. These systems can help detect health issues by providing detailed behaviour 
analysis and automatically detect problematic conditions like lameness. Past solutions 
rely on RFID chips and inertial measurement unit (IMU) to identify and classify cattle be-
haviour, while existing research of CV solutions for animal PE or AR often focus on scenes 
with single animals and in very clear conditions. Our work aims to study the capabili-
ties and limitations of Computer Vision systems applied under industrial conditions. We 
train a Deep Neural Network (DNN) system that can predict the pose of each animal in 
the image, and to also predict the activity they are performing. Furthermore, we explore 
the deployment capabilities of these systems in industrial settings by studying the effect 
of neural network pruning in the inference accuracy and cost of the system in an effort 
to help future solutions be light-weight and with affordable hardware requirements.

Keywords: activity recognition, pose estimation, computer vision, deep learning

Introduction
The recent advances in the task of activity recognition applied to humans have the 
potential, if translated to cattle, to enable truly non-intrusive animal monitoring in the 
field of Precision Livestock Farming. 

Pose estimation is the process of predicting the location and orientation of an individ-
ual’s different body parts (head, body and limb locations and attitude) from a single 
image. Pose estimation is interesting to us because the information about a cow’s pose 
can support other tasks like tracking or activity recognition. PE is also often considered 
a segmentation task, as the goal is to accurately identify every pixel that correspond to 
each of the body parts shown in the image: Body Part Segmentation is the task of, given 
an input image, partition it into multiple labelled segments (sets of pixels or masks) that 
correspond to each body part of the subject in it.

Activity Recognition consists of identifying the action that a certain subject is perform-
ing given one or a series of images. It can be performed using multiple types of sensors, 
but our interest lays only on image-based activity recognition. Past solutions for animal 
AR often relied on (RFID) chips, accelerometers, magnetometers or inertial measure-
ment units (IMUs) to identify and classify cattle behaviour, which are most commonly 
attached by using collar systems (Chapa et al. 2020). However, the processes of attach-
ing and maintaining these devices can cause the animal certain amount of stress and 
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are labour intensive, they are prone to damage and loss and can actually perturb the 
normal behaviour of the animal.

In this paper we explore the possibilities of computer vision methods applied to the 
field PLF, the way of transferring and translating the knowledge of existing architec-
tures and pre-trained models that focus on humans to work on cattle. We also study 
the limitations of the methods that the quality of the data imposes, that is determined 
mainly by settings and the environments where the data is acquired.

Related Work
For both tasks at hand, AR and PE, the field is mostly dominated by solutions that focus 
on human data-sets. Here we discuss some of the methods that are used in the general 
field of PE and AR and that have also been used with animal subjects.

For PE, using the same approach as for instance segmentation, Mask R-CNN (He et 
al., 2017) obtained a state of the art result in key-point detection. In their approach, 
for each of the keypoints of an instance, the training target is a one-hot  binary mask 
where only a single pixel is labelled as foreground. 

Li et al. (2019) study different methods of CV based cattle PE, and obtain the best result using 
the stacked hourglass model (Newell et al.,2016) when comparing its performance against 
convolutional pose machine model and the convolutional heat-map regression model. 

Past solutions for animal AR often relied on attaching different devices to the animals. For 
example, authors in Peng et al. (2019) attach collar IMU sensors to collect acceleration data. 
They develop a method using Long Short Term Memory (LSTM) units, a type of recurrent 
neural network (RNN) algorithm designed to process time series information, and their re-
sults show how the LSTM architecture outperforms a Convolutional Neural Network (CNN).

Existing research of CV solutions for animal AR often use handcrafted features that are 
fed into algorithms like Support Vector Machine (SVM) or different neural networks. 
Additionally, usually their data is composed by images taken under very good condi-
tions, in which the scene does not contain a big number of animals, the lighting condi-
tions are optimal, and there are no obstacles that occlude or hide the animals. 

An example of handcrafted features used for video classification is the proposed meth-
od in Guan et al. (2020), that are used to classify their position and actions.

Recent research of behaviour analysis focuses on the time series aspect of the task by 
extracting the spatio-temporal features present in videos. This mainly involves the use  
of 3D convolutions that try to capture spatial information from several frames at the 
same time, or incorporate motion information by using Optical Flow (OF)  methods.

In this fashion, the authors in Fuentes et al. (2020), inspired by the approach of Carreira 
et al. (2017), build a 2-stream 3D convolutional network in order to recognise the behav-
iour of cattle and classify it in 15 different categories. 

In Quiao et al.(2022), authors use a 3D CNN to extract spatio-temporal features directly 
from video, that are then fed to a ConvLSTM module, an extension of LSTM units that 
involve convolutional operators, to further exploit these features.



 Precision Livestock Farming ’22 887

Material and methods

Data acquisition and annotation
The data-sets for both tasks consist of images of a research dairy farm taken by sur-
veillance cameras. The area recorded is a roofed pen of around 570 m² that presents 
real life conditions that could be found in any other farm, with natural and artificial 
lighting, a variable number of cows varying in size, age, stage of pregnancy, etc. The 
cows and calves present in this area belong to two different races: most of them are 
of the Simmental breed, while some of the cows belong to the Holstein-Friesian breed. 

For the development of this project, 7 cameras where placed on the structure of the pen 
to record the behaviour of the cattle present. The cameras record video at 25FPS with 
a 1920 x 1080 resolution. For the creation of the data-sets, the images where resized 
to a lower resolution in order to lower computational costs, and, following the usual 
methodology, extracted 1 frame every second, according to the reasoning that the slow 
movement of the cows makes this 1FPS sampling strategy miss little detail.

For activity recognition, we chose 8 of activities in which to categorize the cattle behav-
iour, in a similar fashion as Fuentes et al. (2020), Peng et al. (2019) or Quiao et al. (2022). 
With these we aim to  capture the most relevant and common activities of the cattle 
so the system returns an accurate classification and we do not miss any important be-
haviour. Those categories are: walking, stand, resting eating, standing up, lying down, 
self-grooming and social. The last is a placeholder for social behaviours when the ani-
mal interacts with another, e.g. social licking or headbutting.

Figure 1: a example image extracted from the dataset. The bounding boxes around each animal and 
the keypoints locating each of their body parts are shown.

For the task of pose estimation, we decide to describe the “skeleton” of each cow using 
16 different keypoints: muzzle, forehead, pin, withers, left and right shoulder, left and 
right knee, left and right front hoof, left and right stifle, left and right hock, left and 
right rear hoof. Following the COCO (Lin et al., 2014) annotation format, each image 
has an entry that locates every cow via its bounding box and the location of every key-
point, with an additional flag that tells the learning algorithm if it is visible or not.
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Figure 1 shows an image illustrating the information contained in the data-sets anno-
tation process with each animal. For every cow present in the image, the bounding box 
is defined, the body part key-points localized, and (although not pictured) the activity 
they are performing annotated

Object Detection Algorithm
For both tasks discussed in this paper, an object detection model is necessary to build 
a baseline to compare with and use as a starting point to evolve a new architecture. 

For that purpose, we choose Faster R-CNN due its popularity, ease of implementation 
and existing supporting tools. To describe how it works, we have to describe how it 
evolved from the first iteration: Region-based CNN (R-CNN) (Girshick et al., 2014). It was 
one of the earliest object detectors based on neural networks. It falls into the 2-stage 
detector category: it first extracts a fixed number of region proposal or Regions of Inter-
est (ROIs), which are then fed to a neural network (by then AlexNet or VGG16) to extract 
features that are the input of a final SVM classifier. 

The next iteration, Fast R-CNN (Girshick, 2015), replaced the SVM with Fully Connected 
(FC) layers that made localization and classification much more efficient by sharing 
CNN computations. 

The third iteration of this architecture, Faster R-CNN (Ren et al., 2015), extended this 
approach by replacing the slow region proposal module with a convolutional region 
proposal network (RPN) that uses the same layers as the detection network. The archi-
tecture then splits into two different heads that locate each object and find the right 
classification for each one. The unification of the networks makes training much faster 
and, thanks to concept of separating the main body of the architecture from the heads, 
the framework can be customized in many different ways, making it one of the most 
popular in the computer vision field.

Cattle Pose Estimation
In this paper, we try to solve the problem of PE for cattle with multiple individuals 
in the image. For this, we make use of two popular architectures: Mask R-CNN and 
Stacked Hourglass.

Mask R-CNN is an extension of Faster R-CNN incorporates an additional head to the ar-
chitecture to perform image segmentation in order to detect the body parts present in 
the image. Its output is a series of image masks that encode if each of the image pixel 
belongs to a certain body part. 

Inspired by Li et al. (2019), we compare the performance of stacked hourglass architec-
ture against Mask R-CNN and study how it behaves against the challenges of different 
image scales, occlusions and crowded scenarios found in real farm scenarios.

In order to evaluate the performance of these algorithms, we follow common method-
ology in PE and use the Percentage of Correct Keypoints (PCK) measure. It is defined by 
the proportion of detentions made by the model that fall within a normalized distance 
to the annotated ground truth, which is often a fraction of the size of the bounding box 
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or distance between two relevant keypoints such as, in this case, the muzzle and the 
forehead.

Cattle Activity Recognition
Our goal is to develop a method that performs cattle behaviour recognition in video 
containing several individuals. In order to evaluate its performance we propose differ-
ent architectures that perform 1) single-frame level activity recognition using R-CNN, 2) 
multi-frame level AR based on 3DCNN, 3) 2-stream multi-frame level AR using 3DCNN.

Frame level AR. The goal of this first method is to serve as a baseline to compare the 
other methods. Taking an existing object detection architecture, our aim is to train a it 
to recognize the activity the animals are performing by looking at a single video frame. 
For this purpose. we used Faster R-CNN with a ResNet backbone and a FPN for region 
proposal network.

Multi-frame level AR. We extend this approach to incorporate spatio-temporal infor-
mation across different consecutive video frames. The objective is for the algorithm 
to extract spatial features of each frame and aggregate them in order to obtain a rep-
resentation of the scene that incorporates both image and time information. For that, 
we take the Faster R-CNN and attach a 3D ROI pooling head to merge the features of the 
different frames, locate each animal in the picture and classify its behaviour.

2-Stream Multi-frame level AR. Another common way of incorporating temporal infor-
mation is to implement a second branch in the architecture that is fed motion informa-
tion. Following the most common methodology, for each frame of the video sequence, 
we compute the Optical Flow (OF) using the previous frame, and extract features using 
a CNN, that are merged with those features from the 3D R-CNN branch.

Results
[This result section is pending the conclusion of the experiment regarding the training 
and evaluation of the different architectures and their corresponding models]

Conclusions
In this paper, we studied the application of recent computer vision advances to the field 
of precision livestock farming. We studied the state-of-the-art methods regarding the 
tasks of keypoint detection for pose estimation and activity recognition, and researched.

Regarding pose estimation, the comparison among the different architectures con-
cludes that using [Faster R-CNN/ Hourglass] architecture obtains a relevant advantage. 

Our results show that the incorporation of temporal information and motion informa-
tion to detect the activity of cattle has a [positive / negligible / negative] impact on the 
accuracy of the models. 

Regarding training time and dataset size, we obtain best results when using a X num-
ber of training iterations with X number of training samples. Data augmentation tech-
niques [do / do not] a significant improvement on model accuracy. The models perform 
[well / badly] in crowded scenes with many cows present and occlusions.
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Abstract
HOBO-loggers (HOBO Pendant G logger, Onset Computer Corporation, Bourne, MA) are 
accelerometers with gyroscope function. They were originally designed for industry 
use, but there is evidence that they are suitable for estimating, e.g., the lying time of 
cows using an instantaneous sampling technique (once per minute). The standard op-
erating procedure for mounting HOBO-loggers to the legs of animals is time-consum-
ing and includes applying bandage material, which cannot be reused after one meas-
urement period. This study aimed to develop and validate a new, reusable method to 
attach the data logger to a cow´s leg. It consists of a small textile bag with hook-and-
loop closure that is fixed to a common ankle strap for cows. The study was conducted 
at the Teaching and Research Farm of our University in 2020 and 2021. In the first step, 
a prototype was developed and tested on ten lactating cows for fourteen days in order 
to assess the bags robustness, stability and tolerability. Adaptions were necessary to 
ensure a stable position of the logger. For the validation part, ten lactating cows were 
equipped with two HOBO-loggers at the same time (conventional bandage method on 
the right, new method on the left hind leg) for seven consecutive days.

Preliminary results showed almost perfect correlation (CCC > 0.99, rs > 0.99) of summed 
hourly lying times (900 pairs) between both methods. The bag was robust and well tol-
erated by the cows. These findings indicate that the new mounting method can be 
useful for research purposes. 

Keywords: cows, behaviour, standing and lying, sensor, accelerometer, fixation

Introduction
Monitoring the herd health in dairy farming is key for a high production level. Several 
approaches have been suggested for using lying behaviour of dairy cows as a measure 
for animal health and welfare. Prior work has shown that at least three consecutive 
days are needed to assess the lying behaviour of a dairy cow herd (Ito et al., 2009). 
For continuous monitoring of cow behaviour many Precision Livestock Farming (PLF) 
tools are available (Stygar et al., 2021). Especially for research purposes, high accura-
cy of the behavioural classification is required. Furthermore, flexibility in monitoring 
frequency and raw data handling are advantageous. Ito et al. (2009) evaluated the HO-
BO-logger (HBL, HOBO Pendant G logger, Onset Computer Corporation, Bourne, MA) to 
detect standing and lying position in dairy cows. This device is an accelerometer with 
gyroscope function and was originally designed for industry applications. Several other 
researchers evaluated or employed this accelerometer in their studies under different 
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conditions (Ledgerwood et al., 2010; Bonk et al., 2013; Sepúlveda-Varas et al., 2014; Borch-
ers et al., 2016; Sepúlveda-Varas et al., 2018). The most frequently reported method for 
attaching HBL to the cows´ legs requires bandage material, which allows accurate po-
sitioning and keeps the logger firmly in place. However, this method has also some 
shortcomings. Firstly, it is time-consuming and can be challenging in nervous cows. 
Secondly, the bandage material is not reusable. Especially in long term studies, where 
the bandage has to be changed regularly, e.g. to manually download the data (Sepúlve-
da-Varas et al., 2014; Sepúlveda-Varas et al., 2018), this can lead to high costs and a large 
amount of waste. Finally, a bandage can cause swellings and bruises, if fastened too 
tight, and it has to be removed completely whenever issues occur. Therefore, we aimed 
for an attachment method that is reusable, easy to handle and cheap in production. 
Furthermore, it should be robust and well tolerated by the cows. In terms of data collec-
tion, the most important function is to ensure a stable position of the logger. The objec-
tive of this study was to develop and validate a new method to attach the HOBO-logger 
to the hind legs of cows that meets the above mentioned requirements.

Material and methods
All procedures that involved animals were approved by the Austrian Federal Ministry of 
Education, Science and Research (BMBWF, GZ: 2021-0.236.444).

Experimental farm
The study was carried out in two parts, during the summer of 2020 and spring of 2021. 
Both parts took place at the dairy cow barn of the Teaching and Research Farm (Vet-
Farm) of the University of Veterinary Medicine Vienna, Austria. Approximately 80 dairy 
cows are housed in a free-stall barn with cubicles. Cows are milked twice a day in a tan-
dem milking parlour for eight cows.

Sensors and mounting methods
HOBO-loggers are accelerometers that measure tilt values in the x-, y- and z-axes. Data 
are written to an internal memory. HOBO-loggers are managed and read out via cable 
connection using the HOBOware (HOBOware, Onset Computer Corporation, Bourne, 
MA). The logging frequency can be chosen individually prior to the start of a measure-
ment series, e.g. according to the research topic. In this study, the logging frequency 
was set to once per minute for all three axes (x, y and z). It is possible to collect about 
fifteen days of continuous data from cows with this setting, limited by the memory 
capacity of the logger. However, it is recommended to remove the loggers after seven 
consecutive days to prevent swelling and bruises of the leg. According to the raw data 
classification procedure as described by Ito et al. (2009), it is necessary to place the log-
ger in the correct orientation (x-axis parallel to the ground, facing to the front).

Conventional mounting method
The conventional mounting method (CM) used in this study was similar to the meth-
od previously described by Ito et al. (2009). The data logger is placed in a foam cover, 
which is then attached to the cow´s leg using flexible bandage material. The sensor is 
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attached either on the medial side of the left metatarsus or on the lateral side of the 
right metatarsus.

New mounting method
For the new mounting method (NM), a small bag (11.5 x 7.5 x 0.5 cm) with hook-and-loop 
closure was designed in collaboration with a local tailor. The bag was made of robust 
textile and two loops were sewed at both ends in order to be attached to commercially 
available ankle straps for cows. Different stages of the prototype are shown in Figure 1.

Figure 1: Original version of the prototype (left), final version of the prototype (right)

Due to the small size of the bag, the logger could not turn around inside. In the final 
version of the prototype, pieces of foam were attached to the ankle strap with adhesive 
tape on the medial and lateral side of the leg. This had a cushioning effect for the cows 
and kept the ankle strap and the bag in place.

Study design
The first part of the study was the development of the prototype. After designing and 
producing the first version of the bag, ten lactating cows, which were already habitu-
ated to wearing sensor technologies and handling, were enrolled. Cows were equipped 
with the data loggers using the NM for fourteen days in total. The trial days were divid-
ed into three testing periods. In between, issues with the prototype were discussed and 
adjustments were implemented.

For the validation experiment, another group of ten cows was selected from the herd, 
according to their stage of lactation. Cows were equipped with two loggers at the same 
time for seven consecutive days. One HOBO-logger was fixed according to the CM with 
bandage material on the right metatarsus. The second logger was mounted with the 
NM to the left hind leg. 

Cows were checked at least twice a day for bruises and sensor position during each 
study period. These observations were documented for later analysis.

Data preparation
Data from the checks were entered in Microsoft Excel (MS Excel 2016, Microsoft Coop-
eration, Redmond, USA). Sensor data were read out using HOBOware. Raw data were 
classified into ‘standing’ and ‘lying’ in 1-min time resolution, using a Python script (Py-
thon 3.7.9) based on an algorithm described by Ito et al. (2009). The script also applied 
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the correction to eliminate erroneous values caused by leg movements during lying 
or standing bouts adapted from Ledgerwood et al. (2010). Classified data in 1-min time 
resolution were then summed to hourly values [min h-1].

Statistical analyses
Statistical analyses were conducted with the software SPSS (version 27, IBM Corpora-
tion, Armonk, NY) and R (version 4.0.4, Copyright 2021, The R Foundation for Statistical 
Computing). Data were checked for normal distribution using Shapiro-Wilk test and 
histograms. A confusion matrix was computed for the 1-min dataset. For the visual 
analysis of agreement, a Bland-Altman plot was created with hourly lying data. Con-
cordance Correlation Coefficient (CCC) and Spearman´s rank correlation coefficient (rS) 
were calculated for both datasets.

Results and Discussion
In total, no severe skin lesions, swellings or bruises were observed. Only one cow was 
observed licking the bandage of the CM on the last day of the validation experiment, 
but no clinical signs of lesions could be found when removing the bandage. Bags and 
ankle straps were well tolerated by all cows. In some cases, slight abrasions of the coat 
underneath the cushion material were detected for NM, probably due to small rubbing 
movements. None of the bags were damaged during the study. Overall, the NM is con-
sidered as robust, well tolerated and suitable for the use in dairy cows.

Development period
Sensor data of the development period were not analysed, because further adjustments 
were necessary to ensure a stable position of the logger. During this first period, differ-
ent levels of cushioning were applied. In the next period, the prototype was improved 
in order to keep the HOBO-logger in place. The development part was completed after 
six consecutive testing days with no major issues regarding the stability of the NM. 
Minor adjustments were implemented prior to the validation part.

Validation period
For preliminary analysis, paired sensor data of five cows were available. The dataset in 
1-min time resolution consisted of 54,005 data points. Therefore, the 1-hour time reso-
lution dataset included 900 data points. The results of the confusion matrix for sensi-
tivity, specificity, positive predictive value and accuracy were SE = 99.3 %, SP = 99.7 %, 
PPV = 99.8 % and ACC = 99.5 %, respectively. Table 1 presents the CCC and rS for the 
comparison between both methods in 1-min and 1-hour time resolution.

Table 1: Correlation coefficients between the two logger mounting methods based on 1-min and 1-hour 
resolution. CCC = Concordance correlation coefficient, rS = Spearman´s rank correlation coefficient.

Time resolution CCC rS N (min)

1-hour 0.997 0.995 900

1-min 0.990 0.990 54005
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Figure 2 shows the Bland-Altman plot of hourly lying times, comparing data of two 
loggers mounted with the two different methods on each cow. 

Figure 2: Bland-Altman plot for hourly lying times from both mounting methods

Preliminary results of the validation period show almost perfect agreement of the two 
loggers mounted on the same cow, as indicated by the correlation coefficients and 
confusion matrix results. According to the Bland-Altman plot, there is also an almost 
perfect agreement of sensors attached with the different methods. Ledgerwood et al. 
(2010) validated the HOBO-logger by visual observation as gold standard and reported 
sensitivity and specificity in a range of 97.4 – 99.3 % and 99.4 – 99.8 %, respectively, us-
ing different filter macros to exclude erroneous events.

Preliminary analysis of examination results at regular checks during the validation period 
revealed the following: Minimal shift of the bag to the back during the whole week was no-
ticed in five cows. In another cow, the bag had completely turned to the lateral side of the leg 
on the second day. This was probably due to poor initial fixation of the ankle strap, as it did 
not occur again after tightening. In one cow, the bag was slightly shifted to the back every 
day and had to be readjusted at almost every check. Nevertheless, even without exclud-
ing data from periods when the loggers were slightly out of ideal position for preliminary 
analysis, the agreement with the CM was almost perfect. This indicates that these minimal 
changes of position had no influence on the classification of lying and standing behaviour.

As indicated by the observations in this study, NM continues to require regular visual 
checks of cows and loggers. We recommend checking the correct position of the logger 
and performing a brief examination of the skin twice a day during measurement peri-
ods, e.g. during milking times. Tightening of the ankle strap may be necessary during 
a study to prevent loosening. One shortcoming of this NM is the required adaption of 
the cushion material to individual cows prior to a measurement series. This is neces-
sary for the correct position and stability of the bag. However, in cows with similar leg 
diameter the same ankle strap cushioning can be used without changes. Therefore, the 
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NM seems to be most beneficial in longitudinal studies, as the ankle strap has to be 
adjusted only once at the start of an experiment.

One of the practical advantage of the described new method is the easy handling. Once 
the ankle strap is cushioned and the bag is attached to the strap, the correct position of 
the logger (x-axis parallel to the ground) is predetermined by the position of the ankle 
strap. Nevertheless, the user has to take care of the correct position of the logger inside 
the bag (facing to the front). Further improvements might include the refinement of the 
cushioning technique in order to facilitate adjusting the ankle strap to individual cows.

Conclusion
Based on preliminary findings and compared to the literature, the NM is considered 
a comparable to the CM for detection of lying and standing positions in dairy cows. 
In general, we conclude that the NM is suitable for research purposes. It can be espe-
cially advantageous for longitudinal studies, where loggers have to be removed and 
reattached repeatedly to the same cows. The deployment of this reusable attachment 
method can help to avoid waste and could therefore be seen as a small contribution to 
more sustainability in research.
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Abstract
In the FACCE ERA-GAS project MilKey, a low cow-cost sensor system for monitoring 
barn climate and emissions (OTICE) from naturally ventilated barns (NVDB) is devel-
oped. In order to validate and assess OTICE, a reference measurement method is need-
ed. This study investigates the feasibility of a direct estimation method for ventilation 
rates and emissions to serve as a reference measurement method.   

Measurements were done in a 1:100 scaled model of a NVDB in an atmospheric-bound-
ary-layer wind tunnel. Tracer gas was released inside the model and measured at the 
outlet area, using a fast flame ionization detector. Additionally, the normal velocity on 
the area was measured using laser Doppler anemometry. Overall, for a matrix of 65 x 
4 sensor positions, the normal velocities and the concentrations were measured and 
used to estimate ventilation rates and emissions. This baseline-dataset (BDS) was used 
to assess the accuracy while systematically reducing the number and varying the po-
sitions of sensors.

Compared to the BDS, the results showed systematic errors in the emission estima-
tion up to +97 %, when measurements of concentration and velocity were done at one 
constant height. This error could be lowered under 5 %, when the concentrations were 
measured as vertical composite samples.

Based on the results, the method of direct measurements could be indicated as a fea-
sible reference method and will further be used to assess the performance of OTICE in 
the MilKey project. After validation, OTICE will be a useful tool for a wide application in 
barn climate and emission monitoring.

Keywords: reference method, wind tunnel, sensor positions, sampling optimization

Introduction
In the FACCE ERA-GAS project MilKey, a low cow-cost sensor system for monitoring 
barn climate and emissions (OTICE) from naturally ventilated barns (NVDB) is devel-
oped for the widest possible application. In order to validate and assess OTICE, a refer-
ence measurement method is needed. This study investigates the feasibility of a direct 
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estimation method for ventilation rates and emissions to serve as a reference meas-
urement method.  

In dairy farming, accurate measurement of gaseous emissions from naturally ventilat-
ed barns (NVB) is an unsolved problem. Emissions from NVBs are usually determined 
using indirect tracer gas methods, which are subject to high uncertainties (Calvet et 
al., 2013). An alternative to indirect measurement methods is the direct measurement 
method (De Vogeleer et al., 2017). Here, the volume flow Q through the barn is meas-
ured directly by measuring the incoming or outgoing velocities v at the openings of 
the barn and then multiplying them by the area A associated with the measurement 
location per sensor: Q=v*A. If the concentration c of the respective pollutant gas is also 
measured at the respective measurement location, the emission E can be calculated 
accordingly: E=Q*c.

The challenge when using this method is the correct selection of the number and po-
sitioning of measuring points. Due to the interaction of weather-related turbulent flow 
and large opening areas of the NVBs, both velocities and gas concentrations at the 
opening areas are highly variable. Consequently, a large number of sensors or measur-
ing positions should be aimed at for a representative recording of these measured var-
iables. Economic and practical considerations, however, aim for the smallest possible 
number of sensors.

The aim of this study is therefore to determine the influence of the number and posi-
tioning of the velocity and gas sensors on the achievable accuracy of the direct meas-
urement of emissions. From this, practical recommendations for action for the eco-
nomical use of the sensors while maintaining a high level of accuracy are to be derived. 
The derived results will then be used as the desired reference method for the OTICE 
system.

Material and methods
The measurements were carried out in an atmospheric boundary layer wind tunnel 
(ABL-WT). With the help of roughness elements, a turbulent velocity profile was gener-
ated that meets the requirements of a moderately rough boundary layer according to 
VDI 3783/12 (VDI, 2000).

A scaled model of an NVB at a scale of 1:100, which is shown in figure 1, was examined. 
In the model, the tracer gas ethane was let out at constant source strength through two 
porous stones in the area of   the feeding alley. The model was aligned at perpendicular 
to the flow, so that there was a pure cross-flow.

The measurements were carried out on the outlet area (green area in fig. 1). Measure-
ments were taken on four horizontal measurement lines (y1-y4 in fig. 1). The width of 
the four measuring lines was divided into 65 measuring points (MP), resulting in a ma-
trix of 4*65=260 MP. In the following, this set of MPs is referred to as the baseline (BL).

The normal part of the velocity v and the ethane concentration c were measured at 
each MP until the measurement results statistically converged in each case. The mean 
values for v and c were then formed for each MP from the measurement data and Q 



 Precision Livestock Farming ’22 899

and E were calculated. The total emissions EBL of the baseline were formed as the sum 
of the emissions from all 260 MP. EBL serves as a reference data set to calculate the rel-
ative error ∆E   [%] that occurs when the number and position of sensor positions are 
varied:  ∆E = (Evar-EBL) / EBL *100, with Evar as the measured emission value with the varied 
configuration.

The variations of two strategies were examined: (I): Evar is determined only with sen-
sors at one measuring height (either y1, y2, y3 or y4). The width W of the outlet plane is 
divided into n sections of equal width. n is increased incrementally from n=1 to 65, for 
each n, an emission value Evar,n is calculated. (II): Proceed as in (I), but the concentration 
c is not only measured at one height, but as a vertical collective sample of the four sen-
sor positions one above the other. 

Figure 1: Model of the barn. a) Sectional view, all dimensions in mm. y1, y2, y3 and y4 indicate the 
heights of the horizontal measurement lines. Blue areas mark the gas inlet.  b) Positioning of the 
model in the wind tunnel. (Janke et al., 2020).

Results and Discussion
The distributions of v, c and E for the BL configuration are shown in Figure 2. The veloc-
ity v shows a gradient in the vertical direction, with higher velocities towards the edge 
of the roof. In addition, at positions 14, 27, 39 and 52 on all four vertical SPs there was 
a slowdown in speed. This is due to the influence of the pillars of the model (‘beams’ 
in fig. 1).

 

I II 

a) 

b) 
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Figure 2: Measured properties at the outlet area. a) Mean velocity u in normal direction. b) Mean 
concentration c. c) Computed emissions E=Q * c. Results are normalized with the respective 
maximum values of u, c and E. “p” is a placeholder for the property shown. Numbers on the x-axis 
index the lateral sampling position (Janke et al., 2020).

The gas concentrations show high vertical and horizontal gradients. Higher concentra-
tion levels can be clearly identified in the area behind the two porous gas wells. In this 
area, the gas concentrations on the lower measuring line y1 are about 14 times higher 
than on the uppermost y4.

Figure 3: Error development in the emission measurement depending on the number of sensors and 
their position (lateral division) for sampling variant I and II. Figures a), b), c) and d) each show the 
relative errors in the horizontal measurement series y1, y2, y3 and y4 (Janke et al., 2020).

 

I II 

a) 

b) 
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The development of the error for the emission measurement as a function of the num-
ber and positioning of the sensors is shown in Figure 3. If velocity and gas concentra-
tions are only measured at one measurement height, as in variant I, there is a system-
atic measurement error of +97% (y1), +18% (y2), -41% (y3) and -76% (y4), depending on 
the measurement height, if the maximum number of sections or sensors n=65 is used. 
These relatively large errors mainly result from the high vertical gradients of the gas 
concentrations. If gas concentrations are measured as a mixed sample as in variant 
II, there are significantly lower systematic errors for the maximum number of sen-
sors n=65 of -2% (y1), -2% (y2), +3% (y3), or +10% (y4), depending on the measurement 
height. For variant II, it is possible to reduce the number of sensors while maintaining 
these accuracies: If, for example, only n=5 sensors were used instead of n=65 sensors, 
relative errors of -6.5 % (y1), -6 % (y2), +0.5% (y3) or +7% (y4) would result depending on 
the measuring height. 

Conclusion
Due to the heterogeneous distribution of velocity and gas concentrations at the open-
ing surfaces, the gas concentrations in particular should be measured with the highest 
possible spatial resolution. This can be done economically by using, for example, gas 
manifolds with critical nozzles that sample a large area of gas mixture around each 
velocity sensor. If this succeeds, a relatively accurate result can be achieved with man-
ageable effort: in the case shown here, for a barn 100 m long on the natural scale, the 
emissions with 5 velocity sensors with corresponding gas sampling could be deter-
mined with an error of 7%. Based on the results, the method of direct measurements 
could be indicated as a feasible reference method and will further be used to assess the 
performance of OTICE in the MilKey project. In case of sufficient performance, OTICE 
will be a useful tool for a wide application in barn climate and emission monitoring. 
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Abstract
The application of a claw block is a common tool for pain relief and treatment of var-
ious foot pathologies in cattle. The aim of this study was to evaluate the effect of the 
wooden block on locomotion characteristics and weight distribution of healthy (group 
C; n = 17) and lame (group L; n = 17) cattle. Subjective locomotion scoring and auto-
matic measurements with two acceleromenters (400 Hz; kinematic outcome = stance 
phase duration; kinetic outcome = foot load and toe-off) and a 4-scale weighing plat-
form (weight distribution and SD of the weight) were performed before and after ap-
plication of a wooden block on a randomly assigned claw in group C or on the healthy 
claw of the affected limb in group L. The wooden block significantly reduced lameness 
score and the differences across limbs in lame cattle during walking, but showed no 
significant effect on weight distribution while standing.

Keywords: cattle, lameness, claw block, locomotion, accelerometer, weight bearing, 

Introduction
Lameness in cattle is often associated with pain in the lower limb and is therefore 
regarded as a major welfare issue. The application of a wooden block on the healthy 
claw of the affected limb is a widely known and commonly used method in treatment 
of cattle with some foot pathologies (Cutler et al. 2015). This study aimed to measure 
the effect of the wooden block on locomotion characteristics and weight distribution in 
healthy and lame cattle.

Material and methods

Experimental data
Data were collected of two independent groups of cows. The control group (group C) 
consisted of 17 dairy cows with a lameness score < 3, using a 1 to 5 numerical rat-
ing system (NRS; where 1 = non-lame and 5 = severely lame) according to Flower and 
Weary (2006). The lame group (group L) included 17 cattle with a unilateral pathology 
in a front- or hindlimb with only one digit affected. Foot pathologies were described 
according to the guidelines of the ICAR Claw Health Atlas (http://www.icar.org/Docu-
ments/ICAR_Claw_Health_Atlas.pdf). 

Measurements of locomotion characteristics 
In a claw trimming chute, a wooden block was applied on a randomly assigned lateral or 
medial claw of the fore- or hindlimb using an adhesive tape in group C and on the claw 
of the healthy partner digit in group L. Measurements of locomotion characteristics 
and weight distribution were performed before and after block application. Gait cycle 
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variables of the cow pedogram were measured using two stand-alone 3D accelerome-
ters (400 Hz; USB-Accelerometer X16-4; Gulf Coast Data Concept, Waveland, USA). They 
were fitted at the level of both metatarsi or both metacarpi, either depending on the lo-
cation of the pathology in group L or on the location of the randomly assigned wooden 
block in group C. The gait cycle variables were extracted using the Cow-Gait-Analyzer 
as described by Alsaaod et al. (2017) and comprised of temporal events of kinematic 
outcomes (relative stance phase duration) and peaks of kinetic outcomes (foot load, 
toe-off). Weight distribution across contralateral limbs was measured as described by 
Nechanitzky et al. (2016), using a 4-scale weighing platform (1.94 × 1.06 m; ITIN & HOCH 
GmbH, Fütterungstechnik, Liestal, Switzerland).

Statistical analyses
The variables were expressed as the differences across the limbs. A paired-sample 
t-Test was performed to compare the variables before and after wooden block appli-
cation within group C and group L, and a one-way ANOVA was used to determine the 
differences between group C and group L using the statistics package NCSS (NCSS, LLC, 
Kaysville, UT; http://www.ncss.com/).

Results and Discussion

Table 1: Mean ± SD of NRS, differences in gait cycle variables and ∆weight of lame cattle (group L) 
versus non-lame cattle (group C) before wooden block application, and within each group before 
and after wooden block application. Gait cycle variables were calculated as the absolute difference 
across the contralateral limbs, and weight distribution was calculated as the percentage absolute 
difference of the mean weight across the contralateral limbs.

Group comparison before 
wooden block application

Effect of wooden block  
within each group

Group C Group L
Group C Group L

before 
block after block before block after block

NRS 1.87 ± 0.28a 3.40 ± 0.62b 1.87 ± 0.28 1.93 ± 0.36 3.40 ± 0.62a 2.88 ± 0.49b

Stance 
phase (%) 2.13 ± 1.94a 16.34 ± 10.78b 2.13 ± 1.94 2.87 ± 1.94 16.34 ± 10.78a 7.66 ± 9.96b

Foot load 
(g) 3.26 ± 3.69a 9.68 ± 8.06b 3.26 ± 3.69 4.23 ± 3.13 9.68 ± 8.06a 4.26 ± 4.14b

Toe-off (g) 0.78 ± 0.66a 3.91 ± 3.14b 0.78 ± 0.66 0.99 ± 1.07 3.91 ± 3.14 2.28 ± 1.27

∆weight (%) 8.52 ± 6.19a 53.62 ± 28.85b 8.52 ± 6.19a 20.69 ± 17.01b 53.62 ± 28.85 53.11 ± 25.89

a,bMeans within a row with different superscripts differ significantly (P ≤ 0.05); separate analyses for 
comparison before wooden block application between groups and comparison within each group 
before and after wooden block application.

Group L had a higher locomotion score and showed significantly higher differences 
across the limbs in gait characteristics and in weight distribution compared to group C 
(Table 1). After application of the wooden block, cattle in group L showed a significant 
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improvement in relative stance phase duration and in foot load, but no significant dif-
ference was observed in weight distribution variables (Table 1). This means that we 
observed improvements in parameters measured in lame cattle while walking, but no 
improvements were found in parameters measured while standing. Therefore, wood-
en block application should not be used as the only tool for pain relief and support of 
healing in cattle with unilateral pathologies of the digits. A combination with other 
methods for pain relief, e.g. analgesic medication, is needed.

Conclusions
This study underlines the usefulness of the application of wooden blocks in treatment 
of lame cattle and emphasizes the potential and the importance of additional treat-
ment modalities such as administration of analgesics, as lameness is an important 
issue in animal welfare.
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Abstract
Quantifying pasture dry matter intake (PDMI) of grazing dairy cows is crucial to evalu-
ate their nutritional status and to facilitate precise supplemental feeding. Sensor data 
on cows’ chewing behaviour can be used to estimate PDMI. The aim was to evaluate the 
adequacy of existing models to predict PDMI on commercial dairy farms in Southwest 
Germany using semi-natural grassland for grazing. The prediction accuracy of three 
behaviour-based models (CH, AU, DK) were evaluated using the mean bias (MB) relative 
prediction error (RPE), partitioning of mean square error of prediction (MSEP), and con-
cordance correlation coefficient (CCC). The reference dataset contained 220 individual 
animal observations with a mean daily DMI (± standard deviation), PDMI, and milk 
yield of 21.1 (± 3.2) kg, 12.0 (± 4.9) kg, and 23.9 (± 5.6) kg, respectively. The model AU had 
the lowest RPE (41.9 %) and greatest CCC (0.57) among the evaluated models, i.e. the 
greatest modelling adequacy among the three models. Its MB, however, demonstrated 
a mean underestimation of the observed PDMI by 22 %. Its RPE value > 20 % further 
served as indicator for unacceptable predictions of PDMI for the reference dataset. The 
partitioning of the MSEP showed that 59 % of the prediction bias was attributable to 
random variation in the reference data. This indicated that the remaining bias was 
likely owing to the model’s structural deficiencies, which could be a result of the sys-
tematic differences between the grazing conditions of the reference dataset, and the 
data underlying the models’ empirical regression equation.

Keywords: feed intake, grazing management, semi-natural grassland, chewing 
behaviour, intake models

Introduction
Reliable measurements of the pasture dry matter intake (PDMI) of grazing dairy cows 
is the key to regulate pasture utilisation. The PDMI constitutes the basis for matching 
indoor supplementation, and grazing management to biomass availability on pasture, 
and the animals’ nutritional status. Sensor-based recordings of the cows’ behaviour 
can be used as tool to estimate the real-time PDMI of individual, grazing cows. Several 
studies have attempted to estimate PDMI from chewing behaviour data using empir-
ical regression models. The objective of this study was to test whether such existing 
behaviour-based models were applicable for dairy cows grazing on semi-natural grass-
lands. This type of grassland can constitute the predominant feed source for low input 
dairy farms in semi-mountainous regions, such as found in Southwest Germany. The 
generally lower biomass yield of semi-natural grassland, and its spatial and temporal 
variability make supplementation in barn indispensable. Real-time quantification of 
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PDMI could help preventing an overly substitution of pasture herbage through supple-
mentation in barn. Thus, to evaluate existing behaviour-based PDMI models using data 
from automatic sensor systems, a reference dataset was gathered on 9 commercial, 
organic dairy farms in 2019 and 2020. A double-marker technique, using titanium di-
oxide (TiO2) as external marker and faecal crude protein (CP) concentration as internal 
marker, was used as reference method to determine dry matter intake (DMI) and PDMI 
of the grazing animals.

Material and methods

Model selection
Three behaviour-based PDMI prediction models were found through literature research. 
The model CH (Rombach et al., 2019) uses behavioural observations from Swiss dairy 
farms, as well as milk performance, animal characteristics, feed quality, and supple-
mentation parameters to predict PDMI, whereas the Australian model AU (Greenwood 
et al., 2017) and Danish model DK (Oudshoorn et al., 2013) solely relied on behavioural 
parameters.

Reference data
In 2019 and 2020, 9 commercial, organic dairy farms were visited during 1 to 2 examina-
tion periods per year. Every period lasted 11 days. The TiO2 marker was fed twice daily 
throughout the 11 days, whereas sampling of faeces, feed, and milk and behaviour re-
cordings took place on days 6 to 11. Eight to 28 cows per farm and examination period 
were chosen among the herd for sampling. Jaw and head movements were recorded 
in up to 10 cows per farm and sampling period by noseband-pressure-sensors with 
integrated 3-axial accelerometers (ITIN+HOCH GmbH, Liestal, Switzerland, validated 
for grazing animals by Werner et al., (2018)). The recordings were converted to total 
number of eat chews per day (i.e. mastication and prehension bites), bite rate (i.e. eat 
chews per minute of eating time), daily eating time on pasture, and daily number of 
prehension bites (i.e. only eat bites excluding mastication) in a 1-h resolution, and then 
averaged across the 6-d period per animal. During days 6 to 11, milk yield was meas-
ured and sampled daily, faecal grab samples taken twice daily, offered and refused 
feed weighed and sampled daily, and bodyweight measured and pasture herbage sam-
pled once per examination period. In the laboratory, faeces samples were analysed for 
TiO2 (Boghun et al., 2009) and CP (VDLUFA, 2007; method 4.1.1), and feed samples for 
CP (VDLUFA, 2007; method 4.1.2). Total DMI was determined from daily faecal output 
measured using TiO2 as marker (Glindemann et al., 2009), and the apparent total tract 
digestibility of ingested organic matter derived from faecal CP concentration (Lukas et al., 
2005). Additionally, DMI of supplemental feed in the barn was measured daily, and 
subtracted from total DMI to estimate PDMI. The measurements of supplemental feed 
intake in barn were made on herd level. The cows’ individual intake of supplemental 
feed was estimated proportionately to the cows’ recorded eating time in barn.

Statistical analysis
The mean bias (MB), mean square error of prediction (MSEP), and relative prediction er-
ror (RPE) were calculated to evaluate the accuracy of the models’ predictions. The MSEP 
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was calculated as the sum of three error terms, representing the prediction bias, line 
bias, and random variation, respectively (Fuentes-Pila et al., 1996). The RPE was classi-
fied according to Fuentes-Pila et al. (1996), who assumed that the prediction accuracy 
is satisfactory with an RPE < 10 %, acceptable between 10 % and 20 %, and not accept-
able with an RPE > 20 %. Additionally, the Concordance Correlation Coefficient (CCC) 
was calculated to assess the models’ adequacy on a scale from 0 to 1, where 1 signifies 
perfect concordance between observed and predicted values. The CCC was calculated 
as the product of the Pearson correlation coefficient (r) and bias correction factor (Cb), 
which evaluate precision and accuracy, respectively (Tedeschi, 2006).

Results and Discussion
Data of a total of 296 individual animals were collected. The final evaluation dataset 
comprised 220 observations, because of missing records of chewing behaviour, due to 
technical issues with the sensors, or exclusions if animals refused to ingest daily TiO2 
dosages. For the model DK, 12 more observations were excluded from evaluation, be-
cause these were lacking the records of the prehension bites. Mean daily measured DMI 
(± standard deviation), PDMI, and milk yield were 21.13 (± 3.21) kg, 12.05 (± 5.10) kg, and 
23.90 (± 5.55) kg, respectively.

Table 1: Statistical evaluation of behaviour-based models to predict pasture dry matter intake 
(PDMI) of lactating dairy cows grazing on semi-natural, permanent grassland.

Partitioning of MSEP, %

Models MB1,  
kg DM d-1 MSEP2 Prediction 

bias
Line 
bias

Random 
error

RPE, 
%3 CCC4 R5 Cb

6

CH 3.3 27.1 40.9 7.2 51.9 43.2 0.55 0.68 0.82

AU 2.6 25.5 27.4 13.5 59.1 41.9 0.57 0.65 0.88

DK -3.1 26.6 36.0 1.2 62.9 42.6 0.39 0.62 0.63

1MB: Mean bias. 2MSEP: Mean squared error of prediction. 3RPE: relative prediction error, % of observed 
mean PDMI and DMI. 4CCC: Concordance correlation coefficient. 5r: Pearson correlation coefficient. 
6Cb: bias correction factor.

The MB demonstrated that the PDMI was on average underestimated by the models 
CH and AU by 3.3 and 2.6 kg d-1, respectively (Table 1). The model DK overestimated the 
PDMI on average by 3.1 kg d-1. The RPE values of the three models ranged between 41.9 
and 43.2 %. According to the thresholds established by Fuentes-Pila et al. (1996), this 
indicates a lack of accuracy, i.e. unacceptable prediction values. The r values declared 
a moderate precision (r = 0.62 to 0.68) for all three models, and the CCC values rang-
ing between 0.4 and 0.6, attested an overall moderate concordance between observed 
and predicted PDMI (Landis & Koch, 1977). The model AU had the lowest RPE (41.9 %) and 
greatest CCC (0.57) among the evaluated models, i.e. the greatest modelling adequacy. 
Based on the RPE of AU and its MB demonstrating a mean underestimation by 22 % of 
the observed PDMI, it can be concluded that none of the evaluated behaviour-based 
models achieved adequate PDMI predictions.
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The partitioning of the MSEP into the prediction and line bias, and the random error 
illustrates 51.9 to 62.9 % of the MSEP was attributable to random variation in the data. 
This substantial share of bias coincides with the possibility that the reference dataset 
contained measurements errors. These were likely related to the method chosen for 
estimating the individual PDMI measurements. Due to the on-farm conditions of the 
current study, the DMI of supplementation indoor was measured on herd level, and 
the individual DMI of supplemental feed estimated using the individual eating time 
in barn. Leiber et al. (2016), for instance, pointed out the significant variation in eat-
ing behaviour between individual animals. They concluded that the eating time was, 
thus, unsuitable as direct proxy for feed intake. In view of the on-farm approach of 
this study, however, this method was the most reliable alternative to approximate the 
variation in individual feed intake in barn. The evaluation of the prediction accuracy 
of CH, AU, and DK using the mean PDMI across animals per examination period and 
farm (n = 28), rendered RPE values of 36, 35 and 36 %, respectively. This illustrates that 
the measurement bias for individual cow observations is not the sole source for the 
observed lack of prediction accuracy. Further, it is a truth universally acknowledged 
that it is inherently challenging to measure the actual intake of cows on pasture. The 
double-marker technique used to determine the PDMI for the current study is therefore 
an inevitable source of error in the observed PDMI due to its limitations regarding total 
faecal marker recovery, and faecal sampling (e.g. Hellwing et al., 2015).

Likewise, it can be concluded that at least part of the structural bias, i.e. the MSEP mi-
nus the random variation, is attributable to the measurement errors underlying the 
empirical regressions of CH, AU, and DK: for CH, the n-alkane method was utilised, 
the measured pasture biomass removal for AU, and for DK, the difference between 
calculated energy requirements and energy intake from supplemental feed to estimate 
the PDMI. Another technical issue explaining discrepancies between observed and pre-
dicted PDMI depict the used sensors and underlying algorithms applied to converse 
sensor-based records into chewing behaviour observations. The same sensor than in 
the current study was used for the CH model, whereas chewing behaviour data for DK, 
and AU were recorded via accelerometers.

An overfitting of the models’ regression equations to the underlying grazing conditions of 
the modelling dataset is likely another source for prediction bias. The average observed 
pre-grazing herbage mass used in the model for CH (1206 kg DM ha-1), for instance, ex-
ceeded the herbage mass available to the animals of the reference dataset substantially 
(348 kg DM ha-1). This likely had an effect on the selection and foraging behaviour of 
animals on pasture, which might explain differences in the chewing behaviour between 
animals grazing on highly productive or lower yielding pastures. The low biomass avail-
ability was also a result of the low sward height observed in the current study (average 
compressed sward height = 42.4 mm; Grasshopper, True North Technologies, Shannon, 
Ireland). A decrease in sward height was related to a decrease in bite-mass (Bargo et al., 
2003). Differences in sward height can, thus, add a substantial bias to intake predictions 
if they are based on number of chews or bite rate such as the models DK, or CH.

Despite the low prediction accuracy of the evaluated models for the grazing conditions 
of the reference dataset, there is clearly a high potential in the use of behaviour-based 
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models to estimate the intake of grazing animals on semi-natural, or improved grass-
land. A more recent study, for instance, created a model exclusively using a combina-
tion of chewing behaviour parameters (Schori et al., 2021). Their model, had an RPE of 
15 % for their own dataset. This and the fit of the evaluated models to their respective 
datasets demonstrate that the use of chewing behaviour sensors can provide reliable 
PDMI records of individual animals. Due to herd- and management-specific differences 
in the learned and socially driven behaviours of lactating dairy cows (Illius et al., 2000), 
it seems that a sensor-based approach is most suitable when the model is adapted on 
a farm-individual basis. The practical application of such farm-specific, sensor-based 
models, however, calls for farm-specific records of chewing and intake behaviour. This 
in turn, might be solved by integrative approaches such as the use of machine learn-
ing approaches and applying milk production records as feedback loop to adapt PDMI 
equations to individual herds.

Conclusions 
This paper tested the prediction adequacy of existing behaviour-based models to esti-
mate the PDMI of individual animals grazing on semi-natural grassland. Based on the 
RPE values (> 20 %), and the MB values for the models CH, AU, and DK indicating a mean 
under- or overestimation of 28, 22 and 26 % of the observed PDMI, respectively, it can be 
concluded that none of the three evaluated models were able to predict the PDMI of the 
reference dataset adequately. Part of the prediction bias was clearly attributable to bias 
related to measurement errors. But it was shown that systematic differences between 
the reference dataset, and the models’ underlying datasets are also accountable for 
deviations between observed and predicted PDMI.
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Abstract
Integration, storage and visualization of sensor data is essential for Precision Livestock 
Farming (PLF) applications. Affordable and easy to integrate sensors and microcon-
troller (MCU) boards are predestined for cost effective experimental designs. In this 
research, low budget radio frequency identification (RFID) readers and self-designed 
antennas were used to identify cattle at a water trough. Additionally, a water flow sen-
sor was utilized to measure the water intake. The RFID readers and the water flow 
sensor were connected to an MCU development board (Arduino MKR Zero), which was 
sending the data via local area network (LAN) to the on-site InfluxDB OSS 2.0 time se-
ries database (InfluxData Inc., San Francisco, US). Grafana (Grafana Labs, New York, US) 
was used for data visualization and for alarm notification. Our technical setup allowed 
monitoring sensor data and providing it to the researchers in real-time. The RFID sys-
tem was tested for reliability in a pen with 7 animals over a period of 8 days. Out of 7 
animals in the pen 2 had RFID ear tags. Throughout the experiment, the water trough 
area was video recorded continuously. The recorded video was analyzed for drinking 
events and these results were compared with the RFID data. The maximum reading 
distance of 35cm of the RFID system was not enough to reliably identify the animals, 
because the percentage of detected visits to observed visits was 64.3% and 37.5% for 
the 2 different animals. The use of an RFID reader with an enhanced reading distance 
is planned for future studies. 

Keywords: LF-RFID, water intake, time series database, Arduino, InfluxDB, Grafana

Introduction
PLF companies offering monitoring systems tend to provide recorded data via an Ap-
plication Programming Interface (API) to a cloud service, e.g. classified acceleration and 
position data for animals equipped with Smartbow ear tags (Smartbow GmbH, Wei-
bern, Austria) or records of meteorological data from a weather station (HOBO RX3004, 
Onset, Bourne, United States). Furthermore, proprietary farm management software, 
e.g. DairyComp 305, usually does not provide a free API for accessing data easily. Ex-
porting the data into CSV files, to make records accessible, would be the workaround 
in such cases for scientists that aim to analyze datasets recorded by commercial PLF 
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systems. Therefore, setting up a centralized database, e.g. InfluxDB v2, into which all 
measured time series data from various data sources is automatically stored, would be 
beneficial for scientists since there would be no need to manually retrieve data from 
multiple sources. InfluxDB is currently the most popular time series database (TSDB) 
(DB-engines, 2022) and, in combination with Grafana as visualization tool, is widely 
used within scientific applications (Beermann et al., 2020; Cicioğlu et al., 2021). InfluxDB 
v2 is a NoSQL database, developed to store vast amounts of sensor data efficiently with 
high read-write performance (Nasar et al., 2019). 

Utilizing MCU development boards one can set up a sensor network, which is flexible 
and scalable. Using Arduino (Somerville, United States) compatible boards makes code 
development fast, due to the availability of many libraries for peripheral devices and 
sensors.  (Kondaveeti et al., 2021). 

The individual water intake of an animal has been investigated with RFID and water 
flow sensors before and can be used as an indicator of an animal’s health status (Mase-
lyne et al., 2016).

The first goal of this research was to build a measurement system, which writes RFID 
and water flow data into an InfluxDB OSS 2.0 time series database, and to provide 
a Grafana dashboard as a user interface for scientists. The second goal was to evaluate 
the reliability of the system for identification of individual animal drinking patterns.

Material and methods

Location and general setup

Figure 1: Location of water troughs, RFID system, cameras and pen size

The system for measurement of individual water intake was located in a pen in a cat-
tle barn at the experimental farm of the University of Veterinary Medicine Vienna. 
An RFID system and a water flow sensor were installed at only one of the two water 
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troughs in the pen (Figure 1). A camera (DS-2CD2642FWD-IZS, Hikvision, Hangzhou, 
China) was mounted above the water trough to provide a top view and an additional 
camera (DS-2CD2642FWD-IS, Hikvision) provided a side view of the entire pen (Fig. 1). 
Both cameras recorded continuously in the experimental period. Drinking events were 
labeled on the recorded video and compared with visits to the trough recorded with the 
RFID system. It was possible for two animals to visit the water trough (Kompakt-Trog-
tränke 100cm, Suevia, Kirchheim, Deutschland) simultaneously, due to its horizontal 
length of 100cm. There were 7 cows in the pen during the experimental period, which 
lasted for one week from 11.02.2022 until 18.02.2022, but only 2 of them were equipped 
with RFID ear tags.

Water flow measurement system
FCH-midi-POM, (B.I.O-TECH e.K., Vilshofen, Germany) was used to record the water 
flow. The trough was refilled with water when the water level dropped below a thresh-
old. The output of FCH-midi-POM was a square wave signal with a frequency matching 
the flow rate. Every rising edge of the signal triggered an interrupt at an interrupt pin of 
an Arduino MKR Zero microcontroller, which was then executing an interrupt service 
routine (ISR) for counting the impulses. The MKR Zero was also equipped with an Ar-
duino MKR Ethernet shield connecting it to the LAN. It was necessary to use Power over 
Ethernet (PoE) splitters, since the MKR Ethernet shield did not provide PoE capability. 
Every 15s the cumulated water throughput in mL and the average of the flow rate in L/
min were written into InfluxDB. 

Temperature sensors
Two TH3 (Papouch, Prague, Czech Republic) temperature sensors were installed next 
to the top view camera to monitor the temperature and humidity in the pen. The TH3 
sensors  were connected to a Papago Meteo ETH (Papouch, Prague, Czech Republic) 
weather station module. Telegraf, InfluxData’s open source server agent for collecting 
and sending metrics, was used to retrieve every minute the temperature-humidity data 
from the Papago Meteo ETH via Simple Network Management Protocol (SNMP).

RFID measurement system

Table 1: Specification of the used RFID antennas

Name Windings N Inductance L 
(mH) Resistance R (Ω) Physical dimension 

(cm)

Antenna 1 20 0.66 9.4 47x47

Antenna 2 28 1.3 13.7 48x48

The low frequency (LF) RFID measurement system consisted of 2 antennas, 2 low 
budget RFID readers (RFIDRW-E-TTL, Priority 1 design, Melbourne, Australia) and an 
MKR Zero combined with an MKR Ethernet shield. Every antenna was connected to an 
RFID reader and they were positioned next to each other, as shown in Fig. 2. Due to the 
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parallel alignment of the antennas and the trough, the animals could freely access the 
drinker. As shown in Fig. 2, the antennas were mounted at an angle to cover the trough 
area. Table 1 lists the specifications of the RFID antennas.

Figure 2: Installation of the RFID system at the water trough

Identifying animals with LF RFID applications is regulated with ISO 11784/11785.  
Within these standards there are two transmission protocols defined, the full duplex 
(FDX-B) and the half duplex (HDX) protocol (Finkenzeller, 2003). The FDX-B protocol 
uses a 134.2kHz carrier frequency where the information of the transponder is trans-
mitted by Amplitude-shift keying (ASK) modulation. In Austria, newborn cattle has to 
be equipped with FDX-B ear tags since 2019 (AMA, 2019). Therefore, in our study we 
used RFID readers with FDX-B reading capability. A major advantage of LF RFID systems 
is better performance in the vicinity of metal and water compared to HF and UHF RFID 
systems (Brown-Brandl et al., 2017; Fennani et al., 2011). 

Since the carrier signal is amplitude-modulated by the transponder, the sensitivity is 
greatly impacted by the noise level of the power supply. Thus, a low pass filter was 
designed to damp the power supply noise in the frequency range of the modulated 
signal. The LC circuit, consisting of the antenna inductance and the capacitance of the 
RFIDRW-E-TTL, was tuned according to following equation

 (1)

in order to achieve the needed resonant frequency of 134.2kHz, where fres is the reso-
nant frequency, Lant the antenna inductance and Cges is the sum of the capacitance value 
soldered onto the RFIDRW-E-TTL and external added capacitors. 

Using two RFID readers, one for every antenna, instead of just one RFID reader for both 
antennas greatly reduced the electric circuit complexity. Especially because we were 
using antennas with different winding numbers, otherwise a multiplexing circuit must 
have been designed.

𝐶𝐶𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
1

(2𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)2𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
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Figure 3: Individual water intake and temperature measurement system

The RFIDRW-E-TTL reader was wired to an UART interface of the MKR Zero. On a suc-
cessful read, the reader transmitted a string, which included a 3 digit country code and 
the 12 digit national identity code e.g. 040_000000299116. Furthermore, the Arduino can 
issue a serial command to the reader for measuring the current resonant frequency of 
the LC-circuit. 

The Arduino activated the two RFID readers alternately, thus only one reader at a time 
recorded data from the corresponding antenna. In order to investigate the influence of 
the inductance on the reading distance two antennas with different winding numbers 
were produced. The reading distance was defined as the distance from the antenna 
to the transponder, when the transponder was first recognized. The duration of the 
activation for both antennas was 1s. The resonant frequency of each antenna circuit 
was sampled once every 4 minutes. Metrics for the resonant frequency and RFID data 
(animal ID) was sent to the InfluxDB v2.

InfluxDB v2 TSDB
Data was directly written to InfluxDB v2 by issuing a HTTP POST request to the /write 
endpoint of the REST-API. The InfluxDB v2 was installed on a server within the LAN. 
The data-string had to have the InfluxDB line protocol structure (Influxdata, 2022). Due 
to the lack of a dedicated InfluxDB v2 client library for an MKR Zero with Ethernet 
shield, the easiest way to write metrics into the InfluxDB was to set up a dedicated 
HTTP POST request. A token, which had writing access to a bucket, had to be passed in 
the header of the HTTP request. 

Grafana dashboard
User segregation or restricting access to dashboards for users within the same InfluxDB 
organization is not possible in InfluxDB v2 OSS. However, this fine-grained access con-
trol was implemented into the InfluxDB Enterprise version. Using Grafana, an analytics 



916 Precision Livestock Farming ’22

and visualization tool, as an UI is also an option to refine user access. In Grafana it is 
possible to restrict access to dashboards to certain users or teams. Grafana also pro-
vides a large set of overriding and tweaking options, for instance changing labels, color 
schemes and unit definitions. Access to the InfluxDB was established by configuring an 
InfluxDB datasource in Grafana.

Data analysis
The video recorded in the experimental period was analyzed, by counting the visits at 
every water trough. Furthermore, the animals with RFID ear tags were manually iden-
tified when they visited the trough with the RFID system. The visiting times were also 
registered to compare them to the RFID data by calculating a detection rate. Detection 
rate was defined as the percentage rate of RFID detected visits to total visits.

Results and discussion

Visits to the water trough
The detection rate of the first out of 2 animals that had RFID transponder was 64.3%,  
and of the second animal 37.5%. The second animal had been wrongly equipped with 
RFID transponders on both ears, which was the reason for the worse performance. ISO 
11784/11785 does not specify any anti-collision protocol, thus the reading distance was 
greatly reduced when two or more tags were read by the same antenna. The meas-
ured maximum reading distances for FDX-B ear tags of antenna 1 and antenna 2 were 
32.5cm and 35cm, respectively. Reliable identification of animals would require an in-
crease of the reading distance. For the same antenna configuration and reading area, 
an RFID reader with increased reading range has to be utilized for a more reliable iden-
tification, e.g. WL-134 (ZocoRFID, China) or ASR550 (Agrident GmbH, Barsingshausen, 
Germany) During the experimental period, there were 6 visits out of 129 where 2 ani-
mals were drinking simultaneously at the water trough with the RFID system.

Table 2: Drinking events at water troughs

Visits at RFID 
water trough

Visits at non RFID 
water trough

Detected 
visits animal 

1

Not detected 
visits animal 

1

Detected 
visits animal 

2

Not detected 
visits animal 

2

129 86 18 10 9 15

The RFID detection rate could be useful for computer vision applications, where 
a re-identification of cows might not be necessary with each visit. Furthermore, with 
a computer vision approach it could potentially be possible to evaluate the water intake 
of each animal more precisely than with our current approach, when multiple animals 
visit the same water trough simultaneously (Kashisha et al., 2013).
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Figure 4: Grafana dashboard 

RFID Grafana dashboard
An alarm was configured within the panel showing the resonant frequency (Fig. 4). It 
was triggered when the value was out of bounds, indicated by the red and orange hori-
zontal lines, which were set to 135.7kHz and 132.7kHz respectively. Slack (Slack Tech-
nologies, San Francisco, United States) webhook was used as notification endpoint and 
alarm messages were posted in a Slack channel. We had to re-match the capacitance 
value at the reader, if an alarm was triggered. As expected, the resonant frequency de-
clined with higher temperatures because of the change of the antenna’s dimensions. 
The right panel in Fig. 4 shows the combination of the water flow measurement with 
the RFID detections. For the experimental period, the water intake was associated with 
an animal ID by RFID system. 

Conclusion
This work presented the setup of a small sensor network with different measurement 
sources. With Arduino development boards, it was possible to set up a flexible and scal-
able real time monitoring system with low budgetary effort. Metrics were written to 
the InfluxDB v2 by using either the REST-API or the Telegraf collection agent. Grafana is 
a comprehensive tool for visualizing data from different sources and combining them 
into one dashboard. It also allowed us to set up an alarm-messaging pipeline. The com-
bination of InfluxDB v2 and Grafana allowed researchers to view, analyze and extract 
data without using proprietary software.

A more reliable RFID system with higher reading distance would need to utilize a dif-
ferent RFID reader with better performance.
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Abstract
Use of Milk Mid Infrared (MIR) analysis is well established in milk recording organisa-
tions due to the wide range of characteristics that can be measured in milk. Not only 
milk components are determined using MIR spectrometry, also warning systems are 
being developed to help farmers to better address their production objectives and to 
improve animal health. The aim of the current study was to evaluate two different 
spectrometric tools for predicting mastitis risk and udder health status of dairy cows. 
The objectives were to develop discriminant models to predict mastitis events and to 
evaluate their accuracy by using clinical diagnosis as a reference. Results of prediction 
models are planned to be used as an early warning system for mastitis within the rou-
tine milk recording system. Large amounts of milk recording (including MIR spectra) 
and clinical mastitis diagnosis data from Austria, Baden Württemberg (Germany) and 
Alsace (France) were jointly analysed. The spectral data was first standardised, then 
pre-processed by first derivative and the Legendre polynomial model was applied for 
days in milk correction. In one of the two approaches somatic cell count (SCC) was 
used as an additional predictor variable, improving prediction accuracy. Farmer reports 
were developed combining MIR predictions with milk components related to mastitis 
in order to detect subclinical mastitis and to prevent clinical or chronical mastitis. MIR 
predictions of mastitis risk are regarded as a useful and valuable precision livestock 
farming tool when used with standardised spectral data.

Keywords: mid-infrared spectrometry, MIR spectra, health monitoring, mastitis, dairy 
cattle

Introduction
Mastitis is an inflammation of the mammary glands and can be caused by more than 
50 different organisms. Usually, mastitis is diagnosed somatic count and laboratory 
diagnostic methods, also it can be detected by visual by observation or palpation of the 
udder, or changes in milk secretion and application of the California Mastitis Test. At 
farm level, occurrence of mastitis prevalence decreases milk production, produces vet-
erinary costs, welfare issues, and increases culling rate or causes lower milk payment. 
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Mastitis is associated with a wide range of characteristics that can be measured in milk 
with recent advances in the estimation of milk components using mid-infrared (MIR) 
spectrometry. Also, if a cow has mastitis, the composition of milk will be affected and 
with it the MIR-milk-spectrum. The important message from the project OptiMIR was 
that not only the main components can be analysed with the MIR spectrometer, but 
also fatty acids (Grelet et al., 2014), minerals, lactoferrin (Soyeurt et al., 2011), BHB, ac-
etate and citrates (Grelet et al., 2015). Complex features). Complex traits could also be 
assessed, and, models for ketosis (Grelet et al., 2016), energy deficiency (McParland et 
al., 2011, Smith et al., 2018) and methane emissions (Dehareng et al., 2012) were devel-
oped. Nowadays, work on pregnancy (Laine et al., 2017) and mastitis tools could help 
farmers for the herd management and better production. The objective of this study 
was to build a spectrometric tool, such as MastiMIR for Austrian datasets, for the deter-
mination of the animal health status from the milk quality with the aim to evaluate the 
usability of mastitis diagnosis in combination with MIR indicators in order to improve 
early mastitis risk prediction at the milk recording organisation LKV Austria.

Material and methods

Experimental data
Due to the health monitoring in Austria, which started in 2006, diagnoses of approx. 
10.000 validated farms were used for research and the MastiMIR model. The diagnoses 
were documented by veterinarians using a 86-part diagnostic key. The reference data 
to create the MastiMIR model were cinical mastitis (acute and chronic) diagnoses, the 
spectral data were predictor variables. The model is based purely on standardized spec-
tral data, since all spectra registered at LKV- Austria have been standardised starting 
from Janurary 2015, due to the OptiMIR project participation. All data editing, modelling 
and calculations were done using the R statistical language and environment.

Signal analysis
To identify variables that were positively or negatively associated with mastitis determi-
nation, the spectral data set was first pre-processed by Savitzky-Golay first derivative in 
order to remove the offset differences between samples for baseline correction before 
performing Legendre polynomial transformation based on days in milk (Gengler and 
Wiggans, 2001). Then the data was submitted to logistic regression in combination with 
LASSO variable selection and regularization and 10 fold cross validation using the “glm-
net” R package. Parts of the test day data available were used to modeling. Test day data 
from 7 to 0 days prior to mastitis diagnosis were assigned to the mastitis class. For the 
healthy class, only spectra which had no diagnosis associated within ±60 days were used. 
For the “glmnet” model following variables were considered as, fixed effects: milk includ-
ed sampling moment (with three variants: standard, mix sample between morning and 
evening, morning and evening), parity (1, 2, 3, 4, 5+) and breed (Holstein, Brown-Swiss and 
Simmental) and a 212 OptiMIR wavenumbers subset of the pre-processed spectral data.

The calibration data set contained around 4.140 spectral data from around 10.000 Austri-
an herds and if it was applied the SCC filter the data was around 34215 spectral data (Ta-
ble 1). The first validation approach was based on a random split of data, 70% of data was 
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used for the calibration model and 30% for the validation model. The second validation 
model was based on independent dataset with different farms as in the calibration mod-
el and an external validation in order to exclude animal and farm effects. These selected 
11 farms were farms with high diagnosis registration rate and had to cover the most 
important breeds e.g. Holstein, Brown Swiss and Simmental. For these two validation 
models the same data cleaning approach as for the calibration model was used, , such as 
diference between fat detected in lab and fat predicted form the MIR spectral data had to 
be lower then 5, and the GH was aroung 5. In addition to the external validation with the 
extreme values diagnosis cases, a third validation model is proposed with test day data 
from a whole production year. Data from 1st October 2017 till end of September 2018 in 
combination with diagnosis data was used to verify if the proposed model could be imple-
mented in routine, those dataset was not used in the calibration model.

Table 1: MastiMIR calibration and validation datasets 

MastiMIR Model Healthy Not Healthy

1st Calibration 83.891 1.078

1st Calibration – SCC Filter 33.877 338

1st Validation – random split 30.525 3.715

2nd Calibration 86.029 994

2nd Calibration – SCC Filter 33.562 510

2nd Validation – external validation with 11 farms 25.863 457

Final Model 256.150 14.640

3rd Validation – external validation with production data 54.839 3.294

To interpret the prediction of the MastiMIR model, the survival analysis were performed 
with the help of survival package in R in order to build the classes of MastiMIR. The idea 
was to cover the group of data by means of a mastitis risk probability provided by a pre-
sumed logistic-linear relationship (S-curve) between MastiMIR probability and the mas-
titis danger. This model allowed by using different thresholds to distinguish 4 danger/
risk classes. The class limits were determined by using statistical methods such as cumu-
lative probability and Cox event time analysis. The class size was negatively correlated 
with the mastitis class such as not, moderately, significantly and severely endangered.

Results and Discussion
Mastitis can only be predicted to a limited extent via somatic cell count. Therefore, a new 
model MastiMIR based on spectral data, animal parameters such as parity, breed and 
milking moment, and the gold standard the mastitis diagnoses such as MastiMIR has 
been developed. Table 2 presents the MastiMIR calibration and validation statistics. After 
modelling with GLMNET in R, a sensitivity (the percentage of sick cows that were correctly 
identified as having the condition) of 60.3% in calibration and more than 73% for the73.6-
75.5% in validation and external validation models could be obtained. The specificity (the 
percentage of healthy cows that were correctly identified as not having the condition) is 
71.6% in 71.3-72.0% in the range of 71-72% for calibration and all validation sets. 
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Table 2: MastiMIR calibration and validation statistics

MastiMIR Model Sensitivity Specificity

1st Calibration 60.3% 71.6%

1st Calibration – SCC Filter 87.6% 87.8%

1st Validation – random split 75.5% 71.4%

2nd Calibration 61.1% 74.3%

2nd Calibration – SCC Filter 70.2% 80.3%

2nd Validation – external validation with 11 farms 73.6% 72.0%

Final Model 67.3% 78.1%

Final Model – SCC Filter 78.9% 84.1%

3rd Validation – external validation with production data 74.5% 71.3%

Regarding the 3rd validation model with production data, it can be seen that the sen-
sitivity is 74.5% while the specificity is 71.3%. This can be explained by the probable 
presence of untreated mastitis cases, subclinical mastitis and missing registration of 
diagnosis events in the production data. 

Figure 1: Survival Analysis SCC classes and MastiMIR classes

It can be seen in Figure 1, for example, the distributions of the MastiMIR and the SCC 
classes over the lactation week, that the mastitis class distribution has the shape of the 
lactation curve on both models. The MastiMIR class distribution on whole population 
from Austrian herds for the year 2017 is more pronounced than SCC class. Regarding 
the animals with MastiMIR danger or risk it can be pointed out that mastitis can occur 
also when the cows have a low SCC. Animals with higher SCC may still have other dis-
eases. There is also a difference between the healthy classes and moderately endan-
gered and also significantly endangered. The size of the group decreases as with the 
SCC classes with the danger. The Cox event time analysis improved the classification. 
If an animal has mastitis diagnoses, it can be detected earlier with the MastiMIR model 
than with the SCC class model. The transition from significantly endangered to se-
verely endangered was better separated (differentiated). The transition from healthy to 
moderately endangered class was displayed earlier. If a cow has health problems due to 
mastitis, she not only has a lower amount of milk or a higher SCC, but also reacts with 
a change of the main milk components: the lactose content is negatively correlated 
with mastitis and the protein content and the fat-lactose ratio are positively correlated. 
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A positive correlation also applies to the milk fine components sodium, lactoferrin and 
BHB, as the literature has already confirmed.

Conclusions
The model provides four classes of mastitis warning such as not, moderately, signifi-
cantly and severely endangered. MastiMIR can be a good risk indicatorsignal for masti-
tis. The moderately endangered class is a signal for the farmer. In that case the farmer 
would contact the veterinarian and a control would be made in order to prevent the 
occurrence of mastitis. Compared to the SCC model, which was defined such as not 
(less than 100.000 SCC), moderate (100.000-200.000), significantly (200.000-400.000) and 
severely (more than 400.000) endangered, the MastiMIR model shows an earlier occur-
rence of the ‘slightly at risk’ classification. The MastiMIR model is a complementary 
tool for the SCC model, MastiMIR can supplement the SCC classes.
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Abstract
The operation of milking is one of the most time-consuming in a dairy cattle farm. Be-
cause the management and duration of the whole milking session can be affected by 
some cows that need a longer milking time than others, it can be useful to shorten the 
milking time of these cows. In this study, a full dataset of milking data was collected 
and processed for three months from a dairy cattle farm located in Northern Italy. The 
aim was to understand how to reduce the daily milking time by evaluating the effect 
of a different pulsation ratio and detachment flow rate on the duration of milking and 
udder health. A prediction model for the duration of milking was developed, which was 
able to identify the proper pulsation ratio and detachment flow rate based on the first 
2 minutes of data on milking. If implemented on machines, it can lead to an automati-
zation in the change the pulsation ratio and detachment flow of every cow. 

Keywords: data analysis, milk production, pulsation ratio, prediction model

Introduction
Milking routine is very intensive and time-consuming for the farm management activ-
ities (Celozzi et al., 2020). In some cases, to solve problems related with working time, 
availability of workers, and milking issues linked with the quality of milking opera-
tions, the introduction of Automated Milking Systems (AMS) has occurred. AMS spread 
first in Northern Europe (Jacobs & Siegford, 2012) and then in Western Europe and Unit-
ed States. Broucek & Tongel (2017) report that in 2012 more than 19 thousand robots 
were used, and this number has further increased. 

AMS has the benefit to properly manage the milking daily operations of about 55-65 cows, 
which is the medium size of European herds (Broucek & Tongel, 2017). Respect to manage-
ment, AMS has some advantages, among which an increased economic profit, improved 
animal health and welfare, milk quantity and quality (due to higher milking frequency and 
better detection of diseases), and farmer and workers’ lifestyle. Brito et al. (2020) quantified 
in 18-46% labour cost savings the introduction of AMS respect to the conventional miking. 
However, also some drawbacks can be identified, among which the problems related to 
stress, fear or general attitude of cows, undesired behaviours due to the queue prior to the 
milking, lack of adequate udder conformation to the milking (Broucek & Tongel, 2017; Brito 
et al., 2020), lack of proper barn structures for the free or forced walking (Bewley et al., 2017) 
and the consequent possible delays in milking. In addition, early udder health deteriora-
tion was found by Hovinen & Pyöräläudder (2011) when AMS is used. 

In Italy, despite the strong investments of the last years towards this direction, the 
presence of AMS is still small. Abeni et al. (2019) report that only around 3% of dairy 
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cattle farms is equipped with AMS, which anyway is one of the most interesting tech-
nologies for Italian farmers. The reasons include costs, labour, and in some cases the 
PDOs’ disciplinaries. In fact, Pezzuolo et al. (2017) monitored 15 farms in Italy finding 
a general underuse of AMS, which were active for about 70% of daily time. Therefore, it 
seems that not all farmers are yet attracted by automatization and improving the tra-
ditional milking operations still presents interest, especially by having efficient milking 
procedures and low-cost sensors supporting them (Celozzi et al., 2020).

In this study, by monitoring one dairy cattle farm of Northern Italy in which milking 
operations occur in a traditional herringbone milking system with cow identification 
and milk data collection, some considerations were made about how to shorten the 
duration of milking operations, especially focusing on those cows that have milking 
time higher than 8 minutes. This was achieved by varying the pulsation ratio, and arti-
ficial intelligence was applied to evaluate how to vary automatically the pulsation ratio 
based on the milk flow in the first two minutes of milking.

Material and methods

Experimental data
The monitoring took place in a dairy cattle farm located in the North of Italy equipped 
with pedometers and a milking monitoring system by a commercial firm, from which 
were collected data of each session of milking. The farm milks about 1000 milking cows 
per day, and the milking routine is quite long, requiring about 7 hours daily. For this 
reason, the farm manager asked for information about how to reduce the duration of 
milking operations, without the willingness to adopt AMS. The focus was paid, there-
fore, on those cows that are slow to eject milk and prolong the whole milking operation. 

Data about the herd and milking variables were collected for each milking session (2 
per day) for 3 months, from September to December 2021. In this period, on the whole 
herd, an expert observed the udder health through the Teat End Score (TES) test every 
3 weeks to evaluate possible damages to teats. In particular, a score from 1 to 4 is given 
to each teat of the udder based on its hyperkeratosis level: 1 is attributed for normal, 2 
for smooth, 3 for rough and 4 for very rough (Mein et al., 2001). 

From the whole herd, dairy cows with the average milking time (AMT) >8 minutes were 
identified for further evaluations. In particular, to some of these cows the pulsation ratio 
was randomly modified, from 60:40 to 65:35. Instead, from the whole herd, some cows were 
also randomly selected for evaluating the effect of changing the detachment flow, from 600 
g min-1 to 800 g min-1. According to this distinction, two different tests were performed: 

 — Pulsation ratio 60:40 vs 65:35. This test was carried out with focus on the cows char-
acterized by AMT>8 minutes;

 — Detachment flow 600 vs 800 g min-1. This test was carried out using a sample of cows 
from the whole herd.

All the selected cows for the trial had, on average, 93 DIM and parity equal to 1.6. There-
fore, changes along the lactation period were not affected by differences in DIM. Before 
the start of the trial, the somatic cells count (SCC) were measured and were equal, on 
average, to 2.43 as linear score. 
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Data processing was performed with the SAS Software 9.4. A GLM Procedure (Proc GLM) 
was carried out to calculate corrected least square means (LS Means) and the statistical 
differences of the tested trials and variables. In particular, LS Means were calculated for 
trials puls60:40 vs puls65:35 and separately for detach600 vs detach800. As abovemen-
tioned, the reason for the analysis carried out separately was that the two combined 
trials occurred separately from each other.

Since the milking monitoring system makes available on a computer on farm all the data 
related to milking, some further considerations can be made. In particular, the availa-
bility of cow ID, average milk yield of the 10 previous days, and flow rates of 0-15, 15-30, 
30-60, and 60-120 seconds allows to predict the individual cow milking time and removal 
flow within the first 2 minutes of milking. With an accurate prediction model, guidance 
for precise milking parameter customization for individual cows can be offered.

Model development
A modified Support vector machine, namely the Least Squares Support Vector Machines 
(LSSVM) algorithm proposed by Suykens and Vanderwalle (1999) was used. It uses a least-
squares linear system as a loss function to change the inequality constraint of SVM into 
an equation constraint. In addition, a novel swarm intelligence optimization algorithm 
proposed by Xue and Shen (2020) was used, which is the Sparrow Search algorithm (SSA). 
It is a heuristic algorithm that mimics the cooperative behaviour of a group of sparrows 
during predation, improving the exploration and use of the optimal search space.

Since the parameters used in this study significantly influence the prediction perfor-
mance of the LSSVM algorithm, the LSSVM algorithm parameters have been optimized 
based on the SSA algorithm to address the problem of blind selection of the parameters 
and the difficulty of jumping out of local extremes.

Results and Discussion
The average and standard deviation results of the main parameters of the studied trials 
are reported in Table 1. In Figure 1 is reported the milk yield and average milking time 
(AMT) of the 4 trials during the whole period.

Figure 1: Average Milking Time (AMT – min) and Milk Yield (kg) of the 4 trials for the whole duration 
of the trial.
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Table 1: Mean and standard deviation of the main parameters tested

trial detach800 detach600 pul 60:40 pul 65:35

Milk yield (kg) (*) 18.1± 4.1 18.3± 4.2 19.04± 4.07 19.11± 3.98

AMT (min) 5.0± 1.1 5.0± 1.1 8.66± 1.77 7.71± 1.62

Flow rate0-15 (kg min-1) 1.12± 0.85 1.27± 0.84 0.20± 0.42 0.37± 0.57

Flow rate15-30 (kg min-1) 3.67± 1.48 3.90± 1.45 1.75± .943 2.18± 1.13

Flow rate30-60 (kg min-1) 3.95± 1.62 4.20± 1.71 2.16± 0.83 2.59± 1.14

Flow rate60-120 (kg min-1) 4.83± 1.54 5.05± 1.54 2.56± 0.87 3.11± 1.17

Peak flow (kg min-1) 6.40± 3.17 6.68± 2.93 3.41± 2.3 4.11± 2.74

Removal flow (kg min-1) 1.22± 0.50 1.08± 5.51 0.83± 0.46 0.91± 0.39

Total low flow (kg min-1) 0.6± 0.7 0.8± 0.7 1.32± 0.99 1.18± 0.96

SCC_1 (^) 2.6± 1.9 2.6± 1.8 1.92± 1.64 2.11± 1.88

SCC_2 (^) 2.5± 2.4 3.6± 2.9 1.53± 2.03 2.07± 2.56

SCC_3 (^) 2.9± 1.8 3.4± 2.3 2.09± 1.84 1.93± 1.66

TES_1_back (°) 2.1± 0.4 2.0± 0 2.03± 0.26 2.22± 0.5

TES_1_front (°) 2.1± 0.5 2.0± 0.2 2.1± 0.27 2.22± 0.5

TES_2_back (°) 2.1± 0.4 2.0± 0.3 2.11± 0.56 2.16± 0.51

TES_2_front (°) 2.1± 0.5 2.0± 0.3 2.09± 0.31 2.22± 0.5

TES_3_back (°) 2.1± 0.4 2.0± 0.3 2.1± 0.41 2.25± 0.55

TES_3_front (°) 2.2± 0.5 2.0± 0.4 2.21± 0.5 2.3± 0.58

TES_4_back (°) 2.1± 0.5 2.0± 0.3 2.26± 0.48 2.36± 0.65

TES_4_front (°) 2.2± 0.5 2.1± 0.4 2.35± 0.5 2.42± 0.65

TES_5_back (°) 2.1± 0.6 1.9± 0.5 2.39± 0.56 2.41± 0.65

TES_5_front (°) 2.2± 0.7 2.0± 0.5 2.57± 0.58 2.65± 0.64

Note: (*) milk yield is expressed per session (two sessions per day); (^) SCC= somatic cells count 
expressed as linear score (1-3 refers to the first, second and third measurement); (°) TES= teat end 
score (values from 1 to 4) for front teats and back teats (1-5 refers to the measurements, starting 
from the first at the beginning of the trial in September – 1- to the last at the end in December - 5).

From the figure it can be observed that while the milk yield is very close between the 
tests of pul60:40 and pul65:35, the AMT is always lower if the test is puls65:35. This 
means that the test in which the pulsation ratio is equal to 65:35 allows to reduce the 
milking time. However, to verify the statistical significance of this consideration, a GLM 
Procedure in SAS Software 9.4 was carried out to calculate LS Means, standard errors 
and significance of the tested variables. In Table 2 are reported the corrected LSMeans 
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of the trials of puls60:40 and puls65:35 with the related significant differences. The 
same is shown in Table 3 for the trials of detach800 and detach600. 

Table 2: LS Means and standard error (S.E.) of the trials of puls60:40 and puls65:35 with the related 
significant differences (p). 

Variables
puls60:40 puls65:35

p
LS Mean S.E. LS Mean S.E.

AMT (min) 8.11 0.04 7.80 0.03 ***

Milk yield (kg) 19.30 0.11 19.70 0.10 ***

TES_1_back 2.22 0.01 2.33 0.01 ***

TES_1_front 2.04 0.01 1.95 0.01 ***

TES_2_back 2.32 0.02 2.14 0.02 ***

TES_2_front 2.14 0.01 2.27 0.01 ***

TES_3_back 2.28 0.01 2.24 0.01 ***

TES_3_front 2.25 0.01 2.29 0.01 ***

TES_4_back 2.37 0.01 2.49 0.01 ***

TES_4_front 2.37 0.01 2.34 0.01 ***

TES_5_back 2.48 0.02 2.35 0.02 ***

TES_5_front 2.49 0.02 2.59 0.02 ***

Peak Flow (g min-1) 3367 100 3484 98 0.06

Peak Time (min) 4.60 0.06 4.27 0.06 ***

Removal Flow (g min-1) 822.6 16.8 842.1 16.5 0.1

Total Low Flow (kg min-1) 1.28 0.03 1.44 0.03 ***

SCC_1 2.14 0.06 1.53 0.06 ***

SCC_2 2.64 0.07 3.05 0.06 ***

SCC_3 2.56 0.06 2.40 0.06 ***

Note: ***= significance of <0.0001.

From the results it can be observed that all variables show significant differences be-
tween puls60:40 and puls65:35 except for the peak flow and the removal flow. This is 
expected because no difference is present in the 2 trials respect to the removal flow (set 
at 800 g min-1). Instead, it can be observed that with puls65:35 the AMT reduces below 
8 minutes and also the peak time is lower (7% less in puls65:35). However, milk yield in-
creases significantly (19.30 and 19.70 kg cow-1 session-1, for puls60:40 and puls65:35, re-
spectively). When analysing the SCC, statistical differences are present in all the tests, 
with values higher in the puls60:40 in 2 out of 3 cases. Respect to the TES, teats show in 
all cases an increase in the hyperkeratosis, with values always above 2. In general, TES 
of the back teats shows more damages than the front ones, even if slight differences – 
even though significant- are found. Instead, in the last monitoring, the TES is worse for 
the front teats (2.49 and 2.59 for puls60:40 and puls65:35, respectively) than for the back 
teats (2.48 and 2.35 for puls60:40 and puls65:35, respectively). 
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Table 3: LS Means and standard error (S.E.) of the trials of detach800 and detach600 with the related 
significant differences (p). 

Variables
detach800 detach600

p
LS Mean S.E. LS Mean S.E.

AMT (min) 5.15 0.02 5.22 0.02 ***

Milk yield (kg) 17.77 0.07 17.94 0.07 *

TES_1_back 2.08 0.00 2.08 0.00 *

TES_1_front 1.96 0.00 2.00 0.01 ***

TES_2_back 2.00 0.00 2.00 0.00 0.14

TES_2_front 2.03 0.00 2.00 0.00 ***

TES_3_back 2.08 0.00 2.05 0.00 ***

TES_3_front 2.02 0.00 2.04 0.00 ***

TES_4_back 2.13 0.01 2.09 0.01 ***

TES_4_front 2.11 0.01 2.13 0.01 ***

TES_5_back 2.00 0.01 2.05 0.01 ***

TES_5_front 2.16 0.01 2.09 0.01 ***

Peak Flow (g min-1) 6469 80 6218 82 *

Peak Time (min) 2.26 0.02 2.26 0.02 0.96

Removal Flow (g min-1) 1270.4 17.1 1187.0 17.7 ***

Total Low Flow (kg min-1) 0.60 0.01 0.62 0.01 0.11

SCC_1 2.45 0.03 2.08 0.03 ***

SCC_2 2.77 0.05 3.59 0.05 ***

SCC_3 3.99 0.04 4.28 0.04 ***

Note: ***= significance <0.0001; * significance <0.05

When analysing the results of the second trial, it can be observed that peak time and 
total low flow do not show significant differences between the trials, similarly to the 
second measurement of TES for back teats. In general, AMT is much lower than in the 
previous case, because in this case long cows were not present. Furthermore, milk pro-
duction is slightly lower, the peak flow and the removal flow are much higher than in 
the previous trial. While comparing these results, statistical differences are observed 
for SCC and TES. In particular, SCC result higher in 2 out of 3 cases in the detach600, 
highlighting problems probably due to overmilking. It must be highlighted also that in 
the last SCC measurement, the threshold of linear score of 4 was very close or even ex-
ceeded by the detach800 and detach600, respectively. Respect to TES, instead, statistical 
differences between the trials are observed, but the values of the whole test are in all 
cases close to 2 for the whole duration of the test, therefore only a smooth hyperkera-
tosis, probably related to the combination of different variables, was observed. 

As reported in Atakan et al. (2021) it is important to monitor the teat end score because 
hyperkeratosis on the teat end is caused mainly by errors, high vacuum of the milking 
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machine, increased milk yield, prolongation of milking, dirtiness of the animals and 
insufficient bedding. Therefore, reducing the milking time may help in reducing the 
TES of the first trial (puls60:40 vs puls65:35, where long cows were tested). However, the 
higher vacuum and other characteristics not monitored in this case (e.g., dirtiness and 
bedding) could affect this result. TES is important also because of its relationship with 
a higher risk for mastitis and high SCC.

Considering these results, it is important to have the possibility to modify the milking 
parameters during milking, based on cows’ specificities. With the model developed in 
this study, it results that the SSA-LSSVM algorithm achieves 92% accuracy for AMT 
reduction and 78% accuracy for the differentiation of the removal flow, and F1 score is 
0.95 and 0.88, respectively for the 2 cases. 

Conclusions
This study aimed to monitor and evaluate different parameters of milking in order to 
improve the average milking time and the milking quality. Different pulsation ratio 
shortened the milking time while not negatively affecting TES and SCC. Having a high-
er detachment flow also reduced average milking time and improved SCC, while not 
affecting much the TES and milk yield. The possibility of introducing artificial intelli-
gence algorithms that modify the milking machine parameters. Therefore, being able 
to modify the milking machine parameters while milking and based on the first 2 min-
utes milking can represent a big step forward to improve the quality of milking opera-
tions for dairy cows’ health taking into account single cows’ specificities.

References
Abeni, F., Petrera, F., & Galli, A. (2019). A survey of italian dairy farmers’ propensity for precision live-

stock farming tools. Animals, 9(5), 1–13. https://doi.org/10.3390/ani9050202

Atakan, K., Can, A.M., & Zeki, D.M. (2021). Effects of teat end score on milk yield and quality in Hol-
stein-Friesian cows. Large Animal Review, 27, 3–7.

Brito, L. F., Oliveira, H. R., McConn, B. R., Schinckel, A. P., Arrazola, A., Marchant-Forde, J. N., & Johnson, 
J. S. (2020). Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: 
A New Frontier in Animal Breeding. Frontiers in Genetics, 11(July), 1–32. https://doi.org/10.3389/
fgene.2020.00793

Broucek, J., & Tongel, P. (2017). Robotic Milking and Dairy Cows Behaviour. Proceedings - 2017 In-
ternational Conference on Control, Artificial Intelligence, Robotics and Optimization, ICCAIRO 
2017, 2018-January, 33–38. https://doi.org/10.1109/ICCAIRO.2017.16

Celozzi, S., Zucali, M., Bava, L., Tangorra, F. M., Zanini, L., Tamburini, A., & Sandrucci, A. (2020). The 
use of integrated data collection system to evaluate milking performance, microclimatic condi-
tion and cows’ behaviour. Italian Journal of Animal Science, 19(1), 856–864. https://doi.org/10.1
080/1828051X.2020.1805034

Hovinen, M., & Pyörälä, S. (2011). Invited review: Udder health of dairy cows in automatic milking. 
Journal of Dairy Science, 94(2), 547–562. https://doi.org/10.3168/jds.2010-3556

Jacobs, J. A., & Siegford, J. M. (2012). Invited review: The impact of automatic milking systems on 
dairy cow management, behavior, health, and welfare. Journal of Dairy Science, 95(5), 2227–2247. 
https://doi.org/10.3168/jds.2011-4943



 Precision Livestock Farming ’22 931

Mein, G.A. Neijenhuis, F., Morgan, W.F., Reinemann, D.J., Hillerton, J.E., Baines, J.R., Ohnstad, I., Ras-
mussen. M.D., Timms, L., Britt, J.S., Farnsworth, R., Cook, N., & Hemling, T. (2001). Evaluation of 
bovine teat condition in commercial dairy herds: 1. Non-infectious factors. AABP-NMC Inter-
national Symposium on Mastitis and Milk Quality in Vancouver, BC, Canada. September 13-15, 
2001.

Pezzuolo, A., Cillis, D., Marinello, F., & Sartori, L. (2017). Estimating efficiency in automatic milk-
ing systems. Engineering for Rural Development, 16(December 2016), 736–741. https://doi.
org/10.22616/ERDev2017.16.N148

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Pro-
cessing Letters, 9(3), 293-300.

Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: sparrow search algo-
rithm. Systems Science & Control Engineering, 8(1), 22-34.



932 Precision Livestock Farming ’22

Soft-Sensing Approach for Predicting Bovine Respiratory Disease Severity

A. Youssef1,2, C. Jansen1, S. Neethirajan1 
1Adaptation Physiology Group (ADP), Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, 
Netherlands
2Department of Biosystems, Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, 
Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
ali.youssef@wur.nl 

Abstract
Bovine respiratory disease (BRD) is the most common cause of morbidity and mortality 
in cattle around the world causing important health problems (e.g., mortality, growth 
problems, and low productivity) in all cattle husbandry systems. BRD is a multifacto-
rial syndrome, with various predisposing factors (stressors) being necessary to induce 
disease and affect disease severity. Predisposing factors include external stressors such 
as inadequate vaccination protocols, comingling with other cattle, dusty environment, 
sudden and extreme weather changes, and dehydration. Additionally, internal factors 
such acute metabolic disturbances and inadequate transfer of passive immunity are 
involved as well. BRD is one of the most extensively studied diseases since the be-
ginning of 19th century until today. However, it is still a challenge to predict which 
specific groups of cattle are at the highest risk of BRD progression (i.e., severity and 
morbidity) and other BRD-related outcomes (e.g., mortality and disease severity). In 
the present paper, a conceptual framework for streaming adaptive machine-learning 
algorithm for farm-based prediction of the BRD progression outcomes (mortality and 
severity) is introduced. The introduced approach is based on combining farm (activity, 
animal-to-animal contact and feeding behaviour) and (sub)-clinical data (body tem-
perature, nasal and ocular discharges and respiration rate) measurements together 
with a machine-learning-based prediction model. A hybrid machine learning approach 
based on localised least-squares support vector machines (LS-SVM) and k-nearest 
neighbours (kNN) is proposed.  The developed adaptive model is suitable for online 
prediction of BRD-related mortality and severity for clinical decision support systems.

Keywords: bovine respiratory disease (BRD), morbidity, mortality, predictive model, 
machine learning, streaming algorithm

Introduction
Bovine respiratory disease (BRD) is the most common cause of morbidity and mortality 
in cattle around the world. BRD is a multifactorial syndrome, with various predisposing 
factors (stressors) being necessary to induce disease and disease severity. The predis-
posing factors include management and environmental (external) stressors such as 
transportation, comingling with other cattle, dust cold, sudden and extreme weath-
er changes and dehydration that in addition to internal factors such acute metabolic 
disturbances (Kelly & Janzen, 1986; Lillie, 1974). BRD, depending on the pathogen in-
volved, can cause death within 24 to 36 hours of symptoms appearing, or the infection 
can become chronic, not causing death but instead producing widespread, permanent 
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lung damage, thus resulting major economic losses to the Dairy Industry (Brooks et al., 
2011).

It is a big challenge to predict which specific groups of cattle are at the highest risk of BRD 
occurrence and other BRD-related outcomes (e.g., mortality, relapse treatment response 
and disease severity). One reason that the prediction of BRD-related outcomes is difficult 
is that the aetiology of BRD is multifactorial as explained earlier. Computational and 
mathematical modelling can be utilized to improve prediction of BRD-related outcomes. 

Given rapid progression and potential long-term and lethal impact of the BRD, electron-
ic health monitoring and sensing systems in combination with machine learning would 
play an essential role in preventing and containing the disease and diseases-related 
risks (Vuppalapati et al., 2018)an estimated 640 million dollars is lost annually due to 
BRD. Respiratory diseases are responsible for 21.3% of mortality in calves and 50.4% 
of deaths in weaned heifers. Additionally, there are many negative long-Term conse-
quences for survivor calves including poor growth, reproductive performance, milk pro-
duction, and longevity and can become sources of infection for other calves, and can 
cause outbreaks after weaning in-group pens. BRD poses huge challenges and economic 
losses to the dairy industry. This research paper addresses the challenge by developing 
and deploying Convolutional neural networks (CNN. Many farms, collect real-time ani-
mal clinical information and this information could be combined with historical cohort 
and farm data, processed through predictive classification algorithms, and then used 
these prediction to provide real-time guidance and warning to farm managers and vet-
erinarians regarding probabilistic outcomes for individual animals (Amrine et al., 2014). 
Additionally, the ability to use real-time information to predict an individual animal’s 
response at the time of respiratory disease treatment would provide great advantages 
and offer the ability to targeted treatment programs for individual animals.

In the present paper, we present a conceptual machine-learning framework to improve 
the prediction of BRD-related outcome.  This paper introduces a framework for devel-
oping localised machine-learning suitable for online and streaming prediction of farm-
based BRD-related outcome.  

Potential predictive biomarkers (predictors)  
The early stages of the host response to infectious agents include several physiological 
changes known as the acute phase response. The acute phase response is comprised of 
reactions localized at the site if infection, as well as the initiation of systemic respons-
es, which include a rapid increase in the serum concentration of some proteins and 
other blood components, which can be used as physiological biomarkers for BRD out-
comes (Table 1). In addition to the physiological biomarkers, which can be measured in 
the serum, other potential biomarkers based on the behavioural bio-responses of the 
infected animals can be used to predict the BRD outcome and severity as well. The be-
havioural predictive biomarkers are measured using precision livestock farming (PLF) 
technologies including wearable sensors cameras and microphones (Table 1). Both bi-
omarkers can be used in combination or individually as predictors that can be utilized 
in predictive models for BRD-related outcomes and severity.
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Table 1: Potential predictor for Bovine Respiratory Diseases (BRD) outcome using serum and 
behavioural biomarkers

Potential predictor Disease outcome Accuracy

ph
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l 
bi

om
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rs

Eosinophils, Neutrophils, Lymphocytes, 
Monocytes, Basophils, RBC*, WBC**(JT et al., 
2013) and Neurophils/lymphocytes ratio (JT 
et al., 2013)

BRD development 
within (≤42 days) 0.51 – 0.67 AUC

WBC and  Neurophils/lymphocytes ratio 
(Schaefer et al., 2007)

BRD development 
within (4-6 days)

Sensitivity: 0.46 – 0.62
Specificity: 0.68 – 0.77

Lactate (J et al., 2000), Haptoglobin 
(Humblet et al., 2004; Wright et al., 1995)

Case Severity and 
treatment response

Sensitivity: 0.57 – 0.95
Specificity: 0.50 – 0.96

be
h
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io
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ph
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 b
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m
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rs

Feeding behaviour (Quimby et al., 2001; 
WC et al., 2019), animal-to-animal contact 
(DD et al., 2018), activity (G et al., 2018; MA 
et al., 2019) and infrared thermography 
(Schaefer et al., 2007)

BRD development 
2-9 days prior to 
clinical observation

Accuracy: ~0.87
Sensitivity: 0.6 - 0.96

(s
u

b-
)c

lin
ic

al
 

si
gn

s

Ocular and nasal discharge, hear drop/
head tilt, hyperthermia (temperature), 
respiration rate and coughing (Amrine et 
al., 2013; Lago et al., 2006; McGuirk, 2008).

BRD development 
and severity Accuracy: 0.85 - 0.96

*RBC: red blood cells count, **WBC: white blood cells count

Streaming prediction algorithm
Predictive models, which aims to predict a current or future event, is an effective way 
to enhance the identification of cattle at-risk for new onset bovine respiratory disease 
(BRD) and other BRD-related outcomes, including mortality, treatment response, re-
lapse, and disease severity. 

As explained earlier, BRD is a multifactorial disease, and can be caused by a spectre of 
pathogens, often in combination.  Which makes any sort of ‘global model’ not suitable 
for predicting the BRD-related outcome under different conditions and different data, 
specially, in case of continuous streaming data. Hence, in such cases a real-time model 
adaptation is needed to deal with the time-varying, individual-based, and multifacto-
rial nature of the BRD. Furthermore, the stream of the generated farm and veterinarian 
data is continuously increasing in time, which requires streaming analytics to maintain 
the prediction performance. Most machine learning algorithms are basically global of-
fline algorithms. In other words, they are trained by all available training data (global) 
and then applied to new unseen data (validation) without adapting to newly measured 
information (offline). Therefore, streaming new data points cannot be considered in 
the training process unless the model is retrained or adapted to the new data points. 
Both options are expensive and therefore enough new data points are required for an 
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efficient update of the model. The other option is to continuously add new data points 
to the training set and to develop a model that is continuously updating (online) with 
a minimal computational cost. That requires to apply adequate and reliable machine 
learning algorithms. Unlike traditional machine learning models, adaptive machine 
learning models are capable to quickly adapt to new information and gain insight into 
how important that information is.

In this article, a ‘localised learning’ approaches of machine learning is proposed for 
adaptive streaming modelling. 

Localised learning 
Most of the well-known supervised machine learnings algorithms are based on induc-
tive inference, which leads to ‘global learning’. Global learning generates a generalised 
hypothesis (model) from specific examples (i.e., training data) to assign a value or a la-
bel to different data points. In this case, the local properties of the observed examples 
are prone to be compromised to obtain generalisation (A Y A Amer, 2016).  In other 
words, if the feature space is not providing the possibility to find a solution considering 
both local and global properties of the observations, then the model may tolerate mi-
nority data points as an error. Local algorithms can provide the advantages of adapting 
the model to the local properties.

Figure 1: Flowchart showing the proposed localised learning algorithm (kNN-LS-SVM) to predict the 
BRD-related outcome.

The prediction of BRD-related outcome can be considered as a classification machine 
learning problem whose input is the set of extracted features based on the physiolog-
ical, behavioural, and clinical data and the output is the BRD-related outcome. Several 
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machine learning techniques can be used for such problem. However, support vector 
machines (SVM’s) is one of the efficient classification techniques used in different sim-
ilar studies in health care and human applications. In this study, least squares support 
vector machine (LS-SVM) is proposed to be used for general models as it is same pow-
erful as standard SVM’s, but, it has less computational cost. Most, if not all, relevant 
studies of diseases prediction rely on global general models (e.g., Amrine et al., 2014; 
Babcock et al., 2013). However, global models are not that efficient for online classifica-
tion and streaming analytics applications in which a stream of new data is collected, 
from animals or farm via PLF technologies, especially when aiming at farm-based mod-
els. For example, Amrine et al., (2014), used different global classification models (e.g., 
Bayesian networks and decision trees) to predict the BRD-related outcomes. Amrine 
concluded that the accuracy of all the model varied by the dataset and ranged between 
63% in one dataset up to 95% in another. Hence, for the purpose of this paper, a localised 
version of LS-SVM, namely k-Nearest Neighbours (kNN)-LS-SVM (A Y A Amer, 2016) is 
suggested to be compatible with streaming farm data for online and streaming analyt-
ics. The suggested algorithm, as depicted in Figure 1, is successfully used in an earlier 
work (Youssef et al., 2019) to predict the thermal sensation of building occupants.

Support vector machines (SVM)
SVMs are originally presented as binary classifiers, that assign each data instance X ∈ ℝd 
to one of two classes described by a class label y ∈ {–1,1} based on the decision boundary 
that maximises the margin 2/‖w‖2 between the two classes. Generally, a feature map 
�:  ℝd  ⇒  ℝp is used to transform the geometric boundary between the two classes to 
a linear boundary L: wT�(x) + b = 0 in feature space, for some weight vector w ∈ ℝp�1 and 
b ∈ ℝ. The class of each instance can then be found by y = sign(wT�(x) + b), where sign 
refers to the sign function (Suykens et al., 2002).

The estimation of the boundary L is performed based on a set of training examples 
xi (1 ≤ i ≤ N)with corresponding class labels yi ∈ {–1,1}. An optimal boundary is found by 
maximizing the margin that is defined as the smallest distances between L and any of 
the training instances. In particular, one is interested in constants w and b that mini-
mize a loss-function:

 

and are subject to:

                                                                                                                       

The constant C denotes the penalty term that is used to penalize missclassification 
through the slack variables �i in the optimization process. 

The so-called kernel-trick avoids the explicit introduction of a feature map � and im-
plicitly allows to use feature spaces of infinite dimensionality. A commonly used kernel 
is given by the Gaussian kernel:
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where σ denotes the kernel bandwidth. Both σ and C can be optimized as hyper-param-
eters in a cross-validation experiment.

LS-SVMs are obtained by using a least-squares error loss function (Suykens et al., 2002):

 (1) 

such that 

                                                                                                                      

This optimization procedure introduces errors ei such that 1− ei is proportional to the 
signed distance of xi from the decision boundary and γ represents the regularization 
constant. In fact, the non-negative slack variable constraint is removed and the solu-
tion of the optimization problem can be obtained by a set of linear equations, reducing 
computational effort (Suykens et al., 2002).

The kNN-LS-SVM algorithm
While global SVMs consider the same weight for all training instances in the optimi-
zation process, local learning approaches allow that the training samples near a test 
point are more influential than others. Localised approaches of SVMs (A Y A Amer, 
2016) are based on weighting functions �(xs, xi) that express the similarity between the 
features vectors of the ith data point xi and the test instance xs. For an LS-SVM, this leads 
to the following cost function:

 (2)

such that 

For kNN-LS-SVM a binary valued similarity criterion: 

 (3)

where rs is the kth smallest distance among {‖�(xs) – �(xi)‖; 1 ≤ j ≤ N}. This formulation 
leads to the hybrid kNN-LS-SVM method (A Y A Amer, 2016). In practice, implementing 
the hybrid classifier of kNN-LS-SVM, as shown in Figure 1, starts with receiving an un-
labelled new test point xs and finding the nearest k points from the training set in the 
feature space. Based on the nearest k points, an LS-SVM model is trained only with the 
new subset. Hence, for each test point a dedicated model is trained. The advantage of 
this localised approach is that it can enhance the classification performance in case of 
class imbalance, in addition to the computational and temporal efficiency especially 
for online modelling and streaming analytics. For more details about localized learning 
the reference (A Y A Amer, 2016) include a detailed explanation of the algorithms. The 
choice of LS-SVM to be localised instead of the SVM because of it computational ad-
vantage of solving a set of linear equations instead of solving a quadratic programming 
problem of standard SVM. As shown in Figure 1 (for more information see Amer, 2016), 
the kNN-LS-SVM algorithm for online prediction of BRD-related outcome is as follows:

min
w,b; ξ

 
1
2 𝐰𝐰𝐰𝐰𝖳𝖳𝖳𝖳𝐰𝐰𝐰𝐰 +  C�𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

 i=1

  , 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  ,𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  � = exp�
||𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  ||2

2𝜎𝜎𝜎𝜎2 �, 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2  ,

𝑁𝑁𝑁𝑁

 i=1

  

 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 ,𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2 ,

𝑁𝑁𝑁𝑁

 i=1

  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)  +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, . . . ,𝑁𝑁𝑁𝑁. 
 

𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  �1     if     ||φ(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠) −  φ(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ||2  ≤  𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠
0                           otherwise              

  

 

min
w,b; ξ

 
1
2 𝐰𝐰𝐰𝐰𝖳𝖳𝖳𝖳𝐰𝐰𝐰𝐰 +  C�𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

 i=1

  , 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  ,𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  � = exp�
||𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  ||2

2𝜎𝜎𝜎𝜎2 �, 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2

 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2  ,
𝑁𝑁𝑁𝑁

 i=1

  

 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 ,𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2 ,

𝑁𝑁𝑁𝑁

 i=1

  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)  +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, . . . ,𝑁𝑁𝑁𝑁. 
 

𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  �1     if     ||φ(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠) −  φ(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ||2  ≤  𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠
0                           otherwise              

  

 

min
w,b; ξ

 
1
2 𝐰𝐰𝐰𝐰𝖳𝖳𝖳𝖳𝐰𝐰𝐰𝐰 +  C�𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

 i=1

  , 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  ,𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  � = exp�
||𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  ||2

2𝜎𝜎𝜎𝜎2 �, 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2  ,

𝑁𝑁𝑁𝑁

 i=1

  

 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 ,𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2 ,

𝑁𝑁𝑁𝑁

 i=1

  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)  +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, . . . ,𝑁𝑁𝑁𝑁. 
 

𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  �1     if     ||φ(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠) −  φ(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ||2  ≤  𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠
0                           otherwise              

  

 

min
w,b; ξ

 
1
2 𝐰𝐰𝐰𝐰𝖳𝖳𝖳𝖳𝐰𝐰𝐰𝐰 +  C�𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

 i=1

  , 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  ,𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  � = exp�
||𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  ||2

2𝜎𝜎𝜎𝜎2 �, 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2  ,

𝑁𝑁𝑁𝑁

 i=1

  

 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 ,𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2 ,

𝑁𝑁𝑁𝑁

 i=1

  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)  +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, . . . ,𝑁𝑁𝑁𝑁. 
 

𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  �1     if     ||φ(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠) −  φ(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ||2  ≤  𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠
0                           otherwise              

  

 

min
w,b; ξ

 
1
2 𝐰𝐰𝐰𝐰𝖳𝖳𝖳𝖳𝐰𝐰𝐰𝐰 +  C�𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

 i=1

  , 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  ,𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  � = exp�
||𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗  ||2

2𝜎𝜎𝜎𝜎2 �, 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2  ,

𝑁𝑁𝑁𝑁

 i=1

  

 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, … ,𝑁𝑁𝑁𝑁. 

min
w,b; 𝑒𝑒𝑒𝑒

 
1
2 𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝐰𝐰𝐰𝐰 +  γ�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 ,𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖2 ,

𝑁𝑁𝑁𝑁

 i=1

  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(𝐰𝐰𝐰𝐰𝘛𝘛𝘛𝘛𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)  +  𝑏𝑏𝑏𝑏) ≥  1 −  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖  ≥  0, 𝑥𝑥𝑥𝑥 =  1, 2, . . . ,𝑁𝑁𝑁𝑁. 
 

𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  �1     if     ||φ(𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠) −  φ(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ||2  ≤  𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠
0                           otherwise              

  

 



938 Precision Livestock Farming ’22

1. Given a new data instance (from new animal), compute the distance to all train-
ing (old) data points and select the nearest k-neighbours, 

2. If all k-neighbours would have the same label, assign the same lable to the new 
data point,

3. Else, train a new LS-SVM model using ‘only’ the k nearest neighbours (data 
points),

4. Use the new model to label the new data instance. 

Conclusions
As mentioned earlier, the BRD is multifactorial disease, and the BRD-related progres-
sion outcome is farm-dependant if not individual-dependant as well. Hence, the local-
ised kNN-LS-SVM algorithm is proposed to provide an adaptive framework to predict 
the BRD-related outcome based on streaming farm and clinical data. The hybrid mode 
of kNN-LS-SVM algorithm is providing several advantages. In the local learning part, 
represented by the kNN, the nearest neighbour’s classifier suffers from the problem 
of high variance in the case of limited sampling. However, the use of a SVM classifier 
can overcome such problem as it often perform well compare to other classifiers in 
case of small number of data points (Vapnik, 1999). On the other hand, the complexity 
of global SVM grows with the size of the training data (e.g., in case of streaming farm 
data), which is computationally expensive due to the quadratic programming of the 
SVM algorithm. Hence, the local SVM is proposed to overcome the aforementioned 
problem by building small SVM models based on data in the neighbourhood around 
the test sample. This will provide a computational advantage in case of online learning 
and streaming analytics. 

The proposed kNN-LS-SVM is successfully used for prediction problems related to 
healthcare and wellbeing applications (e.g., Ahmed Y.A. Amer et al., 2019; Ahmed 
Youssef Ali Amer et al., 2020; Youssef et al., 2019)it is attempted to improve ICU mor-
tality prediction in field conditions with low frequently measured data (i.e., hourly to 
bi-hourly.  
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Abstract
Despite their increasing usage in dairy herds, the actual effect of monitoring systems 
on the production and animal health is largely unknown. In a retrospective study, the 
influence of a monitoring system on the milk production and certain health parame-
ters was investigated in four dairy herds.

Selected were four dairy farms (herd size 500 - 1500 animals), that had installed the 
Smartbow® System (Zoetis; Weibern, Österreich). Health and production data were 
available for the time before and after installation of the system.  24 parameters were 
used to compare the time periods. Next to the presence of the system, THI-indices and 
farm-specific factors were used for a multivariate analysis. Analysis was done for all 
data and specifically for the herds, respectively.

After sensor introduction there was a significant increase of milk production (+0,96 kg 
/ cow/ d; p <0,001), this effect was in individual analysis only found in two farms. All 
parameters related to reproduction improved, partly significantly, after introduction 
of the system. Again, this effect was not maintained in all herds when analysed sep-
arately. After introduction, somatic cell count dropped significantly (SCC -37.000/ml; 
p=<0,001), again, this was not significant on all farms in separate analysis. There was 
no change in new udder infections.

The introduction of the Sensor system led to an improvement in milk production, re-
production and partly udder health. The significance of the positive effect was different 
between farms evaluated.

Introduction
Digital technology is increasingly used on dairy farms: In a 2020 survey by the German 
business-association Bitkom, 8 out of 10 dairy farmers stated they were using digital 
technology of some kind on their farms (BITKOM 2020). “Digitalization” describes var-
ious processes and products, e.g., sensor technology, electronic data management or 
automatic milking systems. Often, the term “precision livestock farming” is used to 
collectively name this complex (Berckmanns 2008). PLF generally comprises of technol-
ogy collecting data (milking robots, sensors) and algorithms computing the data. The 
results of these algorithms are information, e.g., “alarms” serving as basis for decision 
making (Wathes et al. 2008).



 Precision Livestock Farming ’22 941

It appears that estrus-detection technology is the most widespread type of sensor tech-
nology used on dairy farms (Knight 2020) and the effectivity of various sensors to rec-
ognize cows in heat is well documented (e.g., Kempf 2016).

Identifying animals that are diseased or require special attention is another field of 
PLF. It was shown that ear-based accelerometers can monitor the rumination of cattle 
(Reiter et al. 2018) and reliably predict disease in dairy cows (Iwersen et al. 2018). 

It is, however, not certain whether the use of PLF technology has advantages for animal 
health and production on individual animal or herd level (Knight 2020). It was the aim 
of this study to gauge what effect the presence of a sensor system has on animal pro-
duction and animal health on dairy farms. 

Material and Methods

Farms enrolled
Four German dairy farms that had installed the Smartbow® sensor system ((Zoetis; 
Weibern, Österreich).; SB) where approached to collaborate in the study as a conveni-
ence sample. The farms had to have the system installed for at least four months and 
the herd management software HerdePLUS (dsp Agrosoft GmbH, Ketzin) installed to 
provide production and health data. 

The farms selected had an average herd size of approximately 1200 cows (500 – 1700) 
and an average milk production of 34,4 kg/d/cow at the time of the study. Health and 
production data were accessed from the farm herd management software and trans-
ferred to Microsoft Excel (Microsoft Corp., Redmond, USA) for further processing. 

Data collected and analysed
Health and production were assessed by using the following indicators: 

Milk production:
 — Average milk per cow per day (Mkg) based on monthly milk recording
 — Lactation peak yield (LP; kg) and day of lactation peak (LPD) as calculated by the 
herd management system

 — Milk production on day 206 (L206) for assessment of lactation persistency

Reproduction: 

The reproduction was assessed using the parameters computed by the herd manage-
ment system, including:

 — Insemination rate
 — Insemination Index (Inseminations per pregnancy)
 — Pregnancy Rate
 — Days to first insemination
 — Days open

Furthermore, the usage of semen portions was calculated by 
 — The Semen Portion Index, defined as (Number of portions used x 100 / Number of 
pregnancies) and
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 — Percentage of repeated inseminations defined as (Number of repeated insemination 
/ total inseminations)

Udder Health
Udder health was assessed by using the following parameters:

 — Average Somatic Cell Count (SCC) from monthly milk recording
 — Monthly New Infection Rate, calculated for thresholds SCC/ml: 100,000; 200,000; 
400,000

Metabolic Health
The records were assessed for the recorded events of Clinical Ketosis, Clinical Hypocal-
caemia and unspecific events of metabolic disease. 

Statistical analysis
For analysis, parameters were assessed for the months available on the herd manage-
ment-software per farm with and without SB. All analyses were done per farm and for 
the sample as a whole. The procedure ProcMEANS in SAS (SAS Institute, Cary, USA) was 
used to compute means, deviation and extremes, ANOVA was used for describing in-
teraction farm and presence of SB, taking farm, presence of SB, and level of Tempera-
ture-Humidity-Index (THI; blocked 1- 3: summer, autumn/spring; winter) as fixed effects:

Yijk=μ + Bi + Vj + Tk + BVij + eijk

With Y=observation; μ = Population mean; Bi = fixed farm effect (i = farm 1 – 4); Vj = fixed 
effect of variant (j = 1 with SB and 2 = without SB), Tk= fixed effect of season-dependant 
THI; BVijk = interaction of B and V; eijk = random residual error.

Significance was computed using the Scheffé-test to account for skewed distribution 
of values. It was possible to include into the analysis (with / without presence of SB): 
Farm 1: 11 / 18 months; Farm 2: 8 / 13 months; Farm 3: 18 / 18 months and Farm 4: 23 / 
32 months, respectively. A total of 60 months with SB and 81 without SB were analysed 
and compared as described. 

Results

Milk production

Table 1: Overview of differences in milk production parameters between Variant 1 (with SB) and V2 
(without SB). MKg: Average milk yield per cow and day in milk recording; LP: Lactation peak yield 
[kg/d]; LPD: Day of lactation peak; L206: Milk yield at day 206 of lactation [kg/d]

Mkg [kg] LP[kg] LPD [d] L206 [kg]

Variant LSM SE LSM SE LSM SE LSM SE

1 35,51a 0,16 44,01a 0,33 52,40a 1,79 34,64a 0,31

2 34,55b 0,13 43,81a 0,27 56,23a 1,48 33,98b 0,22
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Comparing the variants with or without SB, analysis of production parameters showed 
significant higher production in months with SB compared to months without: Produc-
tion without with SB (1)  LSM = 35,51; SB (2) LSM = 34,55; p <0,0001. Production at day 206 
was in average 0.66 kg higher with SB present. Other results were not significant (Table 1).

Analysis within farms revealed a higher milk production with SB on 2 out of 4 farms 
(Farm 1: +1,75kg p=0,0391; Farm 3: +1,98kg, p=0,0016). 

Reproduction 
Insemination Rate. Calculated between variants, no significant difference was found 
in insemination rate. Calculated per farm, the results were inconclusive with only one 
farm (Farm 4) showing a significant higher insemination rate with the presence of SB. 

Insemination Index. Between variants, the Insemination Index decreased from 3,15 to 
2,8 using SB (p= <0,0001). Computed per farm, however, only one farm (Farm 3) showed 
a statistically significant decrease with other farms only showing a tendency towards 
less inseminations necessary.

Pregnancy Rate. Between variants, the PR increased significantly when SB was present 
(21,96% vs 18,64%; p= <0,0001). Again, only Farm 3 maintained a significant difference 
when calculation was done with farm as point of interest, with other farms showing 
a positive, however insignificant increase. 

Days to first insemination and Days Open. Neither in variant nor farm calculation was there 
a statistically significant difference when SB was present. Days Open, however, decreased 
significantly over all farms with SB present (120,66 d vs. 111,86d; p= <0,0001). The tendency 
was shown on all farms analysed, however only statistically significant on Farm 3. 

Semen Portion Index. The portions of semen used decreased with presence of SB in the 
herd (2,91 vs 3,39; p= <0,0001). Again, only on farm 3 the difference remained significant 
if calculated per farm. 

Percentage of repeated inseminations. The proportion of repeated insemination de-
creased with 1,24% (5,81% vs. 4,57%, p= 0.0064), the difference per farm only being sta-
tistically significant on farm 3. 

Udder Health
Somatic Cell Count. The SCC as found in milk recording decreased over all farms with 
the presence of SB (241.920 cells/ml vs. 204.820 cells / ml; p= <0,0001). Calculated per 
farm, only one farm (Farm 4) showed a statistically significant decrease (245.060 cell/ml 
vs. 196.960 cells/ml; p= 0,0211). 

New Infection Rate. No statistically significant effect of the presence of SB was found 
on new infection rates, independent of SCC threshold for new infections. 

Metabolic Health
Although a change of reported incidence of various metabolic conditions could be de-
tected once SB was present on a dairy farm, the farm records could not point to an 
increase, decrease or any significant change at all. 
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Discussion 
Very few studies report the changes a dairy herd experiences after introduction of 
a sensor system. The system Smartbow® is not only functioning as an oestrus detec-
tion system but also claims to be able to detect differences in animal health due to 
changes in the rumination pattern of individual animals. It has been shown to achieve 
that in dairy cows (e.g., Gusterer et al. 2020). 

The main difficulty for studies on herd level is to have comparable data before and after 
the introduction of a sensor system. In this study, we were able to include herds with 
a significant herd size and months with and without the SB system, covered by the 
same herd management system, thus allowing for comparison of data in animal health 
and production. Although it has to be conceded that the number of farms involved was 
low and farm-specific effects partly not very clear, the introduction of the sensor sys-
tem led to remarkable changes in health and production. 

The overall increase of milk yield may partly be attributed to the genetic progress, the 
model used does however point to the presence of the sensor system as a main ex-
planatory variable. Rutten et al. (2014) pointed to possible pathways in which a sen-
sor system could contribute to increased milk yield: An improved reproductive perfor-
mance could lead to shorter calving intervals, increasing milk production by a lower 
average lactation stage of the herd. Indeed, the presence of SB in this study improved 
reproductive performance and shortened the Days Open on the farms involved. Unlike 
reported by Rutten et al. (2014), however, the system apparently did not only increase 
the efficiency of oestrus detection, but also improved performance of artificial insemi-
nation. Clearly, less inseminations and semen portions were necessary to achieve one 
pregnancy. In other words, not only the likelihood for insemination increased, so did 
the likelihood to conceive. This points to an apparently very efficient recognition of the 
oestrus cycle and identification of the optimal insemination time. 

The Somatic Cell Count obtained from monthly milk recording served as main proxy 
indicator for udder health. The decrease of SCC in the herds after introduction of SB is 
significant but should probably not overestimated. The change of approximately 30.000 
cells / ml is easily achieved in large herds by very few individual animals with higher 
or lower cell count. Moreover, udder health is a multifactorial issue, depending on a lot 
of external factors. It could be speculated that the improved health monitoring leads 
to earlier recognition of udder health problems, decreasing the probability of a cow to 
become chronically ill. However, the unchanged new infection rate, computed for dif-
ferent thresholds, remained largely unchanged. 

The inconclusive results of analysis of metabolic health point to largely subjective di-
agnosis and documentation in this disease complex. While farmers generally reported 
a good recognition of disease by SB, no significant change in documented disease inci-
dence could be found. This points to the limitations of a retrospective study design like 
in this study, where objective criteria for diagnosis are not available. To test the effect, 
prospective studies on large farms are necessary, involving independent staff to make 
diagnoses. 
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Conclusions
The introduction of a sensor system monitoring activity and rumination was correlated 
with a marked increase of milk production in the four large dairy farms analysed. Repro-
duction did benefit not only in oestrus detection but apparently also from a more precise 
identification of the time of insemination. While udder health generally improved after 
introduction, this effect should be valued with care. A retrospective study design did not 
allow for analysis of incidence of metabolic disease in the farms involved. 
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Abstract 
Accurate and automatic estimates of slaughter pig live weights are valuable to farmers. 
We present a two-step deep learning model for estimating the distribution of pig live 
weights at pen level, based on images of the whole pen. We use a pre-trained convolu-
tional neural network combined with a secondary model with regression outputs. The 
convolutional neural network extracts feature vectors from the input images. These, in 
combination with relevant metadata, are then used as inputs for the secondary net-
work, which estimates the live weight distribution per image as its output. In this pre-
liminary study, we systematically compare combinations of network architectures and 
training strategies to identify the optimal set of strategies. Application on a final test 
set yielded R2 values ranging from 0.90 to 0.94.

Key words: Automatic weighing, deep learning, live weight, slaughter pigs

Introduction
When pigs are slaughtered, the price per kg depends on what weight range the carcass 
falls into. Pigs that are either too small or too heavy will yield a smaller profit for the 
farmer, compared to pigs in the optimal range. Thus, accurate monitoring of the pigs’ 
live weights has the potential to be of significant economic importance for pig farmers. 
Manual weighing of pigs is one of the most time-consuming management tasks in the 
finisher unit (Kristensen et al., 2012), so being able to infer the live weight of the pigs 
indirectly via e.g. video images would be preferable. Some commercial systems for vid-
eo-based weight monitoring already exist (e.g. SKOV, 2021). These systems are placed 
above the feeding station in selected pens with dry-fed pigs, and make a weight esti-
mation whenever a single pig is eating at the trough. These single weight estimations 
are then aggregated to averages for the whole pen. This naive method of aggregating to 
pen-level mean weight is likely to be influenced by biased image samples, as larger and 
more dominant pigs will tend to feed more frequently at the expense of smaller pigs 
in the same pen (Schrøder-Petersen and Simonsen, 2001). We present a novel two-step 
method to estimate the pen-level live weight distribution based on images of the whole 
pen captured from above. The two steps combine the use of a convolutional neural net-
work (CNN) and a fully connected artificial neural network (FC-ANN). Our aims are to 
(1) introduce this novel method, (2) identify optimal strategies for data pre-processing 
and model architecture for our data set, (3) assess whether the inclusion of the time 
stamps of the input images as an input for the secondary FC-ANN affects the accuracy 
of the predicted live weight distributions, and (4) determine if the model can be easily 
calibrated to work with data from a previously unseen pen. 
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Materials and Methods
All data pre-processing and model training was done in R version 3.5 (R Core Team, 2017). 

Data
The data used in this study were collected from four grower/finisher pig pens in a com-
mercial Danish pig farm with 20 pigs per pen at the time of insertion. More details 
about the farm can be found in a previous publication (Jensen et al., 2017). Video data 
were continously recorded from above each pen, and the video data from all cameras 
were stored together in a single MSH file per growth period. Still frames were extracted 
from the relevant cameras, using a specialized program called MSH Image Extractor. 
The settings to the program were chosen so that the extracted images would be at least 
600 seconds apart in the video. 

For three of the pens (Pens 1, 2, & 3), data for this study were only available for one 
growth period, due to technical issues. For Pen 4, data were available for two growth 
periods.

Individual pigs were weighed manually once per week from the day of insertion until the 
first pigs per pen were sold to slaughter after 8-10 weeks. From these individual weight 
measurements, the mean and standard deviation of the weights per pen per weighing 
day (henceforth “Mean” and “SD”, respectively) were calculated. For each growth period 
of each pen, two linear functions were then defined to describe the Mean and SD, re-
spectively, given the number of days since insertion. These pen-specific linear functions 
were then used to interpolate the Mean and SD values for all days in the growth periods, 
where manual weighings were not performed. These interpolated values were used in 
the later training of the secondary FC-ANNs, as described further below.

The timestamps for the individual images were first transformed into a decimal value by 
keeping the hour as is and dividing the minutes by 60, e.g. the 12:15 would be transformed 
to 12.25. The decimal timestamp would then be sine-cosine-transformed as shown in eq. 1:

 (1)

, where Time is the decimal timestamp and w = (2�)/24. 

Image data pre-processing
Each image in the extracted image data set was transformed into a latent feature rep-
resentation with a length of 4096 via the pre-trained VGG-16 model (Simonyan and 
Zisserman, 2015)potent and selective peptidomimetic inhibitors have been developed; 
these compounds share with the peptide substrate a free thiol and a C-terminal car-
boxylate. We have used a synthetic tetrapeptide combinatorial library to screen for 
new leads devoid of these features: the peptides were C-terminally amidated, and no 
free thiol was included in the combinatorial building blocks. To compensate for this 
negative bias, an expanded set of 68 amino acids was used, including both L and D as 
well as many non-coded residues. Sixteen individual tetrapeptides derived from the 
consensus were synthesized and tested; all were active, showing IC50 values ranging 
from low micromolar to low nanomolar. The most active peptide, D-tryptophan-D-me-
thionine-D-4-chlorophenylalanine-L-gamma- carboxyglutamic acid (Ki = 2 nM, which 

sin(𝜔𝜔𝜔𝜔 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + cos(𝜔𝜔𝜔𝜔 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
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was truncated after the second-to-last fully connected layer before the final output 
layer of VGG-16. The actual or linearly interpolated target values (Mean and SD) and 
the sine-cosine-transformed timestamp for each image were subsequently added to its 
corresponding latent feature vector. 

Optimizing the secondary FC-ANN
Three of the four pens (Pens 1, 2, & 3) were used to estimate the effect of different 
strategies for data pre-processing and FC-ANN architecture, and to identify the optimal 
combination of strategies. We used per-pen cross-validation, where each of the three 
pens were iteratively used as the validation set, while the remaining two were used as 
the training set. 

In each iteration of the per-pen cross-validation, all latent features which had a variance 
of 0 in the training set were removed from both the training set and the validation set. 

The compared strategies where as follows:
1. Adjustment of the extracted latent features. We compared no adjustment to ad-

justments using the Sigmoid and the hyperbolic tangent (tanh) functions. 
2. The number of principle components of the latent features, NPC, which were 

used as input for the FC-ANN. In each iteration of the cross-validation, principle 
component analysis (PCA) was performed on the training set, and the resulting 
PCA transformation model was applied to both the training and validation set. 
The first NPC principle components were used as inputs for the FC-ANN, where 
NPC = 2j and j ∈ {3, 4, 5, 6, 7, 8, 9, 10 11}. As a baseline, we included the case where 
PCA was not applied and all latent features (with a variance greater than 0) were 
used as inputs. 

3. The inclusion the sine-cosine-transformed time stamp of the image in the input 
vector, compared to not including the time stamp in the input vector. 

4. The number of hidden layers, Nhidden ∈ {1, 2, 3}, used in the FC-ANN. 
The FC-ANN was trained using the MxNet library for R (Chen et al., 2015) with a batch 
size of 128. The number of hidden nodes was defined as the average of the number of 
inputs and the number of outputs. The hidden nodes were evenly distributed between 
all hidden layers. The evaluation metric was the root mean squared relative error (RMS-
RE). A dynamic learning rate was used with an initial learning rate of 0.001. The FC-ANN 
was trained on the training set for 10 epochs at a time, after which the trained FC-ANN 
would be applied to the validation set. If the RMSRE on the validation set was reduced 
compared to the previous lowest value, the training would continue for 10 epochs with 
the same learning rate. If the RMSE on the validation set was not reduced, the learning 
rate was reduced by a factor of 10, and the training would resume for another 10 ep-
ochs. When the RMSRE on the validation set had not been reduced after two consecu-
tive sets of 10 epochs, the training was terminated. The best trained model was applied 
to the validation set, and the predicted values were aggregated to daily averages. The 
coefficient of determination (R2) between the observed Mean & SD and the aggregated 
predicted Mean & SD were saved for subsequent analysis.

After the per-pen cross-validation, a linear mixed-effects model was defined to esti-
mate the effect of the different strategies on the R2 values between the observed and 
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per-day aggregated predicted values. The pen-ID was included as a random effect. An 
ANOVA test was used to identify the variables which had a significant effect on the R2 
between the observed and predicted values for Mean and SD. 

Final test
The best set of strategies, identified from the per-pen cross-validation, was used to 
train a final FC-ANN using the Pens 1, 2, & 3 as the training set. The number of training 
epochs was defined as the average number of epochs used to reach the best perfor-
mance in each iteration of the cross-validation with these strategies. The trained FC-
ANN was applied to data from the two growth periods of Pen 4. The first growth period 
was used to estimate the linear relationship between the observed and predicted val-
ues for Mean and SD in Pen 4. This linear relationship was used to adjust the predicted 
values for the second growth period. 

Results and Discussion

Image data
Figure 1 shows the same group of pigs at two different times in the growth period, i.e. 
when the pigs’ mean weight is 66 kg and 108 kg, respectively. As is seen, the effects of the 
live weight on the appearance of the pigs in the images are readily apparent, even to the 
untrained eye. It is thus sensible to assume that a neural network would be able to learn 
to infer information about the live weight from the pigs’ apparent sizes in the images. 

Figure 2 shows the same group of pigs at different times during one day. As is seen, the 
appearance of the pigs within the pen and the lighting conditions vary considerably over 
the course of a day. The appearance of the pigs within the image depends on their be-
haviour, i.e. sleeping, exploring, and eating, which in turn depends directly on the time of 
day. It thus seem reasonable to assume that including information of the time of day as 
input for the secondary FC-ANN would have the potential to improve the performance. 

Figure 1: The same pen at two different times. A: mean weight = 66 kg, standard deviation = 3.5 kg. 
B: mean weight = 108 kg, standard deviation = 7.0 kg.

A B



952 Precision Livestock Farming ’22

Figure 2: The same pen at three different times. Examples of the differing behaviors and lighting 
conditions given the time of the day. A: 06:00, B: 09:00. C: 10:47.

Optimization results
Table 1 shows the results of the ANOVA analysis on the effect of the various strategies 
on the R2 values between the observed and predicted values of Mean and SD. The num-
ber of principle components and the number of hidden layers are statistically signifi-
cant at the 95 % confidence level for predictions of both Mean and SD. The inclusion of 
time as an input variable is significant at the 90 % confidence level for the prediction of 
Mean, but not for the prediction of the SD. The method for adjusting the latent features 
was not significant in either case.

Table 1: Results of ANOVA analysis on the effect of the various components on the R2 values between 
the observed and predicted values of Mean and SD.

Output Variable Sum of squares Mean sum  
of squares DF p-value

Mean

Adjustment of features 0.04 0.022 2 0.59

No. of hidden layers 0.46 0.231 2 0.004

Inclusion of time 0.12 0.124 1 0.08

No. of principle components 47.58 4.758 10 < 2.2∙10-16

SD

Adjustment of features 0.05 0.023 2 0.59

No. of hidden layers 0.49 0.242 2 0.005

Inclusion of time 0.12 0.116 1 0.11

No. of principle components 46.39 4.639 10 < 2.2∙10-16

Figure 3 shows the effect of the number of principle components on the R2 values, com-
pared to using all latent features without PCA. For both Mean and SD, the best performance 
is achieved when using 64 principle components, resulting in R2 values which are 18 and 
17 percentage point better, respectively, compared to when PCA is not used. Using 32, 64, 
and 128 principle components is significantly better than not using PCA, while using 256+ 
is significantly worse. Using 8 and 16 is not significantly different from not using PCA.

B CA
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Figure 3: The estimated effect of the number of principle components on R2 between predicted and 
observed values of Mean (A) and SD (B). Not using PCA was the baseline for all comparisons.  

Table 2 shows the post-hoc analysis of the effects of the number of hidden layers on 
the R2 values between the observed and predicted values for Mean and SD. All p-val-
ues are adjusted using the Holm-Bonferoni method. In both cases, the best estimated 
performance was seen when using a network with just one hidden layer. The differ-
ence between 1 and 2 hidden layers is not statistically significant, but the differences 
between 1 and 3 layers and 2 and 3 layers are statistically significant at the 95 % confi-
dence limit in both cases. 

Table 2: Post-hoc analysis of the effects of the number of hidden layers on the R2 values between the 
observed and predicted values for Mean and SD of pen-level live weight.

Comparison
Mean SD

Estimate Std. Error p-value Estimate Std. Error p-value

2-1 -0.0002 0.02 0.99 -0.007 0.02 0.76

3-1 -0.059 0.02 0.01 -0.064 0.02 0.01

3-2 -0.059 0.02 0.01 -0.057 0.02 0.01

The overall best R2 value for the per-pen cross-validation of the three training pens was 
achieved when using 1 hidden layer, Sigmoid adjustment of the latent feature vectors, 
the first 64 principle components of the adjusted features, and when including the 
sine-cosine-transformed time of day as an input variable. With these settings, the R2 
values ranged from 0.91 to 0.97 for Mean and from 0.90 to 0.93 for SD in the per-pen 
cross-validation for Pens 1, 2 and 3. With these settings, the average number of epochs 
used to optimize the three models of the per-pen-cross-validation models was 210. 

Final test
Figure 4 shows the results of applying the final ANN to the final test pen, i.e. Pen 4. 
The equation describing the linear relationship between observed and predicted val-
ues from the first growth period is shown in the plots in the top row. As seen in the 
bottom row of Figure 4, this equation worked very well for adjusting the predicted val-
ues for the second batch. This shows that the pre-trained ANN can be directly applied 
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to a previously unseen pen without the need for fine-tuning the ANN itself, which is 
the approach often used in other studies, e.g. (Bourgin et al., 2019; Chebet et al., 2019; 
Jensen and Pedersen, 2021)which increases labour costs for the farmer, worsens the hy-
giene and welfare of the pigs, and has negative environmental consequences. Previous 
research suggests that monitoring the positioning behaviour of grower/finisher pigs 
within their pen has the potential to be used in early warning systems that can alert 
the farmer to an impending pen fouling event 1–3 days in advance. For such a warning 
system to be feasible, monitoring of the pigs’ positioning behaviour must be automat-
ed. To this end, we present a novel yet relatively simple method, namely a convolutional 

Figure 4: Top row: Observed and predicted values for live weight Mean and SD for the first growth 
period of the final test set, based on interpolated and actual weight measurements. Middle row: 
Observed and predicted values for the second growth period of the final test set, based only on actual 
weight measurements. Bottom row: Observed and predicted values for the second growth period, 
after adjusting the predictions with the linear equation found for the first batch. Solid diagonal 
lines represent the hypothetical perfect predictions. Dashed lines represent the linear relationship 
between predicted and observed values. 
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neural network (CNN. This is a strong advantage for use in practice, as calibration by 
adjustment with a linear equation is relatively easy, whereas fine-tuning a pre-trained 
ANN to work in a new environment requires highly specialized skills within the field of 
machine learning. Notice that Pen 4 came from the same herd as Pens 1, 2, & 3. Further 
studies should determine if this method of easy calibration will also work when the 
pre-trained ANN is applied to pens from a different herd. 

The linear equation defined from the first batch of Pen 4 was based on linearly inter-
polated values between weekly weight measurements of individual pigs. Weighing all 
pigs every week for a full growth period would require a massive investment of time 
and resources in practice. Therefore, further studies should determine the minimum 
number of manual weighings needed for the interpolated values to be useful for the 
type of calibration by linear equation shown in this study. 

Conclusion
We demonstrate a novel method for estimating the distribution of slaughter pig live 
weights at pen level based on images from above the whole pen. A pre-trained convo-
lutional neural network was used to extract latent features from the images. A fully 
connected neural network was then trained to take the latent feature vectors and rele-
vant metadata as input, and estimate the mean and standard deviation of the weights 
at pen level as its output. The best performance of the secondary network was achieved 
when the feature vector was transformed with the Sigmoid function (non-significant), 
when the time stamp of the image was included as an input (borderline significant), 
when using one hidden layer (significant), and when only the first 64 principle com-
ponents of the feature vectors were used as input (highly significant). Application on 
a final test set resulted in R2 values ranging from 0.90 to 0.94. After training, the out-
puts of the secondary network can easily be calibrated for use on a pen which was not 
included in the training set. This is done by adjusting the predicted values with linear 
equations derived from one batch of data from the otherwise unseen pen. 
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Abstract
Various odour reduction systems have been introduced to reduce the odour emitted 
from the pig house which include bio-curtain, bio-filter, scrubber, windbreak wall, and 
so on. Several quantitative analysis studies on the odour reduction efficiency were also 
conducted. However, studies that focused on evaluating only single odorous gases were 
mainly conducted and few experiments were done to measure complex odours. Since 
most complaints arise from complex odours that are felt by local residents, it is neces-
sary to measure and manage complex odours. Therefore, the efficiency of bio-curtains 
and scrubber systems in reducing complex odours and single gases (NH3, H2S) were 
analysed through field experiments. When using bio-curtain, complex odours could be 
reduced by 58.1% on average. In the case of NH3, 76.0% was reduced, H2S was reduced 
(79.9%). On the other hand, the scrubber system showed an average of 58.9% reduction 
in complex odour and showed a better effect than the bio-curtain. It showed a reduc-
tion effect of average 50.0% on the NH3, while H2S had an average reduction effect of 
32.0%. In the case of the scrubber systems, the larger the empty bed residence time 
(EBRT), the better the effect, and it was determined that the circulation water condition 
(pH, water temperature) would be important. In the single gas reduction effect, the pH 
of circulating water made a big difference in the reduction efficiency of H2S and NH3.

Keywords: odour, pig house, reduction systems, reduction efficiency

Introduction
The total production of the domestic livestock industry was 1.064 billion US dollars, ac-
counting for approximately 40% of the total agricultural sector. As meat consumption 
increases, the size of rearing is increasing to sustain the productivity and price compet-
itiveness of livestock products, and livestock facilities are becoming larger. In particular, 
the pig industry (47.9%), which accounts for the highest proportion of production for the 
livestock industry, causes a lot of odour complaints. Of the total odour complaints, about 
35% of the livestock industry-related odour complaints were reported (Korea Environ-
ment Corporation, 2015). Of these, 46 percent occurred in pig farming facilities. Korean 
government is actively responding to complaints about livestock odour by improving 
the ventilation method of conventional livestock facilities, modernizing aged facilities, 
and distributing odour reduction facilities. Various odour reduction systems have been 
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introduced to reduce the odour emitted from the pig house which include bio-curtain, 
bio-filter, scrubber, windbreak wall, and so on. Several quantitative analysis studies on 
the odour reduction efficiency were also conducted. However, studies that focused on 
evaluating only single odorous gases were mainly conducted and few experiments were 
done to measure complex odours. Since most complaints arise from complex odours 
that are felt by local residents, it is necessary to measure and manage complex odours. 
Therefore, the efficiency of bio-curtains and scrubber systems in reducing complex 
odours and single gases (NH3, H2S) were analysed through field experiments. The corre-
lation between complex odours and single gas was analysed using field-measured data.

Material and methods

Odour reduction systems
As for the experimental odour reduction systems (Figure 1), fogging, bio-curtain, and 
scrubber systems, which are widely used in domestic pig houses, were selected. Field 
experiments for the analysis of odour reduction effects were repeatedly conducted 
from June 29, 2021. The fogging system was installed and operated inside the pig house 
of Farm A for the purpose of reducing odour concentration. The bio-curtain system was 
installed and operated for the purpose of reducing odour exhausted from Farms B, C, 
and D. The size of the bio-curtain installed in each farm varies according to the size 
of the pig house to which the sidewall exhaust fan is applied. However, in all farms, 
washing water was sprayed inside the bio-curtain through the on/off control method. 
The odour reduction effect on the scrubber system was analysed for scrubber systems 
installed on farms D, E, and F. Packing materials were applied to improve the contact 
of washing water with odour compound, the water was continuously sprayed in the 
scrubber system to reduce odour.

Figure 1: Odour reduction systems (a) fogging system, (b) bio-curtain, and (c) scrubber

Measurement of odour sources
The odour inside the pig house was measured at the outlet of the pig house, and the 
odour outside was measured after passing through the odour reduction system (Fig-
ure 2). The installation height of measurement devices was located at 1.5 m from the 
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ground surface. A portable air collection device (Odotech, Korea) and Multi-Rae Lite 
(Honeywell, USA) were used to measure the inside and outside livestock odour of the 
experimental pig houses.

Figure 2: Measurement of livestock odor concentration for scrubber system (Preparation of 
experimental device)

Quantification of odour compound
Livestock odour samples collected from field experiments were evaluated according to 
the ES09301 (dynamic olfactometry) to quantify odour concentration. In order to make 
a diluted sample for the dynamic olfactometry of livestock odour, an odourless air 
sample was made using the odourless air generator shown in Figure 3(a). This device 
first removes moisture from the air using silica gel and removes odour components 
from the air using activated carbon. The odour samples were provided to five panels 
according to the dilution rates (10, 30, 100, and 300 times) (Figure 3 (b), (c)). Before the 
evaluation of the next step, all equipment such as glass syringes was washed using 99% 
nitrogen gas, and the laboratory was ventilated to maintain a clean state. In addition, 
after one evaluation experiment, the panels took sufficient rest prior to performing 
the succeeding evaluation. The livestock odour concentration was calculated by the 
average geometrical mean and excluding the maximum and minimum values from the 
experimental data measured from each panel. 

Figure 3: Process of preparing odor samples for quantification evaluation of livestock odor 
(a) manufacturing odorless air, (b) preparing a sample bag, and (c) diluting the air in the sample bag
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Results and Discussion

Fogging system
The complex odour concentration for the air sample collected just before water-fog-
ging was 100 OU m-3. The concentrations for NH3, and H2S were measured at 11.6 ppm, 
and 0.12 ppm, respectively. The odour concentration after spraying water should be no 
different from the first evaluation of 100 OU m-3(Table 1). In addition, NH3 was 10.1 ppm, 
and H2S was 0.12 ppm. The reduction effect on complex odour was 0%, which did not 
show a reduction effect, and H2S was the same. However, in NH3, the odour reduction 
effects were 13.1%. In particular, since NH3 concentration is a water-soluble gas, it was 
thought that NH3 concentration was reduced due to water-fogging.

Table 1: Odour concentration and reduction rate inside the pig house before and after operating 
a fogging system

Fogging system Complex odour
(OU m-3)

NH3
(ppm)

H2S
 (ppm)

Before 100 11.6 0.12

After 100 10.1 0.12

Reduction rate (%) 0 13.1 0

Bio-curtain system

Figure 4: Analysis of odour reduction effect on bio-curtain system

Figure 4 shows the odour reduction effect of the bio-curtain system. The average reduc-
tion effect on complex odours was 58.1%, while NH3, and H2S were 76.0%, and 79.9%, 
respectively. In evaluating the odour reduction efficiency of bio-curtain, it was thought 
that the effect of bio-curtain could be sufficiently overestimated according to external 
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wind environment conditions. Therefore, in order to solve this problem, it was nec-
essary to design an experiment so as not to affect the external wind environment in 
measuring odour using an elbow-type duct. In general, the odour reduction effect on 
H2S was greater than that of NH3. The reason for this was that the pH of the washing 
water was about 7.8, which showed a positive effect on H2S reduction. In the case of 
NH3, when the washing water used has high PH (alkaline), the cleaning effect decreases. 
However, it was thought that the NH3 gas was dissolved by the washing water sprayed 
in the bio-curtain, resulting in a reduction effect on NH3.

Scrubber systems
The effects of scrubber systems were analysed (Figure 5). The average odour reduction 
effect of scrubbers on complex odours was 58.9%, NH3 was 50.0%, and H2S was 32.0%. 
However, in the case of odour compounds, there was a large variation in the field-meas-
ured value. It was thought that the effect on odour reduction was different depending 
on the type, design, and operation method of the scrubber (Melse & Mol, 2004). In ad-
dition, it was thought that there were differences depending on rearing facilities, EBRT 
of the scrubber, livestock size, feed, management of manure, storage, treatment, and 
climatic factors. The higher the nitrogen content, the more ammonia emission char-
acteristics are (Canh et al., 1997, 1998a, 1998b, 1998c). Since the high temperature and 
humidity environment in summer promotes the decomposition of organic nitrogen in 
manure, it was thought that climate factors affect odour reduction efficiency. There-
fore, NH3 concentrations in summer were slightly higher than in spring and autumn. In 
addition, the reason for the difference in odour concentration is the designed air tem-
perature of the pig house. According to a study by Cho et al. (2015), the concentration of 
odour was low at 5°C and high at 35°C (p<0.05).

Figure 5: Analysis of odor reduction effect on the scrubber systems.
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Conclusions
Odour reduction systems (fogging, bio-curtain, and scrubber systems), which are widely 
used in domestic pig houses, were analysed. The fogging system showed no significant 
reduction in odour concentration (complex odour and H2S) before and after fogging, but 
NH3 decreased by 13.1%. This reduction could possibly be the effect of sprayed washing 
water which reduced its concentration as the ammonia is known as a water-soluble 
gas. In the case of bio-curtain, it showed an average of 58.1% reduction in complex 
odour, and more than 76% reduction in single gas. The effect of the bio-curtain was 
overestimated because there were farms that opened the lower part of the bio-curtain 
which caused the fan load. The average odour reduction effect of scrubbers on complex 
odours was 58.9%, NH3 was 50.0%, and H2S was 32.0%. However, in the case of odour 
compounds, there was a large variation in the field-measured value. Odour reduction 
was different depending on the type, design, and operation method of the scrubber. 
Since the difference in the size of the scrubbers installed on each farm causes a dif-
ference in EBRT, the odour reduction effect varies greatly. In addition, there were dif-
ferences depending on rearing facilities, livestock size, feed, management of manure, 
storage, treatment, and climatic factors. 
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Abstract 
This paper reports on a case study that was undertaken by using/analysing data col-
lected on farms, not strictly for scientific, but mainly for commercial purposes. Growth 
rates were measured over time in three pens on a commercial farms in Australia. In 
addition, a number of production related parameters, such as air temperature, relative 
humidity, the concentrations of carbon dioxide and ammonia, and ventilation rates 
were also measured in the same buildings. The information collected has been used to 
explain the significant differences observed in the growth performance of pigs housed 
on the same farm but in different pens. The growth rate and environmental variables 
associated with ‘fast’ and ‘slow’ growing groups were compared during the trials being 
reported. Improved thermal control, provision of optimal air quality, and maintenance 
of health status of animals are all important factors that can improve productivity. The 
differences observed in production efficiency could be used to alert farm managers of 
periods of inefficiencies that might go undetected under normal management condi-
tions. In this way, they can action appropriate management interventions to rectify 
issues related to under performance. Thus, it was concluded that real time monitoring 
and better controlling production conditions in piggery buildings could result in im-
proved profitability of commercial livestock farms.  

Key words: Sensors, Precision Livestock Farming, continuous monitoring 

Introduction 
Managers of livestock farms are constantly searching for new ways of improving prof-
itability via the utilisation of new technologies and management procedures (Banhazi 
and Harmes, 2018; Hartung et al., 2017). The implementation of Precision Livestock 
Farming (PLF) technologies on farms is one such production enhancing method. The 
so-called PLF technologies are essentially enabling livestock managers to (1) collect 
information about key aspects of livestock production, (2) automatically analyse the 
collected information and (3) implement automated or semi-automated management 
responses based on the analysis of the collected information. PLF Agritech Pty Ltd., an 
Australian start-up company, has developed a number of technologies over the years 
that could potentially decrease the production related costs of pig farms by up to 30% 
(Black et al., 2013). In this article, the performance of pigs monitored by the Weight-De-
tectTM and the Enviro-DetectTM devices will be discussed with special attention to the 
benefits they offered in relation to providing decision support tools to farm managers.
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Materials and methods
This paper reports on a case study that was undertaken by using/analysing data col-
lected on farms, not strictly for scientific, but mainly for commercial purposes. Because 
the commercial focus of the data collection, some information that would have been 
essential for scientific data analysis was not collected, such as information about med-
ication, vaccination or other veterinary treatments. However, the main aim of the study 
was to demonstrate the value of more in-depth analysis of routinely collected informa-
tion on commercial farms.

Long-term weight and environment monitoring were carried out in three different 
grower/finisher pens on a farm in Queensland, Australia. The pens monitored were lo-
cated in traditional grower-finisher building with natural ventilation systems installed. 
All pigs in the trials were fed mash or pelleted feed and were kept on partially slatted 
floors. In each pen a Weight-DetectTM (PLF Agritech, Toowoomba, Australia) system was 
installed approximately in the middle of the pen at 2m height (Banhazi et al., 2011; 
Banhazi and Dunn, 2016). In the same pens, Enviro-DetectTM (PLF Agritech, Toowoomba, 
Australia) devices were also installed (Clements et al., 2011; Banhazi, 2021) on the walls 
of the piggery buildings. The positioning of the equipment was selected high enough to 
be out of reach of adult animals. Enviro-DetectTM acquired continuous measurements 
of air temperature, relative humidity, ventilation rates, carbon dioxide (CO2), ammonia 
(NH3) and airborne particle concentrations (Banhazi, 2009). In addition, attempts have 
been made to predict emission rates, based on previously published scientific method-
ology (Seedorf et al., 1998a; Seedorf et al., 1998b; Takai et al., 1998). Automated reports 
and associated descriptive statistics were emailed to the producers in a PDF format 
reporting on growth rate and environmental conditions of individual pens. In addition, 
a more detailed statistical analysis was undertaken on the collected environmental 
data using correlation analysis and t-test principally to compare environmental pa-
rameters between different buildings. 

Results and discussions 

Figure 1: Live weights (kg) recorded on farm ‘X’ in different pens and different buildings during 
similar time period. Pigs started from identical starting weight. Pigs in pen 8 achieved an ADG of 1.20 
kg over 34 days, while in pen 21 animals grew at a much lower rate achieving an ADG of 0.82 kg over 
the same 34-day period. Pigs in pen 9 grew at the rate of 0.95 kg (ADG) over 34 days. 
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Figure 1 shows results that were recorded on the farm, in different buildings and dif-
ferent pens. Pen 8 and 9 were in the same building, while pen 21 was located in an 
adjacent building. The nutritional and health status of the animals were the same, 
but potential differences in environmental quality and social conditions resulted in 
different growth rate patterns. Clearly the shapes of the growth curves were related to 
production performance. 

Figure 2: Air temperature (oC) and relative humidity (%) values measured continuously in one of the 
study buildings on the farm ‘over a 6-day period.

Figure 3: Ventilation rate (m2/h/LU or Livestock Unit) and carbon dioxide concentrations (ppm) 
values measured continuously in one of the study buildings on the farm over a 6-day period.

The smoothest growth curve (pen 8) resulted in the best production performance out 
of the 3 different pens.  A significant amount of environment related information was 
also captured in the buildings studied, as a data point was recorded every 6 minutes. 
The various environmental values captured are displayed in Figures 2-4. Only a short 
period of sample data is displayed to demonstrate the quality and volume of data cap-
tured continuously during the study period. In Table 1 the comparisons of the averages 
of various environmental parameters captured in the two study buildings over a 34 d 
period are shown.
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Figure 4: Ammonia concentrations (ppm) and ammonia emission rates (mg/h/LU or Livestock Unit) 
measured continuously in one of the study buildings on the farm over a 6-day period.

Table 1: Environmental parameters in the different pens/buildings averaged over 34 days

Parameters Building A: 
pen 8 & 9 

Building B: 
pen 21 P

Temperature (oC) 19.8 17.4 <0.05 

Humidity (%) 63 57 <0.05

Carbon dioxide concentration (ppm) 748 477 <0.05

Ventilation rates (m2/h/LU) 108 198 <0.05

Ammonia concentration (ppm) 1.1 2.9 <0.05

Dust concentrations (mg/m3) 0.098 0.192 <0.05

A number of issues can be highlighted based on the environmental data captured in 
the study buildings (Figures 2-4 and Table 1). Temperature and humidity information 
was considered to be reliable and the electrical cable connecting the temperature/hu-
midity sensors to the enclosure enabled the research team to record data close to pig 
level. During this study a good set of reliable information was captured (Figure 2). Hu-
midity values collected during this study in the two different buildings were very simi-
lar but there were 2.5 oC differences in air temperatures between the two buildings that 
might have been important and could partially explain the grow rate differences and 
resulting growth curve shape. During winter time, when temperatures were actually as 
low as 5oC on same days, this extra temperature lift could have been contributing to the 
more even growth patterns observed in building A (housing pen 8 and 9). As expected, 
there was a good negative correlation observed between the temperature and humidity 
measurements in this study (r2 = - 59%) 

Ventilation rates and CO2 concentrations were reliably captured. CO2 concentrations 
inside and outside were used to calculate ventilation rates, based on published scien-
tific methodology (Seedorf et al., 1998a; Seedorf et al., 1998b; Takai et al., 1998). A clear 
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circadian variation was observed in ventilation rates as well as in the concentration 
of CO2 that peaked during night-time and negatively correlated with ventilation rates 
(Figure 3). The data indicated that the general ventilation levels were adequate, and 
suitable for the winter period when the data collection was undertaken. The generally 
accepted practical recommendation is to have around 100-200 m2/h/LU ventilation rate 
during cold periods and around or above 300 m2/h/LU during hot periods. In Australia, it 
is not unusual to encounter high ventilation rates during wintertime as well, due to the 
open nature of buildings that typically rely on natural ventilation systems with limited 
control. Therefore, it can be concluded that in this instance, building B was over venti-
lated (while still remaining within recommended ventilation rates), but not building A. 
This has resulted in higher temperatures, lower dust and NH3 concentrations in build-
ing A. Counterintuitively, both high dust and NH3 concentrations are often associated 
with high ventilation rates, due to the increased levels evaporation (in case of NH3) and 
increased stirring of fine airborne particles by the increased air movements (in terms of 
dust levels). This has led to a statistically higher dust (p<0.05) and NH3 (p<0.05) concen-
trations in building B. Ventilation rates and CO2 concentrations were highly correlated 
(r2 = - 84%), which was not surprising since CO2 concentrations (inside and outside of 
the buildings) were used to calculate ventilation rates.  

NH3 concentrations recorded were in agreement with previously reported results (Ban-
hazi et al., 2008) (Figure 4) but in building B the concentrations were almost 3 times the 
levels of building A (Table 1). However, these concentrations were still below the maxi-
mum concentration level recommended by multiple authors (Donham, 1991; Donham 
and Thu, 1993; Donham et al., 1977; Donham et al., 1995). NH3 concentrations are not 
always characterised by circadian variation (Banhazi, 2013b), but in this instance (at 
least during the 6-day period that is displayed as an example), a clear circadian var-
iation was observed. NH3 concentrations peaked a number of times during daytime 
(Figure 4). Positive correlations between air temperature and NH3 concentrations have 
been reported before (Banhazi et al., 2008; Banhazi, 2013b; Groot Koerkamp et al., 1998). 
It is hypothesised that NH3 concentrations might increase during daytime, because 
higher (daytime) temperatures tend to increase NH3 evaporation rates from sources in 
livestock buildings, such as urine puddles or manure patches (Groenestein et al., 2007; 
Aarnink et al., 1997). Dust concentration was higher in building B when compared to 
building A (Table 1). 

Ammonia emission rates were calculated based on published methodology using the 
concentration levels and ventilation rates (Seedorf et al., 1998a; Seedorf et al., 1998b; 
Takai et al., 1998). The emission rates recorded were realistic and plausible (Figures 4), 
and corresponded well with previously published emission rates (Groot Koerkamp et 
al., 1998; Takai et al., 1998; Banhazi et al., 2008). However, these measurements were at 
the very low end of values, when compared to the Australian and European published 
emission rates. A clear circadian variation was detectable, due to the influence of the 
circadian ventilation rates (Figure 4). NH3 concentrations and emission rates moderate-
ly correlated, (r2 = 62%). 

In summary, significant differences (p<0.05) were detected in all environmental pa-
rameters recorded in the two livestock buildings on a commercial farm. While a casual 
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effect could not be directly proven, there was definitely an association between envi-
ronmental parameters and the performance of pigs in the particular building. Howev-
er, other parameters such as health status, medication/vaccination, social parameters 
(such as stocking density) could have also impacted on the performance of animals. 
Many of these factors were not monitored during this study as the aim of the experi-
ment was mainly to prove the reliability of the instrumentations deployed. However, 
even if health status differed, the likely influence of the prevailing conditions in the 
study buildings was obvious. It appeared that building B was over-ventilated that re-
sulted in decreased thermal control and increased dust and NH3 concentrations with-
in the building. Building A was ventilated at a much-reduced rate, and therefore had 
higher CO2 concentrations and lower NH3 and dust concentrations. In addition, build-
ing A had around 2.5 degrees extra temperature lift (compared to building B). Building 
A also had a slightly increased humidity (p<0.05) that was still within the acceptable 
rate but could have contributed to the reduced dust concentrations observed.

This monitoring study provided the farm managers with information about the fluctu-
ating ADGs that can be observed on farms under commercial conditions. It was impor-
tant to document the differences observed in the growth efficiency between seemingly 
identical pens on the same farm. This study highlighted the fact that short periods of 
growth efficacy reduction is often undetected on commercial farms, resulting in unex-
pected underperformance of batches of pigs at the end of growth periods. Anecdotal 
evidence provided by farm veterinarians in the past case studies indicated that growth 
rates on farms could fluctuate significantly without being noticed in a timely manner. 
What also became evident that the shape of the growth is important. Better perfor-
mance was clearly associated with a ‘smooth’ growth curve that can be characterised 
by relatively straight growth line. On the other hand, pigs that underperformed had 
typically a crooked or irregular growth curve. This wavy growth pattern indicates that 
pigs were not kept under ideal conditions and their growth patterns were character-
ised by periodic stagnations peppered with periods of compensatory growth. Under 
such circumstances, pigs cannot perform to their maximum growth capacity. Thus, 
the shape of the growth line can give famers an indication if their animals are per-
forming close to their genetic potential or if there are conditions holding them back. 
The environmental parameters recorded in the building also provided valuable insight 
for the managers of the piggery and a strong association between production environ-
ments and growth rates were demonstrated in this study. Similar results have been 
obtained in the past (Donham, 1991; Murphy et al., 2012; Banhazi, 2013a). Therefore, this 
study provided farm managers with new information that was previously unavailable 
to them as they did not have the capacity to collect such information without the in-
troduced new technologies. 

Conclusions 
The new technologies, Weight-DetectTM and Enviro-DetectTM, provided practical infor-
mation to livestock producers that empowered them to make management changes 
based on objective data to enhance the profitability of their operation. The weight mon-
itoring tool pinpointed problem areas (such as uneven growth patterns) and potentially 
enhanced the effectiveness of management procedures of the participating livestock 
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producers. The environmental monitoring kit gave a good indication of the suitability 
of growth environment. This case study was not a controlled experiment, but it has 
demonstrated the value of using data collected routinely on commercial farm for the 
purpose of exploratory data analysis.
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Abstract
The indoor environment conditions of mechanically ventilated piglet houses depend 
on the performance of exhaust fans. Owing to fan performance which has a great im-
pact on the comfort of animals and pollutants emission, appropriate selection of fans 
should be properly considered. However, in-situ fan performance has reduced com-
pared to design fan performance because of the various pressure loss factors. This 
study attempted to evaluate pressure loss factors by measuring airflow rate of fans 
and static pressure in piglet house. The experiments were conducted in a standard Ko-
rean pig house with a combined ceiling slot inlet, side window inlet, side exhaust fan, 
chimney exhaust fan among others. The pressure loss factors were evaluated using the 
fan law and orifice theory. Analysis of the result showed that in-situ fan performance 
was reduced by 7 ~ 35% compared to the design fan performance. Furthermore, the 
comparison of side and chimney exhaust fans showed that the side exhaust fans had 
a higher 20% airflow rate due to duct friction loss and aerodynamic difference. On the 
other hand, pressure losses due to inlet were different from inlet types and inlet open-
ing size. Because the pressure losses depend on inlet and outlet type, location, size, and 
so on, those characteristics should be considered for the optimal ventilation design.

Keywords: Fan performance curve, Mechanically ventilated pig house, System effect 
factor

Introduction
In order to meet the increasing meat consumption, modern pig facilities are getting 
larger and adopting a system that concentrates and supplies feed by densely populat-
ing the pigs. However, since this environment adversely affects the control of contami-
nants, heat and moisture environment in the air inside the pig house, it is important to 
operate adequate ventilation in the pig house (Seo et al., 2012, Kwon et al., 2016).

On the other hand, in Korea, more than 70% of pig facilities were constructed with win-
dowless pig houses that use exhaust fans to ventilate. There is a method using the CFD 
model to predict the amount of ventilation by the exhaust fan (Hong et al., 2017; Li et al., 
2017; Seo et al., 2008; Seo et al., 2012), and it has the advantage of being able to analyze 
various ventilation system structures regardless of the actual building. However, when 
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referring to the fan performance data provided by the manufacturer for this purpose, 
the fan performance appears differently depending on the ventilation structure of the 
pig house, the location of the exhaust installation, and the aging of the belt. In order to 
estimate the ventilation amount by predicting the exhaust fan performance degrada-
tion in the field, it is necessary to measure various factors in the field, but studies on 
the ventilation amount estimation for various ventilation structures of pig houses are 
insufficient (Chen et al., 2014). 

Therefore, this study tried to estimate the actual ventilation volume for piglets by con-
sidering the fan performance degradation due to various ventilation systems. To this 
end, it was attempted to quantitatively calculate the factors necessary for predicting 
fan performance degradation through field experiments, and to develop a formula for 
estimating the actual ventilation volume through the calculated factors. In addition, 
the developed formula was evaluated by comparing it with the measured ventilation 
amount.

Material and methods

Target pig house
In this study, the fan performance degradation factor according to the structure of the 
ventilation system in the pig house was calculated through field experiments. When 
pigs are actually raised, it is impossible to conduct field experiments through the es-
tablishment of various ventilation systems under the experimental plan desired by the 
researcher because ventilation is performed according to the breeding environment 
of the pigs. Moreover, appropriate operation of ventilation system is needed to avoid 
serious livestock issues such as spreading of illnesses and diseases. To overcome this 
limitations, the field experiment was conducted in the standard piglet house test bed 
of the Smart Livestock Engineering Demonstration Center of the Seoul National Uni-
versity A3EL located in Pyeongchang, Gangwon-do (37°54’82’’N, 128°43’45’’E) (Fig. 1).

Figure 1: Experimental mechanically ventilated piglet house in Pyeongchang, Gangwon-do, Republic 
of Korea.
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The standard piglet house of the Smart Livestock Engineering Demonstration Center 
is a facility designed based on the Korean piglet house standard design (MAFRA, 2016). 
This standard piglet house is in the form of a forced ventilation windowless facility and 
is equipped with a variety of typical intake and exhaust systems, which are typically 
used in actual pig farms. The ventilation structures used in this study were sidewall 
slots, mid-ceiling slots, sidewall fans, and exhaust fans, which are the typical intake 
and exhaust structures used in South Korea. The two side wall slot windows (0.6 m 
wide and 0.6 m long) act as an intake structure in which air flows in through the side 
wall of the pig room. The type of fan with exhaust structure is an axial fan, which is 
the most commonly used fan in agricultural facilities. Both the sidewall fan and the 
chimney fan use an exhaust fan(COCO-630A, Dongsung COCOFAN co. Ltd., Korea) with 
a diameter size of 630 mm, and variable speed inverters are installed in both fans to 
control the ventilation fan speed from 0 to 100% depending on the set voltage.

Fan performance curve
In this study, the fan performance curve that can express the characteristics of the ex-
haust fan and the system resistance curve that can be expressed according to the char-
acteristics of the inlet were calculated for estimating the amount of on-site ventilation. 
The two curves were intended to be expressed through a curve (P-Q curve) expressing 
the relationship between static pressure and airflow rate. (Fig 2).

Figure 2: Typical fan performance curve and system resistance curve

Experimental procedure
This study tried to quantify the reduction in the exhaust fan performance of pig houses 
by applying fan performance and system effects, and to apply this to the ventilation de-
sign of pig houses. To this end, the fan performance was quantified by controlling various 
exhaust fan structures and speeds for a building designed on a real piglet scale. In addi-
tion, the system performance curve for estimating the operating point of the exhaust fan 
was estimating by calculating the coefficient of the system resistance curve according 
to the type and area of the inlet. After that, the calculated fan performance coefficient 
and system resistance curve were used to apply the formula for deriving the actual ven-
tilation volume in the pig house. The performance degradation of the exhaust fan was 
considered in the formula, and this was used to design the pig house ventilation.
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Results and Discussion

Comparison of field and actual fan performance curve
The design fan performance curve is generally performed under environmental condi-
tions in which the fan can achieve maximum performance under the maximum oper-
ating rate condition (Cory, 2010). However, field fan performance generally deteriorates 
due to the installation conditions of the ventilation fan and the wear and tear due to 
the aging of the fan and equipment. The reduction in design performance and actual 
performance of the ventilation fan installed in the field conditions of the test bed is 
shown in Fig. 3.

Evaluation of system curve coefficients according to inlet characteristics
The ventilation amount derived from the actual fan is explained by the fan operating 
point, and in order to derive the actual ventilation amount based on the fan perfor-
mance curve, it is necessary to calculate the static pressure difference. Accordingly, in 
this study, the coefficient of the system resistance curve was evaluated for the inlet, 
which is a factor that can greatly affect the system resistance in the ventilation struc-
ture of the pig house. Since the static pressure difference that can occur in ventilation 
management of a building is mainly caused by the inlet control, in this study, the orifice 
theory applicable to the inlet was applied to calculate the static pressure difference ac-
cording to the inlet characteristics. In particular, in the case of corridor slots, the orifice 
formula can be directly applied depending on the area, but in the case of a mid-ceiling, 
the inlet area does not change as the opening rate increases. Accordingly, the effective 
opening area ratio was converted according to the angle of the mid-ceiling. As a result, 
the effective opening ratio of the mid-ceiling slot according to the angle showed a ten-
dency to decrease as the effective area increased sharply when the ceiling slot was first 
opened. When the mid-ceiling slot was opened at an angle of 45 degrees or more, the 
effective area ratio was maintained at 85% or more (Fig. 4.).

Figure 3: Comparison of In-situ fan performance 
curve and in-situ fan curve according to fan 
placement types.

Figure 4: Effective flow area to inlet-area 
ratio of attic slot
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Estimation of actual ventilation rate from actual fan performance curve
Previously, the system effect according to the facility structure and exhaust fan loca-
tion and the system resistance curve coefficient according to the opening rate were 
calculated. The static pressure difference inside the facility was calculated according 
to the opening rate of each inlet, and the fan performance was applied using the sys-
tem resistance coefficient calculated from the fan performance curve provided by the 
manufacturer.

Here, the fan curves of the sidewall fan and the chimney fan for estimating the actu-
al ventilation rate are as shown in Equation (1-2) below. As a result of estimating the 
actual ventilation amount, it was found that the actual ventilation amount could be 
estimated well with an R2=0.9947 for the side wall fan and 0.9935 for the chimney fan.

 (1)

 (2)

Figure 5: The relationships between estimated and measured ventilation rate (a: side wall fan, b: 
chimney fan).

Conclusions
In this study, the actual ventilation amount for piglets was measured in the A3EL test 
bed. The test bed was designed to have various ventilation designs that allowed to test 
various ventilation structures, and the fan performance curve. Moreover, the outflow 
coefficient that can indicate the characteristics of the inlet were evaluated and quan-
tified. The field fan performance curve showed a tendency to decrease by about 35% 
compared to the actual fan performance provided by the designer, and it was analyzed 
that the ventilation performance of the chimney fan was reduced compared to the 
sidewall fan. The system resistance was predicted according to the inlet type and area 
adjustment, and the actual ventilation amount was predicted through the calculated 
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fan performance curve and the coefficient of the system resistance curve, resulting in 
a high predicted value(Side wall fan R2>0.9947, chimney fan R2>0.9935). Through the 
results of this study, a coefficient for estimating the actual ventilation rate of the live-
stock house was provided, and it is thought that it can be used as basic data for design-
ing ventilation operation plans and appropriate ventilation structures.
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Abstract
A wet scrubber could be the solution to ammonia emissions by directly removing am-
monia gas from the pig house. However, most previous studies of wet scrubbers have 
focused on industrial facilities. To optimize the design and control of the wet scrub-
ber, it is needed to evaluate the ammonia removal performance by various param-
eters considering pig house conditions. In this study, the wet scrubber performance 
was evaluated considering physical parameters, such as the concentration of inlet am-
monia, exhaust airflow rate, and the gas-liquid flow direction. The ammonia removal 
performance was evaluated through a statistical method with removal efficiency and 
removal amount. Exhaust airflow rate and gas-liquid ratio were major influence factors 
on removal efficiency. The lower the exhaust airflow rate, the higher the removal effi-
ciency. This was considered due to increasing the residence time of the ammonia gas. 
Gas-liquid flow direction and number of the nozzle were related to the removal amount 
caused by the pressure drop of the exhaust fan. The influence of pressure drop was 
high at low fan speed. Therefore, it was considered that parallel flow was advantageous 
over counterflow at low fan speeds. The results of this study demonstrate that optimal 
design and control of wet scrubber could effectively mitigate ammonia gas emissions.

Keywords: Ammonia, Gas-liquid ratio, Removal efficiency, Wet scrubber

Introduction
Ammonia gas emissions from pig houses account for 15% of global ammonia emis-
sions. The ammonia emission not only contributes to surface water eutrophication 
and acidification of ecosystems but also affects the generation of particulate matter 
through atmospheric secondary synthesis (Sari et al, 2019, Philippe et al., 2011). There-
fore, it is needed effective strategies for reducing ammonia emissions from pig houses. 
A wet scrubber is an effective ammonia mitigation technology that directly reduces 
the emitted ammonia gas (Melse et al., 2009). The wet scrubber is mainly using types 
of scrubber technology in pig houses. The wet scrubbers applied to pig houses could 
remove more than 65% to 95% of ammonia gas (Sheridan et al., 2002, Melse et al., 2009). 
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However, the removal efficiency was different depending on ammonia concentration 
at the inlet, aerodynamic residence time, liquid flow rate, temperature, and liquid pH 
(Chen et al., 2008). The performance of scrubber can change depending on the ventila-
tion management and pig growth enviornments. Therefore, it is necessary to consider 
the variable foctors of the pig house. Moreover, scrubber systems to pig houses are an 
efficient system for mitigating ammonia emissions, but there are problems with ener-
gy and high installing costs and maintenance.

Therefore, the objectives of this research were to optimize design parameters of a wet 
scrubber for ammonia remove considering pig house environment. The labolatories 
experiments were conducted in a can control the environment like pig house. The ex-
periments were conducted in a laboratory that can control environments like a pig 
house. An ammonia removal performance was analyzed according to the spraying 
method, ammonia concentration, exhaust flow rate, circulating water pH, and liquid to 
gas ratio through the lab-scale scrubber. A scrubebr performance model was developed 
to predict the ammonia removal efficiency through correlation analysis through the 
experimental results, and through this, the capacity of the scrubber capable of design 
optimization and efficient operation was evaluated.

Material and methods

Lab-scale scurbber system design
The scrubber consists of a scrubber bed, exhaust fan, nozzle, mist elemintor, and recir-
culation pump. The air flowrate of the fan can be operated in the range of 0.085-0.990 
m3/min/aniaml, which is the ventilation rate range at pig house (Table 1).

Table 1: Design parameter of lab-scale scrubber

Parameter Value

Liquid phase

Liquid flow rate 30 ~ 120 L/min

Nozzle type, Spraying degree Spiral type, 120

Number of nozzles, 27

Nozzle to packing distance 100mm

Gas phase

Liquid to gas ratio Fan and water pump control

Maximum fan flow rate 55 m3/min

Pressure loss 70 Pa

Packing meterials

Turn-dwon ratio 2 ~ 2.5

Packing type Structured type (Polyvinyl chloride)

Pressure loss Under 10 Pa

Eliminator
Eliminator type Packed bed

Pressure loss 9.81 ~ 19.61 Pa

Scrubbing type Counter flow, Parallel flow
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The wet scrubber is a rectangular shape with a size of 1300 mm 950 mm and a length 
of 950 mm. Spraying direction also can be adjusted to the type of counter and parallel 
flow (Figure 1). The liquid flow rate was adjusted by changing the operation of the pump 
and the number of nozzles. The mist elimator was installed to reduce liquid loss. The 
amount of pressure loss is 70pa in experimental wet scrubber.

Figure 1: Schematic diagram of the scrubber for lab-scale experiment

Inlet air environment control
Wet scrubber systems are installed at the outlet of pig houses, and the temperature 
and humidity of the outlet are the same as the air environment according to pig rear-
ing. In this study, an experiment was conducted in a pig house of ASEC-A3EL that can 
artificially control the environment to consider the air environment according to the 
heat generation, moisture generation, and rearing environment of pigs. The ammonia 
concentration flowed into the pig house through gas generation systems connected to 
the ammonia tank based on the amount of ammonia emission rate from the pig house. 

The ammonia emission rate ranges depending on the pig growth stage, ventilation 
rate, and season. Thus, the ammonia concentration was adjusted using a needle valve, 
an MFC mass flow controller (MR-300-1CH), and a mass flow meter (3660-NH3-500sc-
cm-1/4SW) in the gas generation systems.

Experimental procedure
This experiment was conducted by dividing each design factor of the scrubber through 
the one-factor test method. The ventilation rate was set to 174 head (3.5 m2/2/animal) 
according to the animal welfare standard to the general control factors of scrubbers. 
The ammonia concentration was determined in consideration of the emission coeffi-
cient range, and each concentration range was set to 20 to 80 ppm by generating am-
monia gas of 132.4 to 529.7 mg/min.
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In addition, the airflow rate range was set to 18.6 to 55.5 m3/min (0.11 to 0.35 times/
min) assuming that it was a scrubber installed in one exhaust fan of the experimental 
pig house. The airflow rate was controlled by a fan speed, the nozzle direction, and the 
ammonia concentration rate was adjusted according to each case (Table 2).

Table 2: Experimental cases according to optional variables

Experiment 
number

Ammonia concentration
(ppm)

Liquid flow 
direction

Fan operating rate 
(%)

Packing 
meteiral step

1 20, 40, 60, 80 Counter 50 0

2 40 Counter 25, 50, 75, 100 0

3 20, 40, 60, 80 Parallel 25, 50, 75, 100 0

4 40 Parallel 25, 50, 75, 100 0

5 40 Counter 50 1

6 40 Counter 50 3

The scrubber performance was analyzed with ammonia removal efficiency and re-
moval amount per minute through each data set measured through 3 times repeated 
experiments. The ammonia removal efficiency and removal amount of the cases was 
calculated by the following Equation (1) ~ (2), respectively.

 (1)

 (2)

where, �NH3 is the ammonia removal efficiency (%), Cin NH3 is the ammonia concentration 
at scrubber inlet (ppm), Cout NH3 is the ammonia concentration at scrubber outlet (ppm), 
QNH3 is the ammonia removal amount (kg/min), V is the ventilation rate (m3/min), ρNH3 is 
the The density of ammonia (kg/m3).

Statistical methods for error analysis, such as the absolute error (AE), relative error (RE), 
root-mean-square error (RMSE), and coefficient of determination (R2), were used to val-
idate the estimated ammonia removal efficiency. The mean absolute percentage error 
(MAPE) is a measure of the prediction accuracy of a forecasting method in statistics. 
The statistical values are expressed in Equotions. (21) ~ (22). Two statistics were select-
ed to validate the measured and estimated ammonia removal efficiency.
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where, RMSE is the root-mean-square error (%, %), MAPE is the mean absolute percent-
age error (%), xmeas is the measured ammonia removal efficiency (%), xesti is the estimat-
ed ammonia removal efficiency (%), and n is the number of fitted points.

Results and Discussion

Wet scurbber performance of liquid flow dirrection
As a result of the experiment, the ammonia removal efficiency of counterflow was sta-
tistically significantly higher than that of parallel flow when the fan speed was operat-
ed by 50% or more depending on the liquid flow direction (Figure 2a). However, at 25% 
fan speed, the ammonia removal efficiency of parallel flow was 78.33%, which tended 
to be higher than 76.97% of the ammonia removal efficiency of counter flow (Figure 2b). 

Figure 2: fan operation rate and ammonia removal efficiency depending on nozzle direction. 
(Ammonia concentration 40 ppm, water pH 7~8)

However, this difference was not shown statistically significant results. This result 
shows that the ammonia removal efficiency was high in low-pressure drop conditions 
(Table 3). 

Table 3: Static pressure and airflow rate of the fan according to fan operating rate and scrubbing 
method

Fan operating 
rate (%)

Counter Flow Parallel Flow

Static Pressure 
(pa)

airflow rate 
(m3/min)

Sstatic Pressure 
(pa)

airflow rate 
(m3/min)

25 12.7 7.4 4.3 18.6

50 39.2 26.2 25.9 30.5

75 79.1 42 77.4 42.1

100 137.9 55.5 131.2 54.2
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The amount of removal ammonia could be reduced in counter flow when low fan op-
eration rate. These results show that the pressure loss of the counter flow is higher 
than that of the parallel flow. Therefore, the pressure loss due to liquid flow should 
be considered because a low fan operating rate is required in winter. In addition, the 
nozzle direction should be designed to consider the characteristics of the pig rearing 
environment.

Effect of ammonia concentration and fan operating rate
When the ammonia concentration was 20, 40, 60, and 80 ppm, the ammonia remov-
al efficiency of the scrubber ranged from 60 to 70% on average (Table 4). As for the 
change in cleaning efficiency according to ammonia concentration, the p-value (0.866) 
was above the significance level (0.05) range, and since all sub-group classifications by 
Duncan’s post-test were classified as the same group, it was judged that there was no 
significant difference in cleaning efficiency according to the ammonia concentration.

Table 4: Effect of scrubber performance according to design factors

Fan operating
rate (%)[a]

Removal Efficiency 
(%)

Ammonia 
concentration

(ppm)[b]

Removal Efficiency 
(%)

25 78 ± 5.7 c 20 66 ± 4.7 a

50 52 ± 4.5 bc 40 64 ± 4.3 a

75 43 ± 1.6 b 60 67 ± 1.5 a

100 35 ± 4.2 a 80 67 ± 6.2 a

F-value 38.85 F-value 0.497

Significance ** Significance ***

**: p < 0.05
***: p < 0.001
[a] Ammonia concentration 40ppm, counter flow type
[b] Fan operating rate 50%, counter flow type

The ventilation rate according to the fan operating rate was 18, 26, 42, and 55.5 m3/
min (0.11, 0.16 and 0.26 and 0.35 times/min), respectively, at 25%, 50%, 75%, and 100%. 
There was a significant difference in ammonia removal efficiency between fan operat-
ing rates in the statistics of the ammonia removal efficiency according to the exhaust 
flow rate was lower than the significance level (0.009). In addition, Duncan’s post-test 
showed that there was a difference in ammonia removal efficiency when the set venti-
lation amount was 25% and 75% and 100%. the ammonia removal efficiency tended to 
decrease with increasing the fan operating rate. In particular, the exhaust flow rate is 
used as an important factor in the capacity design and operation of the scrubber. Mesle 
(2004) reported that ammonia removal efficiency could increase as the exhaust flow 
rate of the scrubber decreases, but accordingly, the excessive pressure load and the 
initial investment cost of manufacturing the scrubber increase. Moerever, Haldcon and 
Zhao (2014) reported that the exhaust airflow rate of the scrubber was an important 
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factor in determining the ammonia removal efficiency, and it was possible to predict 
the ammonia removal efficiency

Regression analysis of ammonia removal efficiency
The experiment results showed that ammonia concentration, air flow rate were major 
factors in scrubber design. The ammonia removal efficiency was predicted through the 
factors of change in scrubber performance. The ammonia removal efficiency estimated 
through ammonia concentration and airflow rate showed a high coefficient of deter-
mination (R2=0.928) compared to the measured ammonia removal efficiency (Figure 3). 

Figure 3: The relationships between predicted and measured ammonia removal efficiency

The model predicting ammonia removal efficiency was designed based on the solu-
bility of ammonia, and it is believed that it can be used in the design by reflecting the 
complex gas of pig house.

Conclusions
The airflow flowing into the scrubber is determined according to the ventilation rate 
in the pig house. The ammonia removal efficiency according to liquid direction was 
evaluated due to this change in air flow rate. At low airflow rates, the parallel flow type 
with low-pressure loss executed better than the counter flow type. Therefore, scrubber 
design should consider the ventilation rate of the target pig house as a major factor. 
In addition, the ammonia concentration generated in pig houses changes depending 
on the pig growth stage. As mentioned, these two main factors should be considered 
in scrubber design due to controlled ventilation rates. In particular, the ammonia re-
moval efficiency decreased as the airflow rate increased. this paper proposed a model 
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to predict ammonia removal rates through major scrubber performance factors. This 
model can be used to design scrubbers to reduce ammonia in pig houses. 
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Abstract
Precision livestock farming (PLF) aims to improve farmers’ decision-making via re-
al-time monitoring of housing environment and animal-related outcomes. Although 
many PLF technologies were tested in the past two decades, few have been applied to 
assist farm stewardship in commercial broiler production. The objective of this light 
review is to summarize PLF technologies used for precision broiler management and 
discuss their practicality and challenges for applications in commercial production. 
It shows that top-view cameras and microphones are the most promising solutions 
for commercial production. Video analysis is commonly used for behavior and activi-
ty monitoring, and audio analysis shows the potential of detecting bird diseases and 
stress conditions. Challenges associated with these two technologies include accuracy 
in bird segmentation from image background under low light intensity and uneven 
light distribution, exclusion of birds and equipment (feeder line, drinker line, and heat-
er etc.) in the images, and extraction of bird vocalization from background noises (ven-
tilation system, heater, feed system etc.). Wearable sensors may be suitable tools for 
lab-scale research, but they are not economically feasible nor generally robust enough 
for applications in commercial poultry farms. Little research has demonstrated the 
economic benefits of using PLF systems at commercial farms, which may discourage 
farmers to adopt PLF technologies.

Keywords: precision livestock farming, broiler, image processing, sound analysis

Introduction
Global poultry meat production became the largest meat industry in 2020 (USDA, 2020). 
According to the recent data from U.N. Food and Agriculture Organization (OECD/FAO, 
2021), global poultry meat consumption is expected to increase to 152 Mt by 2030, ac-
counting for a 52% increase. The U.S. is leading broiler production in the world, produc-
ing 9.22 billion broilers for a total value of $21.7 billion in 2021 (NASS, 2012). Due to the 
ever-growing volume of the broiler industry and labor shortages, flock management is 
increasingly challenging for growers. In addition, public concern over animal health 
and welfare is another driving force for farmers to seek new farm management solu-
tions (Cornish et al., 2016). As such, Precision Livestock Farming (PLF) attracts increas-
ing attention as a promising solution in animal management. 

Precision livestock farming (PLF) is a concept of monitoring animal-based measures 
and the housing environment in a continuous and real-time manner, thereby improv-
ing animal health, welfare and productivity (Berckmans, 2017). Generally, PLF systems 
can be categorized into: 1) animal-based technologies, 2) environment-based technol-
ogies, and 3) product-based technologies. Animal-based technologies aim at monitor-
ing behaviors, activity and physiological conditions of live animals using PLF tools, 
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including cameras, microphones, and wearable sensors (accelerometer, radio-frequen-
cy identification ‘RFID’) (Carpentier et al., 2019; Li et al., 2020b; Yang et al., 2021b). Envi-
ronment-based technologies strive to provide animals a comfortable environment, e.g. 
using internet of things (IoT) technology which integrates sensors (temperature, ven-
tilation rate, ammonia, etc.) and shares the useful information via the internet. Prod-
uct-based technologies are applied to animal products (e.g. chicken meat). Examples 
include using image analysis for meat grading and woody breast identification (Cal-
das-Cueva et al., 2021; Park et al., 2005). For the scope of this study, only animal-based 
technologies are reviewed. 

Among PLF technologies that have been tested in the past two decades, over 96% were 
prototype systems (Rowe et al., 2019). Even though a small portion of PLF systems have 
been commercialized, they haven’t been widely applied to assist farm management 
in commercial broiler production, especially in the U.S. The eYeNamic camera system 
(Fancom, Panningen, Netherlands) is one of a few commercialized PLF systems. It can 
monitor bird activity and distribution at the flock level, which are critical indicators of 
broiler welfare. Another example is Chickenboy (renamed as ‘Scout’, AGCO, Duluth, GA), 
which is an integrated robot with the capability of measuring environment parameters, 
identifying dead birds, and detecting bird intestinal diseases. Understanding the advan-
tages, challenges, and feasibilities of applying different PLF technologies in commercial 
broiler houses, may assist researchers in choosing directions of future research, thus, 
speed up the development and commercialization of PLF technologies in poultry.

The objective of this study was to briefly review different animal-based PLF technolo-
gies developed in our previous studies and by others. In addition, the practicality and 
challenges of applying these methods to commercial farms were discussed.

PLF technologies in broiler production

Image processing 
Cameras have been widely used in broiler research due to their capability for monitor-
ing birds continuously and non-invasively. The most used cameras include 2D cameras, 
3D cameras and thermal cameras. Image processing based on 2D or 3D cameras most-
ly focused on monitoring broiler locomotion, including flock activity and distribution, 
lameness (Dawkins et al., 2013), and behaviors. Thermal cameras have been used to 
monitor broiler surface temperature. 

An activity index (AI) quantifies the activeness of broilers (Aydin et al., 2010), and dis-
tribution index (DI) evaluates how evenly the broilers are distributed within a house 
(Kashiha et al., 2013). Deviations of AI and DI determined by top-view camera systems 
can be used to detect hock burns and footpad lesions (Fernandez et al., 2018). Features 
derived from AI before and after a human assessor walking through the flock were 
used to predict gait scores of broilers (Silvera et al., 2017). Aydin (2017a) also developed 
a top-view camera system to assess broiler gait score by looking at different feature 
variables, including walking speed, step frequency, step length, lateral body oscillation 
and back area. Besides 2D cameras, a 3D camera with a depth sensor was used in the 
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same experiment (Aydin, 2017b). The results showed strong correlations of gait score 
with number of lying events (R2 = 0.934) and latency in lying (R2 = -0.949).

Monitoring specific broiler behaviors is another major application of image analysis. 
Poultry behaviors, such as feeding, drinking, preening, stretching, wing flapping, etc., 
have been identified through image analysis (Li et al., 2020a; Li et al., 2020b; Nääs et 
al., 2012). Frequencies of performing these behaviors were considered as indicators of 
broiler health and welfare.

Additionally, broiler disease can be detected using image processing. Chickens infected 
with microorganisms within 7-10 days after hatching were detected using video analy-
sis (Colles et al., 2016). Zhuang et al. (2019) used image processing to detect sick broilers, 
yielding 99.7% average precision.

Surface temperature is an important indicator of broiler’s comfort and thermal stress. 
Thermal imaging technology has been employed to monitor broiler surface tempera-
ture non-invasively (Nascimento et al., 2011). Xiong et al. (2019) developed an algorithm 
to automatically detect the head temperature of broilers using top-view thermal cam-
eras. Noh et al. (2021) reported that thermal imaging technology could detect the fever 
induced by highly pathogenic avian influenza 24 hours before the clinical signs. 

Sound analysis
Animal vocalization contains massive biological information that may be relevant to 
animal stress, health, and welfare (Fontana et al., 2016). For broilers, sound analysis is 
commonly used for body weight prediction (Fontana et al., 2017), behavior monitoring 
(Aydin et al., 2016), and diseases/stress detection (Huang et al., 2019). 

Yang et al. (2021a) conducted research to determine baseline sound data for future 
sound analysis in commercial farms. A microphone was installed in a commercial 
house to continuously record different sources of sound throughout the entire produc-
tion cycle. Frequency ranges of different sounds (bird vocalization, ventilation system, 
feed system, heater, wing flapping and dustbathing) were determined at different bird 
ages. Peak frequency of bird vocalization was highly correlated with bird age (p < 0.05). 
Fontana et al. (2017) also reported a strong correlation (R2 = 0.943) between peak fre-
quency of bird vocalization with body weight. Additionally, it was observed in our study 
that spectrograms of sounds produced by broiler wing flapping and dustbathing behav-
iors had unique patterns, indicating the potential of using sound analysis to monitor 
behaviors. Aydin et al. (2015) developed a lab-scale system to monitor feeding behavior 
of a group of chickens in real-time by identifying the sound of pecking, yielding 86% of 
accuracy. Furthermore, sound analysis could be a useful tool of detecting animal dis-
eases. Banakar et al. (2016) developed an intelligence device for avian diseases based on 
sound features. The total accuracy of diagnosing Newcastle, infectious bronchitis, and 
avian influenza in a lab-scale experiment was over 91%. 

Sensor signal processing 
Wearable sensors, including accelerometers and RFID systems, have been used to 
monitor movement and behavior of individual birds. Yang et al. (2021b) previously 
attached triaxial accelerometers to the back of broilers with chicken harnesses, and 
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continuously recorded bird motions for three days. By developing a machine learning 
model based on three-dimensional accelerations, high accuracies of identifying resting 
(85%), walking (99%), feeding (88%) and drinking (75%) were achieved (Yang et al., 2021b). 
In the same experiment, the accelerometers were also used to determine broiler activ-
ity (Yang et al., 2020). 

Radio-frequency identification (RFID) is mostly applied as a research tool for registering 
and tracking individual birds. Li et al. (2019) attached RFID tags to the neck of broilers 
to monitor feeding and drinking behaviors of individual birds by determining the time 
spent on each behavior. Taylor et al. (2017) fitted RFID tags to 1,200 randomly selected 
broilers using silicone leg band. Frequency and duration of range visits of individual 
bird were determined to monitor ranging behavior at a commercial free-range broiler 
farm. 

Costs of PLF technologies
The average price of a decent 2D camera is about $100. Assuming that one ceil-
ing-mounted camera (horizontal field of view: 100°; vertical field of view: 70°; height of 
installation: 3 m) can cover an area of 6 m × 4 m, it would need 60 cameras or $ 6,000 
to fully cover a single commercial broiler house that measures 120 m × 12 m. Price of 
a thermal camera widely ranges from $200 (e.g. FLIR ONE) to over $25,000 (e.g. high-end 
FLIR T-series) depends on its temperature range, accuracy, spectral range, sensitivi-
ty, resolution, etc. The balance between performance and price should be considered 
when deploying thermal cameras to commercial farms. A sound sensor module can 
cost less than $10 if the audio system is developed independently. There are also some 
off-the-shelf audio recorders that already have the well-developed system of data col-
lection and storage. For these recorders, the price may go up to $100 - $300. Based on 
a previous quote, an RFID system that can track 300 individual broilers’ feeding and 
drinking behaviors may cost approximate $30,000. The total cost would be overwhelm-
ing for commercial production.  

In addition to hardware, there are some essential steps of developing a complete PLF 
system, including algorithm development, system design, production preparation, 
maintenance service, etc. Each step will put additional cost to the final price. A com-
mercially available top-view camera system (with 8 cameras) that can monitor flock 
activity and distribution costs about $25,000. The high costs of PLF systems are the one 
of the major reasons that farmers hesitate on investiment. Some potential benefits of 
using PLF systems, such as increase of production performance, improvement of bird 
welfare conditions, and reduction of labor needs, are all important factors for system 
evaluation. Return in investment (ROI) is commonly used to identify the profitability of 
an investment. However, few studies have been conducted to evaluate the ROI of PLF 
systems in broiler production.

Other considerations
Top-view camera is one of the most feasible tools of monitoring broilers at commercial 
farms. Camera systems are non-invasive. Operation of these systems will not interfere 
broiler natural behaviors nor cause additional stress. Side-view cameras can be a useful 
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tool for lab research, however, it would be challenging to be used in commercial broiler 
farms. One of the reasons is that broilers would overlap when cameras record from the 
side. In addition, broilers would be blocked by feed lines, drinker lines, heaters, and oth-
er equipment, thus compromising the performance of the system. Top-view cameras, 
on the contrary, are capable of covering more birds without the concern of overlapping. 
Another advantage of top-view cameras is that they enable the determination of flock 
measurements, which have been reported as useful indicators of monitoring broilers 
in commercial farms. For instance, the eYeNamic camera system monitors bird welfare 
by determining the flock distribution and activity (Van Hertem et al., 2018). The optical 
flow patterns made by the movements of broiler flocks were highly correlated with the 
mortality and occurrence of hock burn (Dawkins et al., 2021). Although many image 
processing technologies have been developed, few of them were applied to commercial 
farms. Segmenting birds from background accurately has been a big challenge for im-
age analysis. Low light intensity (5 lux) and uneven lighting distribution (e.g., feedline 
lighting) in commercial farms may reduce image quality, and thus, influence the per-
formance of image processing algorithms. Poor accuracy of differentiating equipment 
and bird pixels is another challenge that needs to be addressed. 

Audio analysis could be applied to commercial broiler farms. The advancement of elec-
tronics and signal processing technologies enables microphone systems to monitor 
broilers automatically and continuously. A commercialized sound monitoring system 
(SOMO, SoundTalks NV, Leuven, Belgium) was reported to be capable of detecting pig 
respiratory diseases up to 2 weeks earlier than farmers (Berckmans et al., 2015) with 
an accuracy of 94% (Genzow et al., 2014). However, to date, no real-time audio analysis 
system in broilers is available. Categorization of different sources of sounds is the first 
and important step of audio analysis in commercial farms. Removing sound noises 
is critical for further analysis. Moreover, how to strategically distribute microphones 
within the commercial house, and how to effectively capture key features/signs of spe-
cific behavior/disease within a large flock, haven’t been fully understood. 

Wearable sensors are more practical in lab research. Wearable sensors have been wide-
ly used in large livestock animals. In the study by Yang et al. (2021b), accelerometer was 
attached to the back of bird using chicken harness. As bird grew, the size of chicken 
harness needed to be adjusted frequently. In commercial houses, attaching sensors to 
each bird would be an impractical approach. In addition, power supply is a common 
limitation for wireless sensors targeting small animals. Large animals can carry a large 
battery, while broilers may only afford light batteries with short lifetime. 

Few studies on economic analysis of using PLF technologies at commercial farms have 
been conducted due to the scarcity of commercialized PLF systems. As the first priority 
of farmers, the economic benefit of using a PLF technology may directly affect their de-
cision on investment. Although simple estimations were mentioned above, systematic 
techno-economic analysis will be needed in the future.

Conclusions
In this review, three animal-based PLF technologies in broiler production, including 
image processing, audio analysis and sensor signal processing, were reviewed briefly. 
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We conclude that top-view cameras and microphones are the most promising PLF tools 
for applications at commercial farms. Wearable sensors are good candidate tools for lab 
research. Applications of image processing include behaviors and activity monitoring, 
and audio analysis could be potentially used for disease and stress detection. Barriers 
to applying image analysis in commercial farms include low accuracy of bird segmen-
tation, poor image quality due to low light intensity or uneven light, and misclassi-
fication of bird pixels and equipment pixels. For audio analysis, differentiating bird 
vocalization and sound of other mechanical systems is crucial. Development of PLF 
in broiler production is still in the early stage. Systematic ROI analysis will be needed 
for the evaluation of the benefit of PLF systems in commercial settings. These findings 
provide insights into the development of PLF technologies in commercial broiler farms. 
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Abstract
Multiple behaviours are expressed when commercially-housed broilers are given the 
opportunity to make use of free space unexpectedly appearing inside the barn. In ad-
dition to general displacements or movements also play behaviours are observed after 
a person has walked through the flock creating an empty area behind. Therefore, we 
developed an algorithm that first automatically captures all bird movements into the 
free space and outputs a corresponding short video sequence of the detected event 
using computer vision methods. In a second step, different classification techniques 
are investigated to quantify specific behaviours related to positive or negative welfare. 
A top-view camera installed inside a commercial broiler house captured a video each 
time a person walked through the barn. Walkthroughs were performed when birds 
were 21, 28 and 33 days of age. To capture all displacements, Gaussian Mixture Models 
were applied to the videos and heatmaps were created. The latter were used to derive 
movement features for every detected event. In a first analysis of single videos, the 
developed algorithm was able to 1) create short video sequences of all bird movements 
and 2) assign movement features for every detected event.

Keywords: positive welfare, broiler welfare, multiple action recognition, Gaussian 
Mixture Modeling, behaviour classification

Introduction
Broiler chickens are among the most numerous farm animals in the world today 
(OECD/FAO, 2017). As such, they have been subjected to intensive genetic selection to 
ensure a high efficiency of productive traits (Weeks et al., 2000). Simultaneously, there 
has been an increasing public concern over the standards of farm animal welfare, with 
the widespread perception that the drive for efficiency has been responsible for several 
animal welfare problems (Dawkins, 2017). Animal welfare has traditionally been eval-
uated based on the absence of negative subjective states (Edgar et al., 2013). However, 
during the last decade, there has been an increased focus on positive welfare, such as 
pleasure, curiosity and playfulness (Lawrence et al., 2019). Such positive states cannot 
be measured directly, rather they are monitored through several validated indicators, 
e.g. through behavioural monitoring (Dawkins, 2003; Mellor, 2012). The monitoring of 
behaviour can be performed automatically through the use of camera-based technol-
ogy (Peña Fernández et al., 2018). Previous studies have used camera-based techniques 
in broiler houses, linking the birds’ behaviour to their welfare status (Dawkins et al., 
2012; Dawkins et al., 2013; Kristensen & Cornou, 2011). For example, the study by Aydin 
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et al. (2010) modelled the activity of broilers as a consequence of changes in walking 
ability, whereas Kristensen et al. (2006) used camera-based monitoring techniques to 
model the activity of broiler chickens to changes in light intensity. Such studies provide 
examples of how camera-based techniques can be used to non-invasively and non-in-
trusively monitor the behaviour, and in extension the welfare, of broiler chickens. After 
a person has walked through the barn, a free space becomes available to the animals 
unexpectedly. As such, behaviours linked to positive welfare, such as frolicking and 
sparring, are being expressed more frequently (Baxter et al., 2019). In addition, walking 
and running events can be monitored and used to assess walkability, a trait related to 
negative welfare.

Therefore, it was the aim of this preliminary study to quantify a multitude of expressed 
behaviours linked to either positive or negative welfare of broilers using 2D wide an-
gle camera technology. To this end, a multi-stream Gaussian Mixture Modeling (GMM) 
(Zivkovic & Van der Heijden, 2006) approach was implemented to capture all bird move-
ments after a walkthrough.

Materials and methods

Camera setup and region of interest (ROI)
A wide angle top view camera was mounted on the ceiling of the barn to record videos 
of broilers at fifteen frames per second with a width and height of 2688 and 1520 pixels, 
respectively. The ROI was manually defined between the feeder line on the right side of 
the field of view (FOV) and the drinker line on the left side of the FOV (Figure 1).

Walkthrough experiment

Figure 1: Raw video data (left) and manually selected ROI (right)

Figure 2: Example of a walkthrough leaving an empty area behind
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A person walked through the flock between the feeder and drinker lines entering the 
FOV at the bottom and leaving the scene at the top when broilers were 21, 28 and 33 
days old. A walkthrough caused the birds to scatter away, leaving an empty area behind 
the person (Figure 2). In turn, this created an opportunity for the birds to make use of 
the free space and express a multitude of behaviours. 

Detection of events using the multi-stream GMM algorithm
The purpose of the developed algorithm is twofold: a) create short video sequences of 
every detected event and b) calculate movement features for every detected event

In a first step, the bird occupation density in the FOV is computed before a person 
enters the scene. When the bird occupation density reached 70% of the start value 
again, the algorithm stopped producing outputs as individual behaviour classification 
becomes irrelevant as there is not much free space left for the birds to move around. 
In a second step, the animals are segmented out of the images based on their color to 
calculate the mean area of the birds. The latter parameter was used for preprocessing 
in following steps to filter out movements smaller than the mean bird area. A third step 
consists of capturing movement in the video by applying two separately tuned Gaussi-
an Mixture Models (GMM) to the video frames producing an ‘all activity’ (GMMall) – and 
‘fast activity’ (GMMfast) video stream with the background subtracted. A ‘slow activity’ 
(GMMslow) video stream was produced by subtracting the GMMfast from the GMMall vid-
eo stream. In addition, the animals were tracked using the GMMall stream. In a fourth 
step, all GMM-frames of each separate stream within 2 seconds are summed to cre-
ate a corresponding Movement Map (MMall, MMfast, MMslow). By combining the 2-second 
Movement Maps MMall and MMfast, we create Heatmap 1 (HM1). By combining MMfast and 
MMslow we create Heatmap 2 (HM2). By using both HMs, we can extract several unique 
features indicative for a specific behaviour (e.g. ratio of fast – and slow pixels in HM1 
as compared to HM2). HMs contain several regions of movement where a displacement 
of any kind took place. When a region of movement is created by more than one bird, 
the animals within that region are tracked based on their movement and each event is 
segmented out of the scene resulting in short video sequences for every single bird. The 
left side of Figure 3 (see bottom left ‘Events detection’), provides a general overview of 
the aforementioned approach.

Behaviour classification of detected events
In this section we explain the behaviour classification of the multi-stream GMM al-
gorithm in more detail (see bottom right corner ‘Behaviour classifier’ in Figure 3). For 
every detected event, corresponding HM-features were calculated and a short video se-
quence was generated. Every short video sequence was labeled manually according to 
one of six observed behaviours being wing flapping, flying, running, walking, sparring 
or frolicking. Table 1 provides an overview of the labeled dataset of expressed behav-
iours. A first classification of detected behaviours, produced by the algorithm, is based 
on imposing hard thresholds on the calculated HM-features of a particular event. 
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Figure 3: Overview of the multi-stream GMM algorithm. GMM: Gaussian Mixture Model, MM: 
Movement Map, HM: Heatmap. 

Table 1: Overview of expressed behaviours for the walkthrough at age 21 days

Wing flapping Flying Running Walking Sparring Frolicking Total

Labeled 23 12 49 73 13 6 176

Results and discussion
With the proposed events detector (multi-stream GMM), 176 events were detected in 
190 seconds (all behavioral expressions larger than the mean bird area can be detect-
ed) for the walkthrough performed when birds were 21 days of age. With the proposed 
hard threshold classifier, the preliminary results show sixty-two out of seventy-three 
walking events can be successfully distinguished from all others, while twenty events 
were falsely classified as walking. This resulted in a precision and recall of 75.6 %  and 
84.9 %, respectively.

Conclusions
The proposed method can capture all expressed behaviours of broilers when a person 
has walked through the barn. By using a multi-stream GMM approach, unique move-
ment features are assigned to every detected event which, in turn, can be used for 
behavioural classification. Preliminary results for the detection of walking events using 
hard thresholds showed a precision of 75.6% and a recall of 84.9%. Future work includes 
feature engineering in order to improve behavioural classification.

We anticipate that the proposed approach, together with the labeled dataset, can be 
used as a basis for multiple action recognition in videos of broilers expressing a mul-
titude of behaviors when they enter an empty space after a walkthrough. Therefore, 
state-of-the-art classification algorithms that use short video sequences as an input 
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to classify multiple actions in a scene are currently being explored. As such, a final-
ized method could be used to detect behaviors related to positive and negative broiler 
welfare.
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Abstract
Injurious pecking against conspecifics is a serious problem in animal welfare in tur-
key husbandry. As bloody injuries act as trigger mechanism to induce further peck-
ing, a timely detection and intervention could prevent massive animal welfare impair-
ments and/or animal losses. Thus, the overarching aim is to develop a camera-based 
system to monitor the flock and detect injuries using neural networks. In a preliminary 
study, images of turkeys were manually annotated by labelling potential injuries and 
were used to train a network for injury detection. With the present study, we aimed to 
improve the injury identification by applying a keypoint detection model to provide 
more information on animal position. Therefore, seven keypoints on turkeys were de-
fined and overall 244 images (showing 7,660 birds) were annotated. Two state-of-the-art 
approaches for pose estimation were adjusted and their results were compared. Sub-
sequently, the better keypoint detection model (HRNet-W48) was combined with the 
segmentation model for injury detection. The classification of the individual injury was 
noted using “near tail” or “near head” labels for instance. To summarize, the keypoint 
detection showed good results and was clearly able to differentiate between individual 
animals even in crowded situations. In further research, specifying the injury location 
should improve the accuracy of an injury detection system.

Keywords: turkeys, injury localisation, pose estimation, crowded dataset, keypoint 
detection

Introduction
In turkey husbandry, injurious pecking against conspecifics is a widespread, serious 
problem in animal welfare (Dalton et al., 2013). The predestined body regions for such 
pecking injuries include the scalp, the neck, the snood as well as the back, the wings 
and the cloaca of the birds. As bloody injuries act as a trigger mechanism to induce 
further pecking behaviour (Huber-Eicher and Wechsler, 1997), an early detection of the 
occurrence of injurious pecking in the turkey flock and a subsequent intervention can 
avoid serious wounding and prevent an outbreak of this behavioural disorder (Kraut-
wald-Junghanns et al., 2011). Over the last years, research on animal welfare and be-
haviour was improved with the continuous advancement of computer vision and deep 
learning technologies. In the best case scenario, such approaches can support, sim-
plify and, above all, accelerate the continuous observation of animals. Furthermore, 
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an implemented real-time monitoring of large animal flocks, such as in conventional 
poultry farming, using computer visions and machine learning algorithms can help to 
prevent large-scale outbreaks of diseases or behavioural disorders (Zhuang et al., 2018). 

Analysing animal behaviour and health needs to be conducted with minimal human 
interference and involvement. Thus, computer vision is a proven non-invasive tech-
nology for video/image data collection (Leroy et al., 2006). Computer vision tasks are 
carried out, for instance, by pose estimation, which can provide important behavioural 
information. The method of pose estimation can be described as follows: Individual 
objects are abstracted into keypoints, which are spatial locations of interest, such as 
body parts or joints, and finally skeletons are estimated on them. To enhance the rec-
ognition precision, additional markers can be placed on the studied animals, however 
this method could have effects on them and be very expensive depending on the num-
ber of animals. Alternatively, modern approaches for pose estimation of animals are 
determined by non-invasive, vision-based solutions as keypoint detection (KPD). Thus, 
keypoints are marked manually on sample images or video frames in order to form 
a skeleton model and to purpose recording an individual animal as well as its pose 
estimation (Psota et al., 2020). 

In a previous study, an image-based automated system using a neural network to de-
tect pecking injuries in a turkey flock should be developed (Volkmann et al., 2021). 
Based on the manual annotations of such pecking injuries on images of turkey hens, 
a neural network was trained and various additional work steps were carried out to 
improve the detection assessment. The present study aimed to develop a KPD model 
on turkey hens to recognize the individual animals and their body regions (e.g. head, 
neck, back, tail and wings). In a second step, the detected injury should be localised. 
Therefore, information on pecking injuries (generated in the preliminary study) should 
be combined with their localisation (resulting from the KPD in the present study). Thus, 
the aim is to finally provide a method for injury localisation.

Material and methods

Preliminary research
The dataset of turkey images used in this study originate from a previously described 
study, which aimed to detect pecking injuries in the turkey flock using neural networks 
(Volkmann et al., 2021). Three top view video-cameras (AXIS M1125-E IP-camera, Axis 
Communications AB, Lund, Sweden) were installed at approximately 3.0 m above the 
ground to capture top-view videos. The recorded videos were cut into individual imag-
es for further processing. A software was developed for marking the injuries visible on 
the images by human observers. Afterwards, a neural network was trained with these 
annotations in order to learn to detect pecking injuries on other unknown images from 
the same domain.

Keypoint annotation
As the images of the observed animals were recorded by top view cameras, the turkey 
keypoints were defined by seven points also visible from the top and shown in Figure 
1 (a) and (b).
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(a)                                                              (b)

Figure 1: (a) Keypoint skeleton showing the beak (B), the head (H), the neck (N), the left wing (L), the 
right wing (R), the center of the body (C) and the tail (T). (b) Example image showing the keypoints 
on turkey hens.

The turkey data set was manually annotated using the annotation tool of Supervise-
ly (San Jose, CA, US) which is a web platform for computer vision developed by Deep 
Systems (Moscow, Russia). Overall, 244 images showing different situations, compart-
ments as well as age groups of the turkeys and thus stocking densities in the barn, were 
marked and the total number of annotated individual animals was 7,660 turkey hens.

Keypoint detection models
Two state-of–the-art deep learning algorithms for KPD were evaluated, namely the 
“Baseline for Human Pose Estimation” by Xiao et al. (2018) as well as the “High-Resolu-
tion Network” (HRNet) (Sun et al., 2019). 

The first step of the evaluated keypoint estimation network by Xiao et al. (2018) was 
to apply a backbone network on the input image to generate the network activations, 
the so-called feature maps, marking a lower dimensional response of the network. The 
second step was to predict the keypoint location individually from this lower dimen-
sional response. The ResNet (Residual Neural Network) (He et al., 2014) architecture 
was chosen for the backbone networks. 

The HRNet combines low resolution features with intermediate high resolution fea-
tures to achieve a high resolution and reduce loss of information. In this study, ResNet 
was used with different depths with 50, 101 and 152 layers, while the HRNet was evalu-
ated using W48 (big size) and W32 (small size), where 32 and 48 represented the widths 
of the high-resolution subnetworks. All networks were initialised by pre-training on 
the ImageNet (Deng et al., 2009) classification dataset.

The implementation of both methods was based on the OpenMMLab Pose Estimation 
Toolbox (MMpose Contributors, 2020) and tested on benchmarks of the COCO keypoint 
detection dataset (Lin et al., 2014).
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The metric of OKS (Object keypoint similarity) was used to quantify the closeness of 
the predicted keypoint location to ground truth keypoints on a scale between 0.0 and 
1.0. An OKS-threshold was applied to classify if a keypoint location was correct or not. 
The keypoint evaluation was performed according to the COCO evaluation metric (see 
http://cocodataset.org/#keypoints-eval) with 0.50 (loose metric) and 0.75 (strict metric) 
as reported thresholds. We evaluate the average precision at these thresholds as AP50 
and AP75 as well as the average recall (AR50, AR75). The average precision without a named 
threshold AP is a more abstract measure, which averages over different OKS-thresholds 
between 0.50 and 0.95 and allows a combined view. Average recall without a named 
threshold AR is the analogue measure for the recall.

Segmentation model
As described in Volkmann et al. (2021), human observers processed the images of tur-
key hens and annotated manually the visible injuries on them. With these annotations 
a network for semantic segmentation was trained: the U-Net based on an Efficient-Net 
backbone (Ronneberger et al., 2015; Tan and Le, 2019). Thus, pixelwise masks of injuries 
were generated building on this previous work.

Combination of models
The evaluated KPD models and the segmentation model were combined. First, the key-
points were detected and mapped to the original image to preserve the original scaling. 
Afterwards, the segmentation model for injuries was applied and rescaled accordingly. 
Before the injury segmentation was finally added to the keypoint output image, sever-
al post-processing steps were implemented. For each injury, the closest keypoint was 
noted and thereby any detection was identified as one of the following injuries: Beak 
(B), head (H), neck (N), left wing (L), right wing (R), center of the body (C) and tail (T). This 
classification followed the keypoint schema shown in Figure 1. If no closset keypoint 
was found, the ‘related’ injury was identified as a false positive segmentation. 

Results and discussion
In this study, two state-of-the-art approaches for KPD on turkeys were adjusted and 
evaluated. On an evaluation set of images, which was withheld during the training of 
the KPD, the baseline method with 152 layers and the HRNet with 48 layers were tested. 

Figure 2: Comparison of KPD using (a) baseline method with 152 layers and (b) HRNet-W48. Turkey 
showing differences between the results of the baseline and HRNet are highlighted with yellow 
circles on the right image.
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The qualitative results are shown in Figure 2 on two example images. They show that 
turkey KPD based on images of top view cameras was possible even for such images 
with situations of touching and moving turkeys, which were overlapping in the imag-
es. Overall, there were clear differences between the results of the baseline and HR-
Net-W48 (highlighted with yellow circles see Figure 2), the HRNet results were superior 
in most cases. The HRNet-W48 model required approximately 750 ms processing time 
on a 2017 Nvidia TITAN Xp GPU, which was sufficient for our application with low fram-
erate footage.

For a more in-depth analysis we used a quantitative evaluation. The results of the met-
rics for the two performed KPD model evaluations are listed in Table 1. They showed 
that higher network complexity led to better results and the differences between base-
line and HRNet were confirmed. In terms of quantitative results, the HRNet-W48 model 
showed the best performance values. High values for the loose metric AP50 of up to 0.75 
were reached, similarly to results reported by other authors in challenging situations 
(compare AP50 = 0.85 for ankles in pose estimation by Sun et al., 2019). This confirmed 
the visual findings, which were able to reliably localise turkey keypoints even in top-
down view in a crowded dataset. The values for the AP75 strict metric and also the AP, 
which includes even a stricter threshold, were lower, showing a less accurate result for 
some keypoints. As the exact location of some keypoints - such as left or right wing - 
were only roughly visible in top-down-view – especially when the animals had moved, 
were grooming themselves or were sleeping in a different posture - the detection ac-
curacy of these keypoints was limited. Since such situations occurred frequently in the 
recordings of turkeys’ natural behaviour in the flock, this could explain the reduced 
values of AP75 and the AP. Furthermore, it has to be considered that the annotation of 
keypoints on the all-white body of the turkeys was already difficult and therefore, it 
could not be guaranteed that, for instance, the ‘center of the body’-keypoint always had 
the same position. A study of Doornweerd et al. (2021) on pose estimation in turkeys 
placed the keypoints on hocks and feet. Such keypoints are to define more precisely 
than ones on images from a top-view camera.

Table 1: Object keypoints similarity metrics resulting from the different keypoint detection models 
stating the average precision with the threshold values of 0.50 (AP50) and 0.75 (AP75) and averaged 
over thresholds from 0.5 to 0.95 (AP) as well as the average recall with the threshold values of 0.50 
(AR50) and 0.75 (AR75) and averaged over thresholds from 0.50 to 0.95 (AR). Best performing values 
are printed in bold.

Architecture Type AP50 AP75 AP AR50 AR75 AR

Baseline - ResNet50 0.648 0.107 0.213 0.691 0.198 0.292

Baseline - ResNet101 0.640 0.107 0.228 0.687 0.200 0.288

Baseline - ResNet152 0.659 0.134 0.254 0.703 0.231 0.313

HRNet-W32 0.692 0.158 0.267 0.726 0.241 0.323

HRNet-W48 0.735 0.246 0.322 0.762 0.355 0.383

The network for injury detection from previous work (Volkmann et al., 2021) yielded an 
agreement with the human observers of F1-score = 0.14, a recall of 0.19, and precision of 
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0.11 (Figure 3). For the next step in this study, the combination of KPD with the injury de-
tection, we used the previously identified, quantitatively best KPD method HRNet-W48.

Figure 3: Example image which was annotated by the neural network for injury detection from 
previous work (Volkmann et al., 2021). The human annotations are framed with green bounding 
boxes and those of the network are framed with red bounding boxes.

An example image of the combination of the detection models is shown in Figure 
3. Because the turkey hens presented on this image are very close to each other, the 
classification of the individual injury was challenging. However, the KPD was able to 
differentiate between individual animals, even in such crowded situation as found in 
conventional poultry housing where several thousand animals are kept together in 
a flock. In the evaluation, some only partially visible turkey hens on the image border 
were missed with KPD, but due to our striven use case, this was not detrimental. Final-
ly, the injury locations were noted using labels as for instance “near neck”, “near beak” 
or “near tail” (Figure 4). Thus, the developed KPD combined with the injury detection 
could be used for injury localisation.

Figure 4: Combination of KPD generated in this study and injury detection from previous work 
on the evaluation dataset. The keypoints are shown in lilac connected by blue lines. The injuries 
detected previously are highlighted using red boxes, while the classification of the injuries is marked 
using labels such as for instance “near neck” or “near tail”.
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Further research should be conducted to ensure that the use of KPD has the potential 
to improve the accuracy of an injury detection system. Obviously, the overarching aim 
remains, providing a system to monitor the turkey flock with regard to animal welfare 
in order to support the farmer in surveillance assistance. Nevertheless, such a system 
can only be used to draw attention to already existing pecking injuries in order to in-
tervene and for instance separate the injured animal. Unfortunately, such a monitoring 
system cannot offer a method which prevents such injurious pecking behaviour from 
the very beginning.

Conclusions
This paper proposed and evaluated different keypoint detection models on images re-
corded in a turkey hen flock, where the partially crowded situation of the animals led 
to overlappings on the images. Overall, the pose estimation methods showed good re-
sults and the HRNet-W48 model finally provided the best performance. Therefore, the 
HRNet-W48 model was combined with an injury detection model to establish a system 
for injury localisation. The classification of the individual injuries such as “near tail” or 
“near left wing” has the potential to reduce false-positive injury detections. Therefore, 
it is assumed, that this injury localisation could finally improve the accuracy of the 
aimed automatically injury detection.
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Abstract
Consumer’s expectations are shifting towards natural and animal-friendly produc-
tions. Consequently, several dairies developed a ‘pasture milk’ label which requires 
dairy cows to spend a minimum time per day on pasture, and they are looking for tools 
to ensure this traceability. To achieve this, an algorithm to automatically estimate the 
time spent on pastures based on GPS collars data, was previously developed and vali-
dated in experimental farms. This trial in experimental conditions gave good results: 
the time spent outdoor (Tout) were estimated with RMSEs between 17 min/d to 53 min/d 
(Lebreton et al., 2022). Our objective was then to test these devices and algorithm in 
real farm conditions with a variety of geographical territories (plain and mountain ar-
eas), and different grazing systems (opened or controlled access to pastures). The trial 
was performed on 22 commercial farms located in the French Normandy and Massif 
Central regions. In each farm, approximately 15% of the herd was equipped with a GPS 
collar. The farmers recorded the real access time to pasture, the GPS sensors recorded 
cows’ locations and the algorithm calculated the outdoor access time. Unlike the good 
results obtained on experimental farms, the trial faced several issues. The bad GPS 
network or the poor GPS accuracy in the barns and the lack of 2G or SigFox networks in 
some areas caused a lot of gaps in the data. Moreover, the recording of reference data 
by the farmers was heterogeneous and only a few recordings were exploitable. This 
field trial was a good example of the issues to face when a precision livestock farming 
tool is deployed in real conditions.

Keywords: traceability, grazing time, dairy cattle, GPS, algorithm

Introduction
In France, several dairies decided to develop a ‘pasture milk’ label a few years ago to an-
swer the consumers’ expectations towards natural and animal welfare respectful prod-
ucts. Therefore, dairy farmers subscribing to this label, have to respect specifications 
that require the milk to be produced from cows that graze a minimum number of days 
per year and a minimum number of hours per day. In France, most of the dairies have 
set up thresholds at a minimum of 6h/day and 120 days/year (CNIEL, 2019). Currently, 
the compliance with this specification is ensured by an audit done directly by opera-
tors on the farms. They are controlling the grassland area, grazing evidences (fences, 
drinkers and dungs in the pastures), as well as interviewing the farmer and checking 
the grazing calendar manually filled by the farmer. To help both the farmers and the 
dairies, a service was developed to objectify these indicators thanks to cows geo-track-
ing and algorithms to automatize grazing time calculation. For the farmers, these new 
available data can also provide additional information for decision making on grazing 
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management. One algorithm and tools developed were previously validated in experi-
mental farms and gave good results in these experimental conditions with an outdoor 
access time (Tout) estimated with RMSEs of 17min/d, 53 min/d and 50min/d (Lebreton 
et al., 2022). Before to launch this service on the field, a new trial was performed in 22 
commercial farms located in Normandy and Massif Central between March and Octo-
ber 2021 to check the performances of the algorithm in real life conditions.

Material and methods

Deployment design
A total of 22 farms from the Normandy and Massif Central regions were involved in this 
trial. These 22 farms represented a diversity of farm size (31 to 150 cows), farm systems 
(plain and mountain), milking systems (robot and milking parlour) and access to pas-
ture (free access, restricted access, night paddocks). The farms were recruited with the 
support of 2 dairies (‘Maîtres Laitiers du Cotentin’ and ‘Jeune Montagne’). On each farm, 
a proportion of the herd was equipped with GPS collars (DigitAnimal, Spain): between 
10 and 15% depending on the milking system, the type of access to pastures and the 
herd composition. A total of 134 collars were deployed (77 in Normandy and 57 in Mas-
sif Central) to check the daily movement of the herd between the barns and pastures. 

Network coverage and data quality
The GPS sensors recorded timestamped cows’ locations data (latitude and longitude). 
The data quality received from the sensors can be affected by two issues: the quality 
of the GPS network coverage and the quality of the SigFox or 2G network coverage. In 
Normandy, GPS collars used the ‘Sigfox’ network. This network communicates over 
long distances with low energy supply. In Massif Central, the SigFox network coverage 
is poor, therefore the 2G network, also called GSM (Global System for Mobile Com-
munications), was used. With optimal conditions (GPS and data networks), location 
data are sent every 11min in Normandy and every 15 min in Massif Central, leading 
to a maximum of respectively 130 and 96 data per day received per collar. However, if 
the network quality is poor, some gap in the data can occur. To check the quality of the 
networks, the data emission rate (DER) was used. The DER was calculated by the ratio 
between the total number of location data emitted by a collar per day and the maxi-
mum number of location data per collar and per day (130 and 96). 

Calculation of the time spent outside 
The algorithm described by Lebreton et al. (2022) was used to discriminate the positions 
of cows when they are into the barn from when they are on pasture. This algorithm, 
called algorithm A, was based on the hypothesis that when processing all the data of 
a sufficient time window, the density of cows’ positions would be higher when they are 
in the barn than on pasture. Thus, the algorithm A needs enough position data from 
both the barn and the pastures. It makes it very sensitive to the missing data due to 
lack of connectivity because of the barn structure or of poor network coverage. 

Therefore, a second algorithm, called algorithm B, was developed using as input the 
geolocation data of the animals provided by the GPS collars and the map data of the 
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farm system (position of the barn and the paddocks). Unlike the algorithm A that auto-
matically detects the barn, farmers must draw the map of their farm system on a map 
application. The algorithm B crosses the map data and the cows’ positions data. Each 
cows’ position is labelled as “barn”, “paddock” or “NA”. The “NAs” were affected to the 
closest polygon (representing the barn or the paddocks). Around the barn, a buffer area 
was then defined and the cows’ position inside the buffer zone was affected to the barn 
or the closest paddock regarding cow’s trajectory patterns. The algorithm estimates the 
time spent outside the barn (Tout) daily by multiplying the theoretical interval between 
2 positions (11 min in Normandy, 15 min in Massif Central) by the number of positions 
labelled “paddock”. Moreover, the reference Tout was recorded by the farmers. Indeed, all 
the farmers were asked to record, for a period of 15 days, the opening and closing times 
of the pasture access. Some of them maintained this recording more occasionally after 
this 15-d period. All these reference times were then compared with the Tout estimated 
by the algorithm. Finally, we decided to use the algorithm B for its reproducibility.

Results and Discussion

Evaluation of the DER
The Figure 1 represents data emission per collar during the day. This example for a Nor-
mandy farm with good average data emission illustrates the bad network coverage 
when the cows are indoor for milking, at 7am and 6pm. 

Figure 1: number of data emitted during the day per collar for one Normandy farm

In Normandy, the average DER was around 50% with a large diversity (from 10 to 85 %, 
figure 2). In Massif Central, the average was only around 35% (from 12 to 80%). None of 
the 22 farms had a DER of 100%. This low DER can mostly be explained by the poor GPS, 
SigFox or 2G network coverage in some areas but also because of the barn interferences. 
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Indeed, the average location accuracy is 5 meters on the pasture and 50 meters on the 
barn. This rather low DER affected the quality of the data and the quality of the estima-
tion of Tout. To improve the DER and to avoid the loss of data due to a poor GPS signal 
inside the barns, several solutions exist and could be used. To improve 2G or Sigfox 
networks coverage, relay antennas could be installed in the areas with poor coverage.

Figure 2: Average DER per farm and per region

Evaluation of the Tout calculation
The Tout was calculated on each farm based on the algorithm B. The figure 2 below 
shows the daily Tout calculated and the reference Tout recorded by a farmer from Nor-
mandy on one of the 22 farms involved in the trial. This figure 3 is a good example to 
show a change in the grazing system, here in June and October.

Figure 3: Daily Tout over the trial period for a given farm (in blue the reference Tout and in red the 
calculated Tout)
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The Tout calculation strongly depends on the data quality discussed previously. Indeed, 
gaps in the sensor data can generate an underestimation of the Tout and GPS inaccuracy 
when the cows are inside the barns can generate an overestimation of the Tout. When the 
GPS signal is poor, as it is often the case when the cows are inside the barns, the location 
accuracy is not better than 50 meters and the cows are often located as being outside. 

The Figure 4 illustrates the effect of the bad data quality on the Tout accuracy. It presents 
the correlation between the Tout and the reference Tout for all the farms in Normandy 
and Massif Central. The correlation is positive, but weak, for Normandy and Massif 
Central. This can be explained by missing data and because most farmers lacked pre-
cision in recording reference data. Indeed, the recording of real access time to pastures 
by the farmers was heterogeneous and only a few recordings were really exploitable. 

Figure 4: correlation between grazing time calculated and reference grazing time

GPS is a suitable solution for estimating days spent on pasture but it is affected by the 
network coverage. Therefore, additional devices could be used to improve data quality 
or give additional grazing evidences.  To improve data gap issues, especially when the 
cows are indoor, a Bluetooth beacon or a RFID reader could identify if cows are entering 
or exiting the barns. An accelerometer could also be complementary used to analyze 
cows’ movements and monitor the real grazing behavior and not only the outdoor ac-
cess time (Allain et al., 2015)

Tools developed to ensure traceability of dairy cows on pastures
Even with poor data quality, and thanks to the position of the barn and the pastures 
provided by the farmers, it was possible to develop additional tools to ensure traceabil-
ity of cows in pasture. 

The first of them is a grazing calendar (figure 5) displaying the paddocks visited by the 
herd and the time spent on each paddock. This can give evidence of rotational grazing 
and avoid the farmer to fill his grazing calendar manually. This calendar can also help 
him to better manage grazing strategies on his farm and to keep a history of the grazed 
paddocks. 
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Figure 5: Automated grazing calendar

The second tool is an interactive map representing animals’ positions in the paddocks 
(Figure 6). This map shows the daily position of the cows equipped in the paddocks, 
each day being represented by a distinct color point. This map has a visual interest 
and can show that cows were outside every day and that they were moving from one 
paddock to another and therefore give additional evidence of a rotational grazing on 
the farm. The last output is a heatmap (Figure 7) representing the location densities of 
cows in the paddock. This heatmap could be used by the farmers to identify overgrazed 
or undergrazed areas and help him to better design his paddocks. 
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Figure 6: Example of the map 
representing animal location 
in the paddocks. Each colour 
stands for a different day.

Figure 7: Heatmap of the cow’s location on a given 
paddock. The lighter the colour, the more the cow was 
in this area.
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Conclusions
We developed an algorithm in experimental farms which automatically estimates the 
time spend on pastures based on GPS collars. This experimental trial gave accurate 
grazing time results. However, deploying this algorithm on commercial farms with a di-
versity of situations is necessary to check its robustness before to use it more wide-
ly on the field. Unfortunately, this solution was not as accurate as what we observed 
in experimental conditions. This was mostly due to poor networks coverage in some 
areas. This trial is a perfect example of the gap between experimental and real-life 
conditions and the difficulties faced by manufacturers when they launch a new com-
mercial product on the field. However, solutions exist. Indeed, it could be relevant to 
use complementary tools to GPS sensors, to compensate these network deficiencies, 
and strengthen the precision of this traceability tool. Even with poor data quality, we 
showed that additional data exploitation (grazing calendar, location map) provided suf-
ficient evidence of grazing presence on farm. Therefore, GPS is a suitable solution to 
estimate the time spent on pasture, but it is not the most appropriate technology to 
accurately certify grazing time when the network coverage is poor. The main purpose 
of using GPS is to propose additional services such as grazing calendars, heatmaps, or 
cows’ location per day on each paddock.
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Abstract
In the panorama of precision livestock farming animal welfare, which the quality of 
products inevitably depends on, is increasingly important. Nowadays, automatic milk-
ing systems allow a more detailed monitoring of individual animals and the custom-
ized modelling of the productivity trend of each cow, as well as of the herd. It is already 
known that a warm, humid environment is the main cause of heat stress for dairy 
cows, and this is becoming even more serious due to climate change. Data from envi-
ronmental sensors in the barns together with productivity and activity data enable the 
study and assessment of production loss due to heat stress. In this work, a new method 
for identifying production anomalies by modelling the lactation curve is presented. 
The model allows us, on the one hand, to study the residuals (difference between the 
observed data and the corresponding prediction) and, on the other hand, to examine 
the production deficit at the end of the lactation cycle. Furthermore, the use of a ma-
chine learning model applied to the data obtained from the first analysis shows it is 
possible to predict the milk yield loss due to heat stress. The training of the model on 
several animals in similar conditions (e.g. lactation, age) can be a valuable support for 
the farmer to predict the potential milk yield losses of the herd and to introduce the 
necessary preventive or mitigative measures.

Keywords: Precision livestock farming; Data analysis; Agricultural engineering; 
Animal welfare; Numerical model

Introduction
Heat stress is one of the most critical issues jeopardizing animal welfare and produc-
tivity in dairy farms, with consequences for both milk quantity and quality, and for 
the efficiency of the use of natural resources (Benni et al., 2020), as well as and for the 
energy required for milk production (Strpić et al., 2020). In this regard, the global trend 
of higher average temperatures coupled with more frequent temperature peaks reduc-
es the lactation efficiency and thus indirectly increases the negative environmental 
impact of dairy cattle farming (Heinicke et al., 2019). Moreover, prolonged stresses may 
harm the cow’s health, and the consequent treatment of animals is a burden for the 
overall economic balance of the farm and, whereas it includes the use of antibiotics, 
this entails the well-known drawbacks on the environment and on human health.

In the last decades, many devices have been introduced in livestock farms to monitor 
and control environmental conditions, animal behavior and production parameters 
(Bonora et al., 2018). Available data types usually include on-farm sensors, providing 
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detailed milk composition (monthly on a cow level, bi-weekly on a herd level), other 
performance data (e.g., fertility), weather and environmental data (Mbuthia et al., 2022). 
Additionally, milk quality reports at dairies and labs are often logged for long-term 
analysis. Nevertheless, such data processing practices do not allow a daily monitoring 
of the trends so the farmer can take prompt action (Bovo et al., 2021). Moreover, the 
information from different sources are almost never crossed among different systems 
and different levels. A proper numerical modelling for early diagnosis and the identi-
fication of optimal prevention strategies requires good data management, in terms of 
acquisition, processing and harmonization, particularly in fields where very heteroge-
neous data may be collected (Bovo et al., 2020), and agreed protocols have not been yet 
standardized. Essentially, tools to effectively interpret the already available informa-
tion are lacking.

In this study, a new method for identifying production anomalies by modelling the lac-
tation cycle is presented. The model allows both to study the residuals and to examine 
the production deficit at the end of the cycle. In particular, the term “residual” stands 
for the difference between the observed data and the corresponding prediction. Fur-
thermore, the use of a machine learning model applied to the data obtained from the 
first analysis has shown it is possible to predict the milk yield loss due to heat stress. 
The training of the model on several animals in similar conditions (e.g. lactation, age) 
can be a plausible support for the farmer in order to predict the potential milk yield 
losses of the heard and to introduce the necessary preventive or mitigative measures.

Material and methods

The numerical models
The study was conducted using data collected in an experimental farm in Groß Kreutz, 
Germany. The barn is equipped with a Lely™ “Astronaut” automatic milking system 
(AMS). More information about the farm is available in earlier publications, e.g. (Hempel 
et al., 2018)in situations where monitoring in the direct vicinity of the animals is not 
possible, we collected long-term data in two naturally ventilated dairy barns in Germa-
ny between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min 
temporal resolution.

The dataset covers the period 2015-2020 and entails:

 — time series of milk yields of 189 cows, from the AMS;
 — time series of temperature and relative humidity from multiple sensors inside the 
barn.

The packages “matplotlib” (Hunter, 2007) and “seaborn” (Waskom, 2021) were used to 
display results and intermediate plots, while other Python (Van Rossum & Drake, 2009) 
libraries like “lmfit”, “numpy” and “pandas” proved to be useful for handling data. The 
Wood model (Wood, 1967) was used to obtain a curve representing the “expected” yield 
of each animal during the lactation cycle. As proved by the Random Sample Consensus 
(RANSAC) approach (Fischler & Bolles, 1981)Random Sample Consensus (RANSAC, the 
sampling operation followed by a multiple fit, can lead to a solid result and is capable of 
interpreting/ smoothing data containing a significant percentage of gross error.
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Description of the pipeline
The datasets related to the AMS and to the microclimatic data were first read using the 
pandas library and subsequently joined in order to obtain a dataset containing all the 
information needed for the analysis.

The Temperature-Humidity Index (THI) was calculated in the following way (National 
Research Council, 1971):

For each animal and for each lactation, it is possible to fit the Wood model to obtain the 
parameters a, b, c:

Where: MY is the daily milk yield [kg/d] and DIM is days in milk.

A filter was applied to select only the data where the daily THI did not exceed a thresh-
old of 65, used as a predicator of potential heat stress.

A more robust statistics can be obtained by randomly sampling the original amount of 
data and producing a different Wood fit for each sample.

This way, a collection of Wood models is obtained:

where are the parameters of the kth curve. 

The sampling and fitting process can be repeated N times, selecting each time a fixed 
fraction f of the original data. Here, we used N=500 and f=1/10. The obtained family of 
curves and the corresponding parameters can then be used to define a representative 
median curve:

where:

The median values of the parameters have been assumed instead of the mean values 
since they are not affected by outlier values. In some cases, unacceptable curves are 
obtained, e.g., entailing negative or infinite values or unrealistic trends. For this reason, 
it has become necessary to perform a selection of only the meaningful curves. Then, re-
siduals were calculated as the difference between the actual milk yield data and values 
of the median curve. The beam of such curves is then filtered selecting only curves with 
an initial positive trend. The dispersion of the different values obtained in correspond-
ence of the different curves can be used to define a criterion for the detection of anom-
aly values, for instance by selecting a proper multiple value of the standard deviation 
value of defining a confidence interval. This because the values more distant from the 
median curve would be considered in the method as anomaly points.

𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8𝑇𝑇 + 𝑅𝑅𝑇𝑇(𝑇𝑇 − 14.4) + 46.4 

𝑀𝑀𝑀𝑀(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎DIM𝑏𝑏𝑒𝑒−𝑐𝑐DIM 

MY𝑘𝑘(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎𝑘𝑘 ∙ DIM𝑏𝑏𝑘𝑘 ∙ 𝑒𝑒−𝑐𝑐𝑘𝑘∙𝐷𝐷𝐷𝐷𝐷𝐷 

MYmedian(DIM) = 𝐴𝐴 ∙ DIM𝐵𝐵 ∙ 𝑒𝑒−𝐶𝐶∙𝐷𝐷𝐷𝐷𝐷𝐷 

{
𝐴𝐴 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑎𝑎𝑘𝑘)
𝐵𝐵 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑏𝑏𝑘𝑘)
𝐶𝐶 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑐𝑐𝑘𝑘)

 

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8𝑇𝑇 + 𝑅𝑅𝑇𝑇(𝑇𝑇 − 14.4) + 46.4 

𝑀𝑀𝑀𝑀(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎DIM𝑏𝑏𝑒𝑒−𝑐𝑐DIM 

MY𝑘𝑘(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎𝑘𝑘 ∙ DIM𝑏𝑏𝑘𝑘 ∙ 𝑒𝑒−𝑐𝑐𝑘𝑘∙𝐷𝐷𝐷𝐷𝐷𝐷 

MYmedian(DIM) = 𝐴𝐴 ∙ DIM𝐵𝐵 ∙ 𝑒𝑒−𝐶𝐶∙𝐷𝐷𝐷𝐷𝐷𝐷 

{
𝐴𝐴 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑎𝑎𝑘𝑘)
𝐵𝐵 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑏𝑏𝑘𝑘)
𝐶𝐶 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑐𝑐𝑘𝑘)

 

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8𝑇𝑇 + 𝑅𝑅𝑇𝑇(𝑇𝑇 − 14.4) + 46.4 

𝑀𝑀𝑀𝑀(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎DIM𝑏𝑏𝑒𝑒−𝑐𝑐DIM 

MY𝑘𝑘(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎𝑘𝑘 ∙ DIM𝑏𝑏𝑘𝑘 ∙ 𝑒𝑒−𝑐𝑐𝑘𝑘∙𝐷𝐷𝐷𝐷𝐷𝐷 

MYmedian(DIM) = 𝐴𝐴 ∙ DIM𝐵𝐵 ∙ 𝑒𝑒−𝐶𝐶∙𝐷𝐷𝐷𝐷𝐷𝐷 

{
𝐴𝐴 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑎𝑎𝑘𝑘)
𝐵𝐵 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑏𝑏𝑘𝑘)
𝐶𝐶 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑐𝑐𝑘𝑘)

 

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8𝑇𝑇 + 𝑅𝑅𝑇𝑇(𝑇𝑇 − 14.4) + 46.4 

𝑀𝑀𝑀𝑀(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎DIM𝑏𝑏𝑒𝑒−𝑐𝑐DIM 

MY𝑘𝑘(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎𝑘𝑘 ∙ DIM𝑏𝑏𝑘𝑘 ∙ 𝑒𝑒−𝑐𝑐𝑘𝑘∙𝐷𝐷𝐷𝐷𝐷𝐷 

MYmedian(DIM) = 𝐴𝐴 ∙ DIM𝐵𝐵 ∙ 𝑒𝑒−𝐶𝐶∙𝐷𝐷𝐷𝐷𝐷𝐷 

{
𝐴𝐴 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑎𝑎𝑘𝑘)
𝐵𝐵 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑏𝑏𝑘𝑘)
𝐶𝐶 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑐𝑐𝑘𝑘)

 

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8𝑇𝑇 + 𝑅𝑅𝑇𝑇(𝑇𝑇 − 14.4) + 46.4 

𝑀𝑀𝑀𝑀(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎DIM𝑏𝑏𝑒𝑒−𝑐𝑐DIM 

MY𝑘𝑘(𝐷𝐷𝑇𝑇𝑀𝑀) = 𝑎𝑎𝑘𝑘 ∙ DIM𝑏𝑏𝑘𝑘 ∙ 𝑒𝑒−𝑐𝑐𝑘𝑘∙𝐷𝐷𝐷𝐷𝐷𝐷 

MYmedian(DIM) = 𝐴𝐴 ∙ DIM𝐵𝐵 ∙ 𝑒𝑒−𝐶𝐶∙𝐷𝐷𝐷𝐷𝐷𝐷 

{
𝐴𝐴 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑎𝑎𝑘𝑘)
𝐵𝐵 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑏𝑏𝑘𝑘)
𝐶𝐶 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑐𝑐𝑘𝑘)

 

 



1018 Precision Livestock Farming ’22

Production anomalies
The method proposed here allows the introduction of a lactation model that is robust 
with respect to statistical fluctuations and automatically creates an acceptability range 
linked to the dispersion of the curves belonging to the beam. 

The standard deviation and its multiples can be used to find a threshold for the resid-
uals in order to determine whether any given value is an anomaly. All points out of the 
beam were considered “anomalies”, Note that positive residuals were also considered. 
While positive residuals cannot be attributed to heat stress or other adverse effects, 
they can be informative and could serve as indicators of change in the physiological 
condition of a cow.

Results and Discussion
The use of a multiple fit on different partial datasets obtained after the sampling oper-
ation, led to 500 Wood curves for each lactation. In Figure 1, the curves deemed physi-
cally acceptable are shown for a lactation cycle of one sample animal.

Figure 1: Wood curves with zootechnical significance for one lactation of a cow considered in the 
study.

Figure 2: Anomaly detection in the plane DIM Vs MY.
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Figure 2 shows, in solid blue, the median curve obtained by computing the median val-
ues of the parameters of the fit curves of Figure 1. Then it shows the 95% confidence 
interval expressed by two standard deviations from the median curve. Blue points are 
considered within normal range (could be attributed to the expected normal dispersion), 
while orange points, outside the 95% range have been considered as anomaly points.

Figure 3: Scatterplot of the residuals of a fit curve.

As seen in Figure 3, residuals can be negative or positive, meaning in the latter case that 
milk yield can exceed the expected value. Therefore, in order to detect net production 
deficit in consecutive intervals, the daily residuals must be accumulated. In Figure 4 the 
cumulative curves of the expected and real milk yield trends are shown and overlapped 
to the trend line of their differences (the solid blue line). It is interesting to note that this 
differences (solid blue line in Figure 4) reach the value in correspondence with a DIM 
value equal to 90 days, about corresponding to the days with a production peak in the 
lactation curve. This is a recurrent condition with reference to the group of cows ana-
lysed, meaning the model was able to predict with high accuracy the cumulative milk 
yield in the first 90 days corresponding to the most productive stage of the lactation.

Figure 4: Cumulative curves of the expected and real Milk Yield (dashed and dash-dotted lines, 
respectively) and the corresponding differences (continuous blue line). In the legend delta represents 
the curve of the differences between the real and expected values.
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Figure 5 shows the trend of the average difference between the expected and real cu-
mulated milk yield for the entire group. As above anticipated the minimum values can 
be observed in correspondence to DIM ranges characterized by high values of the lacta-
tion curve (see also Fig. 2). This analysis has been performed on all the cows counting 
at least 100 consecutive days in milking and at least 8 valid fit curves.

Figure 5: Average delta between expected and real cumulated milk yield. The light-blue coloured 
interval represents the 95% confidence interval.

Conclusions
Currently there is no systematic and statistically robust method for detecting pro-
duction deviations from caused by various factors, such as environmental stress. The 
statistical method developed in this paper offers a robust way to identify production 
anomalies in the lactation period of individual cows on the basis of a multiple fit. More-
over, the use of a multiple of the standard deviation to define the acceptability range of 
the daily milk yield can leads to the introduction of a variable threshold, which could 
be used for production anomaly detection.

The anomalies identified with this method can be both positive and negative with re-
spect to the range of acceptable values. This feature makes it clearly visible a further 
prospective of the use of this method: its application to an even greater number of 
cows and lactations will allow to collect an increasing number of anomalies. This can 
help a machine learning model, which is the subject of an ongoing study, in its training 
phase, making its forecasting performances more stable. This approach can be also 
used to classify daily production data as “normal” or “abnormal”.
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Abstract
The continuous monitoring of livestock behaviour is an important task in precision 
livestock farming. An early recognition of critical events in a herd can lead to an im-
proved animal welfare and thus for example in a reduced need of antibiotics. Further-
more, it has been found that even feeding intake and efficiency can be affected by 
animal behaviour. Due to the size of modern livestock farming operations, the usage of 
automated systems becomes necessary. 

We present a scalable automated monitoring system composed of low-cost IP video 
surveillance cameras and affordable edge-computing hardware on-site, complemented 
by standardized web services that allow for long term video storage and analysis. For 
the automated analysis of eating- and resting time as well as activity levels in videos, 
we perform state-of-the-art object detection and tracking using a YOLOv3 DeepSORT 
Convolutional Neural Network. 

Data management and the integration of the analysis system into the farmers’ work-
flows are achieved using a distributed service interoperability network that allows the 
exchange of data between different services related to livestock management. The in-
teroperability network is completely federated and based on established web technolo-
gies. Interoperability is achieved through standardized APIs and data formats.

This enables farmers for example to seamlessly integrate behaviour analysis results 
into feeding management systems, or to share the results with external consultancy 
services or other stakeholders in the production chain. Furthermore, the standardized 
data exchange removes the extra workload that is caused by entering the same data 
into different systems.

Keywords: behaviour analysis, Deep Learning, data integration

Introduction
There will be an increase in demand for animal products by 2050 (FAO. 2017).  At the same 
time, the number of livestock is increasing, while the number of farmers is decreasing. 
This means there are bigger herds per farmer (Egger-Danner et al., 2020). For farmers, 
it’s thus becoming more impossible to monitor or follow their animals in a reliable way 
(Berckmans, 2017). Several problems like monitoring health and welfare of the animals, 
reducing the environmental impact and assuring productivity per livestock needs to be 
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addressed. This is where Precision Livestock Farming (PLF) comes in. PLF aims to pro-
vide a real-time monitoring and managing system for farmers (Schillings et al., 2021). 
It provides early warning and advice system while the animal is being reared. This is 
very different from the current manual monitoring of animal welfare by human experts 
(Berckmans, 2017, Schillings et al., 2021). Such methods do not help in the betterment of 
the life of the animal under investigation. For example, it is nice to detect a problem after 
an animal has arrived at the slaughterhouse, but it is much better to detect a problem 
while the animal is still being reared and to take immediate action. The idea of PLF is to 
provide a real-time warning so that when something doesn’t go right, immediate action 
can be taken to solve the problem. For these purposes a camera network will be installed 
within the barn to analyse animal behaviour by means of image processing. The video 
streams onsite will be stored on a hard-disk and video data would be uploaded to cloud 
storage in a timely manner. The behavioural analysis service will then access the video 
data to the make the analysis results available via the ATLAS interoperability network to 
the visualization services providing the farmers a more real-time update on the welfare 
and health of the livestock. Thus, PLF will act as an early warning and advice system, 
thereby improving the overall monitoring and welfare of the livestock.

State of the art PLF
PLF is an approach in livestock management which starts to become more and more nec-
essary over the years.  PLF aims at managing individual animals using technology means 
such as sensors, cameras, microphones etc. That way an ongoing real-time monitoring 
process is performed to have a continuous overview of parameters such as animal’s health, 
biological functions (productivity, reproductivity, waste) or even animal welfare and the 
impact of livestock on the environment (Berckmans, 2017). Up to now several technologies 
concerning PLF systems and approaches have been developed.  A holistic PLF system usu-
ally combines several technologies to provide the total monitoring of all the parameters 
that are considered sufficient for livestock proper development. Many PLF systems has 
already been commercialized. The most basic parts of a PLF system are monitoring the en-
vironment parameters of the animals’ housing building and feeding ratios. Environmental 
parameters such as temperature, relative humidity, light relates to animal welfare, health 
issues and productivity rates. Especially temperature and relative humidity relate to the 
thermoneutral zone of animals, therefore actions must be taken to control the microcli-
mate when the values of these parameters are beyond the acceptable range (Lees et al., 
2019, Ribeiro et al., 2020, Mayorga et al., 2019, National Research Council, 1981). Feeding 
ratios are than connected also with the environmental parameters or animals’ weight and 
behavior. Measurement of gases concentration is also included in many monitoring sys-
tems and are connected with air quality regulation in the farm. In more sophisticated ap-
proaches, cameras, microphones, or more specialized sensors such can be used. Cameras 
based technologies are focus on tracking the behavior of animals. Eating, resting and other 
behavior factors can be tracked with camera systems and provide information concern-
ing the welfare of animals (Herlin et al., 2021). Detecting heating anomalies in buildings 
with the assistance of cameras is also possible if the density of the animals’ presence in 
this area is low (Berckmans, 2014).  The use of cameras is opening many promising per-
spectives, which are still under development (Gómez et al., 2021). The issues of individual 
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animal tracking, body weight estimation etc. are some of the challenges of this type of 
systems (Gómez et al., 2021). Microphones have already been used in commercial systems. 
The analysis of sound has been also investigated and applied in commercial systems. The 
analysis of the sound tracked in livestock buildings such as pigs can indicate diseases in 
a significant percentage (Berckmans, 2014). Currently the livestock sector which presents 
a significant implementation of PLF technologies is dairy cows’ farming, while the market 
with the most PLF systems is Europe (Markets and Markets Research, 2022). Many of the 
industry leaders on PLF systems are in Europe. On the other hand, Asia and Oceania are 
mitigating the distance as the digitalization of livestock is proceeding and software com-
panies start being involved in the sector (Markets and Markets Research, 2022).

Data Exchange and Service Interoperability
The dataflow from the barn to the end-user who accesses the analysed data for deci-
sion making is implemented using the functionalities of the ATLAS Interoperability Net-
work1, a decentralized network of standardized agricultural services providing defined 
interfaces to exchange data between services on behalf of a user. The technical imple-
mentation is based on REST interfaces and OAuth2 Authorization Code flows. Within 
the context of this work, two different services are involved: a Video Storage Service pro-
viding capabilities to store and access video data, and a Livestock Analysis Service which 
consumes data from a video storage service and delivers time-series data for several 
parameters related to livestock behaviour (c.f. section “Livestock Behaviour Analysis”)

The ATLAS Video Storage Service acts hereby as the cloud endpoint for the Livestock 
Monitoring System (c.f. section “Livestock Monitoring System”) which regularly uploads 
the video data. Metadata detailing time of record and camera identifier in the form of 
hardware MAC address are stored alongside each video, as well as a unique video identi-
fier. The service provides REST endpoint to retrieve a list of available video IDs along with 
metadata, with the option to query for specific cameras and times of recording, while 
another REST endpoint allows to download the corresponding video file given the unique 
video ID. Furthermore, a subscription-based notification system is implemented in the 
form of additional REST endpoints, which allows registration of a callback URL, that will 
receive a notification message, whenever new videos are available. Optionally, a list of 
camera IDs can be specified to allow subscribing to a specific subset of cameras.

Livestock Monitoring System
Standard surveillance cameras (IP 66 protected RGB network cameras) are installed in 
the barn, one camera hereby monitors one group of animals. The cameras are connect-
ed to a storage and processing unit via Ethernet. This processing unit records the video 
streams coming from each camera in chunks of a defined length and encodes them with 
MPEG-4. In our installation, one camera is connected to one processing unit, therefore 
the processing and storage devices can be designed quite compact. Larger installations 
with multiple cameras would require a more complex processing infrastructure. The con-
ceptual design however allows for scalability. Figure 1 shows an overview of the system.  

1  https://www.atlas-h2020.eu/
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Figure 1: Surveillance camera and processing unit to be installed in a barn (left), schematic overview 
of the animals in a box monitored by one camera, chunks of video data are stored in a buffer space 
and transmitted to the cloud according a configurable schedule

The data is uploaded from the processing unit to a cloud-storage service following 
a configurable schedule. This allows for the management of the potentially limited 
bandwidth on the farm. From the cloud storage service, the data can be accessed by 
other processing services (see following section). Processing of data in the cloud has 
the advantage that no expensive high performance computing infrastructure needs 
to be installed on-site. However, such a setup requires a significant available band-
width, depending on the number of cameras installed. The system design is however 
flexible enough to allow for a processing on-site, with an analysis service in the cloud 
connected. The cloud service would then receive the timeseries of the processed data 
for further usage. The processing unit does furthermore offer remote-maintenance 
functionality. 

Livestock Behaviour Analysis
Livestock behaviour analysis, in the frame of ATLAS program, includes most of the 
tools and methods that is included in modern PLF systems. The case examined in-
cludes a beef barn in Germany. Beef barns are not a so common case of PLF systems 
implementation, so it is a challenge to examine the benefits for the farmer. The system 
includes a camera monitoring system which can track information concerning the wel-
fare and health of the beef such as eating minutes, lying minutes and activity. On the 
same time the animals are weighed each day with a scaling system and information 
on feeding quantities and composition are measured by the producer. The combination 
of the above with the measuring of environmental conditions such as temperature, 
relative humidity etc is providing a spectrum of information that can be utilized in the 
frame of the program on behalf of the producer’s benefits. 

The scaling of animals in a daily basis can give information to the farmer concerning 
the body growth of the animals and how close to the ideal curve is standing. Body 
growth according to the standard rate ensures that heifers will not be overweight (in-
creased fat percentage) or low weight which can be inefficient to the farmer. The rest of 
the parameters monitored can provide information of the reasons of a possible devia-
tion of the ideal body growth of animals. So, inefficient feed intake or other behaviour 
which might connected with health issues can be tracked with the camera monitoring 
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system and inform the farmer to change the farming method he is following or pay at-
tention in some animals. Deviations on weight gain might also be due to environmen-
tal conditions which are also monitored by the installed systems. That way the farmer 
can have the information on whether an artificial cooling or ventilation system must 
operate if it is already installed or be installed in the future. The up mentioned infor-
mation is important for the farmer to modify and adjust the feeding model followed in 
the barn. So, all the above information can work as an input to a feeding model which 
will be directed to the needs of the farmer. 

Beyond feeding and weight gain, other issues concerning health issues can be tracked 
by the camera monitoring system according to the behaviour of the animals. If a health 
issue is referred to the whole herd it will be tracked as a total behaviour trend (change 
in eating minutes, resting minutes etc.).

To measure the eating minutes and resting minutes for a group of animals, object de-
tection and tracking approaches based on CNNs are used. In the recent decade many 
deep learning models have been proposed by the researchers and are used in various 
fields, based on their accuracy and computing power. In this research paper, three Neu-
ral Network models are considered based on a prior literature survey: SSD MobileNet 
(Liu et al., 2016), Faster RCNN (Ren et al., 2015), YoloV3 Darknet (Redmon et al., 2018) 
.The performance of these models was evaluated by the number of bulls detected in 
relation to the ground truth over a defined range of image frames, as well as by the 
variance in detections. All models were trained for the classes “bull” (bull is standing or 
walking), “bull eating” (bull sticks his head into the feeding area) and “bull resting” (bull 
is laying down) on a manually labelled dataset using transfer learning. 

Within Table 1 it can be seen that the YoloV3 Darknet model showed the best results with 
the highest number of detections and the smallest deviation of detected bulls compared 
to the ground truth with a training time of approx. one hour. Based on the bounding box 
information of the detections, an object detection based on Deep SORT (Wojke et al., 
2017) is performed, a tracking-ID is assigned to each of the bulls in the video. 

Table 1: results of the model evaluation of the three machine learning models

Model Ground Truth Average Detection Accuracy

MobileNet SSD 42 33 79.5%

Faster RCNN 42 37 88.5%

YoloV3 Darknet 42 41 98.0%

The Deep Learning video analysis software is part of an Analysis Services which im-
plements an ATLAS-conform interface to deliver livestock behaviour analysis results 
which can for example be used by decision support systems. The Analysis Service de-
livers time series data: a time interval with a given start and end time is divided in a set 
of sub-intervals with a given length, for each of these sub intervals the total activity 
minutes, resting minutes and eating minutes are delivered. Figure 2 shows a schematic 
overview of the complete system. 
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Figure 2: Overview of the complete behaviour analysis system. The training of the DNN models 
involves manual annotation of a sufficient amount of training data. The Video Storage Service and 
the Analysis Service are implemented as standardized ATLAS conformant services and deliver time 
series in JSON format.  

Results
It is planned to bring the implemented system consisting of the camera surveillance 
installation in the barn and the backend services into full operation mode in spring 
2022. Video data from the pilot farm has been recorded with a preliminary camera in-
stallation, delivering images from the same perspective than the intended setup. These 
datasets have been used to train and test the behaviour analysis system. 

Figure 3: Image depicting one frame from the test-video stream with the detected animals annotated. 
For eating bulls, only the head is marked.

We have built three surveillance systems which are planned to be installed in barns 
with either bulls, pigs, or chicken. The system is configured process chucks of video 
data with a length of 20 minutes each. The cloud-based behaviour analysis service 
is implemented as a distributed application, with a web-server providing the REST 
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endpoints to the service and responsible for the user-and data management. The Deep 
Learning application is running on a separate high-performance machine with a GPU, 
connected to the web-server via MQTT messages. 

Discussion and Summary
In this work, a system to analyse the behaviour of livestock using video cameras was 
presented. Our work covers the whole processing chain from image acquisition to 
cloud processing and standardized data exchange of the analysis results using ATLAS 
services.

We have chosen standard RGB-cameras as sensors to measure activity and eating min-
utes. The advantage of such cameras is their cost effectiveness, which makes the whole 
approach scalable for larger farms. Furthermore, cameras are non-invasive so that no 
sensors need to be attached to animals, omitting all problems related to this approach. 
However, video surveillance produces large amount of video data which must be pro-
cessed. If the processing happens within a cloud-based system, sufficient bandwidth 
needs to be available. Edge-computing systems can be a solution for this, on the other 
side they require a larger financial investment.  

We have trained, tested and compared three state-of-the-art Deep Learning based ob-
ject detection algorithms, where Yolo V3 Darknet architecture performed best. We have 
chosen a transfer-learning approach on pre-trained standard models. This technique 
enabled us to use a relatively small amount (approx. 1.000) of labelled training images 
with good detection accuracy. Using a transfer-learning based training allows to adapt 
the object detection to various barn setups with a reasonable effort.   

All three implemented Deep Learning models may fail to reliably detect bulls when 
there is an overlapping of animals in the image. This happens frequently in the feeding 
area, where usually a large number of animals is staying. To get knowledge about the 
suitability of the approach More long-term tests are needed with a comparison to the 
real amount of food consumed by the animals.
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Abstract
Despite the promise of precision livestock farming (PLF) to enhance animal welfare and 
profitability, on-farm adoption of PLF has been slow due to technology costs, lack of 
commercially available equipment, and the limited knowledge-base currently focused 
on developing and implementing PLF. Sparking interest in PLF and connecting experts 
already working in the field are both critical to developing PLF that is usable on the 
farm. Additionally, many PLF studies are conducted using a limited number of animals 
or under very specific conditions, which generally result in tools that are not robust 
enough to generalize to other contexts. A low-cost technology that holds great promise 
for further advancing PLF is computer vision (CV). Our group is executing a five-year 
project funded by the National Institute of Food and Agriculture (NIFA) of the United 
States Department of Agriculture (USDA) to: 1) advance CV applications in PLF, 2) at-
tract top talent from engineering, computer science, data science, and animal science 
to PLF, and 3) create a synergetic network of professionals working to solve pressing 
issues in PLF.  Among the outputs of this project will be the delivery of recorded and 
archived webinars on current topics related to CV, the release of reference and bench-
marking datasets to facilitate the development and validation of CV tools in PLF, and 
the creation of analytical challenges based on the published datasets. In this paper, we 
explain current and planned activities of our network. We also present opportunities 
for members of the global PLF community to be involved in those activities.

Keywords: Computer vision, Animal behaviour, Data sharing.

Introduction
While the potential of precision livestock farming (PLF) to increase profitability and 
productivity of livestock production systems, on-farm adoption of PLF remains lim-
ited. Two limiting factors that impede the adoption of PLF outside the dairy industry 
are 1) the cost of the technology relative to the value of commodity animals and their 
products and 2) the limited capacity of the current knowledge base (developers and 
engineers) in livestock agriculture to develop and implement PLF. 

A low-cost, non-invasive technology that holds great promise for further advancing PLF 
is computer vision (CV). CV enables task automation by using computers to extract and 
interpret important features of a physical system from digital images or videos. 
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There are currently several interdisciplinary groups developing CV applications for 
specific PLF purposes. However, there are some acknowledged limitations to the de-
scribed approach of in-house data generation and analysis for CV in PLF. One is the lack 
of appropriately trained human resources to develop CV algorithms. Second, research 
groups with ample experience in CV are not attracted to work in animal agriculture due 
to lack of awareness of the grand challenges for CV in PLF. Moreover, for existing collab-
orations, specific datasets are collected, used, and archived without being shared with 
other researchers and analysts. Thus, the level of solution validation is often limited 
because the generated CV algorithms are not benchmarked against common datasets. 
Thus, creating reference datasets and distributing datasets among a broader research 
community, can contribute to 1) advancing CV applications in PLF, 2) attracting top tal-
ent from engineering, computer science, data science, and animal science to PLF, and 3) 
creating a synergetic network of professionals working to solve pressing issues in PLF.  

Our consortium received funding from the U.S. National Institute of Food and Agricul-
ture to address the described needs through pursuing the following goals:

Objective 1: Generate reference datasets and benchmarking data for facilitating the 
development of computer vision applications that address key challenges in precision 
livestock farming.

Objective 2: Build a coordinated innovation network of stakeholders, researchers, and 
students to develop computer vision applications in precision livestock farming.

Material and methods

Coordinated Innovation Network (CIN)
Coordinated Innovation Networks are projects funded by the U.S. Institute for Food 
and Agriculture (NIFA 2021). A CIN fosters creation of communities that address bottle-
necks in critical areas by bringing together experts from different disciplines to identify 
innovative and synergistic solutions. The CIN in this project promotes collaboration 
among researchers in computer vision and precision livestock farming.

Five institutions (see names and affiliation of coauthors) participate in this project rep-
resented by at least one co-principal investigator (co-PI). Each broad objective of the 
project has several sub-objectives led by members of the co-PI team (Figure 1).

Sub-objective 1a: Generate reference datasets for testing animal identification algorithms.
The general problem addressed in this sub-objective is the generation of reference da-
tasets for animal detection, identification, and tracking from imagery data. 

The overall challenges that we intend to address with these data are the following:

1. Detect individual animals within a picture of a group containing multiple animals;
2. Assign an identity to each detected animal;
3. Track individuals through sequences of images maintaining their identity de-

spite contact and occlusions; and 
4. Re-identify each animal over an extended period of time using different sensors 

if necessary.
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The generated data will include multiple images from each animal. Images will be time-
stamped and span at least one full production cycle (e.g., a full lactation for a dairy cow, 
or the full time that a pig spends in a nursery or in a finisher facility). The images of 
each animal will come from several contexts, including different positions and differ-
ent surrounding animals. All images will have a positive ID from one or more of the 
following sources: RFID systems, visual markings (numbers painted in the back of the 
animal), visual ear tags, or from their natural coat color variation of the animals. 

We will complete this sub-objective by using existing and newly recorded images and 
videos.

Sub-objective 1b: Generate and distribute reference data for quantifying behavior using CV
Under this sub-objective, we will focus on the generation of video to automatically 
detect specific behaviors in pigs and cattle. We chose this application because changes 
in the behavior of animals can provide insights into their physical and psychological 
health and welfare (Špinka, 2006) and because measuring behavior is useful for mode-
ling performance phenotypes (Angarita-Barajas et. al 2019). 

Examples of behaviors and activities include:

1. Post-mixing pig-pig aggression. These will include damaging aggression such 
as attacks and bites and non-damaging aggression, such as inverse parallel 
pressing.

2. Non-damaging behavioral interactions to displace animals from feeders, in-
cluding those that imply physical contact, such as mounting, head knocking, 
pushing, mounting, and those that do not include physical contact as described 
below.

3. Feeding and drinking activity, including growing and nursing animals.
4. Play and other positive interactions between animals.
5. Interactions of animals with enrichment objects.

For dairy cattle, the generated dataset will include Holstein calves and cows. The labels 
will include the following animal postures: standing, drinking water, lying down, and 
eating. For grow-finish pigs, the datasets will include annotation for animal-animal 
interactions including aggression and competition for access to feeder space. For far-
rowing sows, sow postures will be annotated. 

Sub-objective 1c: Provide a set of baseline performance results from applying existing analysis 
algorithms to the data generated in Sub-objectives 1a and 1b
The annotated datasets that will be released in Sub-objectives 1a and 1b are vital for 
measuring the performance of algorithms and promoting advancements in the field. 
In addition, for the purpose of facilitating the engagement of the CV community into 
the proposed CIN, it is also essential that researchers have an expectation regarding 
what constitutes good or bad performance. Furthermore, there may be researchers that 
do not seek state-of-the-art performance and instead want an easy-to-use application 
that they can adapt for their purposes. 

For this reason, we will provide baseline algorithms for each of the tasks proposed in 
Sub-objectives 1a and 1b and the associated analytical challenges in Sub-objective 2a. 
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These algorithms will be described and released along with datasets and challenges 
in open access publications. Github pages will be used to manage and distribute each 
baseline algorithm. 

The computer vision algorithms that apply to the tasks listed in Sub-objectives 1a and 
1b can generally be broken up into: 1) Multiple Instance Detection and Pose Estimation, 
2) Target Re-Identification and Long-Term Tracking, and 3) Action Recognition. Thus, 
baseline analyses and algorithms distributed under this objective will include these 
steps.

Sub-objective 2a. Organize a “Computer Vision-for-PLF challenge series”.
The team will generate analytic challenges centered around the data generated under 
Objective 1. Each challenge will address important aspects of PLF for which computer 
vision and machine learning could leverage our datasets to provide solutions.  Each 
analytical challenge will be organized by a committee initially composed of members 
of the PI team, but which will include other participants of the network over time. For 
each challenge multiple training datasets, consisting of annotated video and images, 
will be made publicly available. Each challenge will have two phases. Phase 1 starts 
after data are publicly released and culminates in a workshop or meeting with peer-re-
viewed publications, and during which official winners are announced using a lead-
erboard. Phase 2 is an indefinite open challenge during which data remains available, 
and the leaderboard is maintained and updated. Challenges will be designed to spur 
development of CV techniques that advance the field of PLF. Some examples of possible 
challenges are 1) Image-based re-identification of marked and unmarked pigs and cat-
tle. Large datasets will be used in which animals are observed from multiple viewpoints 
and annotated with a unique ID and relevant metadata, such as social group/pen mem-
bership. 2) Video-based tracking of livestock including through occlusions and hand-off 
of tracks between sensors. RFID tags and other sensors will be used for ground truth 
annotation. 3) Automatic detection of aggression from video clips including behaviors 
such as reciprocal fights, single-sided attacks, and non-aggression. 4) Activity classifi-
cation from video including drinking, feeding, standing, running and exploring. 

Sub-objective 2b. Host a webinar series on translational topics in Computer Vision and PLF.
A webinar series covering a range of topics to promote understanding of and innova-
tion in using CV for PLF applications is underway. These webinars combine presenta-
tion and ‘unconference’ discussion elements. The goal of these webinars is to show-
case diverse perspectives and evolving knowledge related to CV and PLF, to stimulate 
and create opportunities for discussion that will inform current and future research, 
provide learning opportunities for students/postdocs in the project and beyond, and 
serve as the basis for future courses in PLF. Speaker presentations are 20 to 30 minutes 
in length, followed by moderated discussions. During discussions, the organizing team 
will gather data about topics of interest and identify future tentative speakers from 
among the participants and their suggestions for others.
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Figure 1: Management structure for the project sub-objectives. Each sub-objective has two leaders 
that represent different institutions and different disciplines.

Results and Discussion
The CIN on computer vision for precision livestock farming started in 2021, and in this 
section we report its ongoing activities.

Review of publicly available data
A review of publicly available data suitable for application of CV in livestock is un-
derway. A total of 23 datasets have been identified, 12 correspond to cattle, 7 to pigs, 
and one each of horse, chicken, goat, and sheep. The datasets are being summarized 
in terms of animal features, environmental features, image features and annotation 
features. 

Published data
Members of the CIN are generating and analyzing data in the context of objective 1. 
One dataset with short video episodes of pigs competing for feeder space has been 
shared (https://osf.io/wa732/). And a companion GitHub site with analysis code has 
been published (https://github.com/jun-jieh/AgonisticPigBehav/). 

Webinar  Series
The webinar series started in January 2022. The first edition included an introductory 
presentation and small group discussions (n= 6 to 8 persons per group assigned at 
random), where participants were asked what research and instructional topics in CV 
applied to precision livestock farming they would like to see featured in the series.
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A total of 102 participants attended the webinar and 75 participants contributed to the 
discussion. For the question on research topics there were 30 suggestions from nine 
groups.  As specific topics, long-term tracking and animal identification were the most 
requested topics (n=4 each). As general topics, data management and integration of 
hardware and software were mentioned the most times by group participants. Each 
group also requested seminars addressing a wide variety of applications of computer 
vision in livestock systems, including the use of drones in animal husbandry, feed use, 
and measuring climate-change relevant phenotypes.

The second webinar of the series focused on animal identification. It was attended by 
75 participants. Two short seminars were delivered. Dr. Eric Psota presented: “How do 
we know who is who?”  and Dr. Joao Dorea presented: “Challenges and opportunities of 
cattle identification through CV systems”. 

An exit poll of this webinar was immediately responded to by 32 respondents, of which 
23 identified themselves as interested in using computer vision for animal identifica-
tion, seven respondents were already using computer vision and two were not con-
sidering using computer vision for animal identification. Also, important information 
about the intended use of CV for animal identification by webinar participants was 
collected, for instance: in which environment (production farm, research farm or labo-
ratory) and for which species participants envisioned using CV for identification.

Opportunities for the PLF community to participate.
There are multiple ways in which the community of researchers interested in comput-
er vision and precision livestock farming can participate in this coordinated innovation 
network. 

For Objective 1, community members can participate by sharing their own data. The 
CIN team can provide storage and permanent links to the data to facilitate access and 
reuse interoperability of the data. The CIN can also collaborate on re-annotation of 
important data features.

For Objective 2a, community members are welcome to participate in challenges by sub-
mitting solutions or they can work with the CIN team to generate challenges around 
existing data. For Objective 2b, in addition to attending seminars and contributing to 
post-seminar discussions, researchers in the field of computer vision and precision 
livestock farming are encouraged to propose and co-organize webinars consisting of 
presentations and unconference activities.

Conclusions
Precision Livestock Farming holds the hope to enhance animal welfare and profitabil-
ity; however, the development and the adoption of PLF systems has been slowed by 
many factors.  This paper presents a coordinated innovation network that addresses 
critical challenges in computer vision applied PLF.  The team provides opportunities 
to learn about the needs of the industry to develop a set of easily accessible webinars 
with presentations made by leaders in the PLF area, along with opportunities for in-
teractions. These webinars have been well attended, with close to 100 participants at 
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each event.  In addition, the publicly available reference datasets are being developed 
for students and researchers to use to develop skills, knowledge, and abilities in image 
processing applications for PLF tool development.
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Abstract
While the livestock industry has been greatly developed recently in Korea, many prob-
lems have occurred in terms of maintaining optimum micro-climate in the facility. Es-
pecially, many consultants as well as farmers have easily made misunderstanding and 
wrong judgement on ventilation efficiency and internal airflow distribution. The air 
flow is the main mechanism of internal environmental distribution such as gas, tem-
perature, humidity, and dusts, but, as well known, the airflow is invisible and difficult 
to predict and measure. Therefore, it is essential to develop the training materials for 
the farmers to recognize micro-climate visually. In this study, aerodynamic approach 
was carried out using CFD (computational fluid dynamics) for combining with VR (vir-
tual reality) technology. First, all research papers, reports, journals, and publications on 
livestock industry have been reviewed to find representative problems at swine houses 
during hot and cold seasons in Korea. Then, Open-source CFD, was used for computing 
the selected problems and their solutions. The livestock house models were designed 
based on 2009 Korean Standard of swine houses. These CFD computed results such 
as airflow, temperature, humidity, gas, etc were applied to VR simulator for educating 
swine farmers.

Keywords: Computational fluid dynamics, Livestock houses, Visualization, Virtual 
Reality

Introduction
Livestock facilities in South Korea have become larger and more automated to increase 
meat production. However, it is difficult to keep the micro-climate uniform and suitable 
in large facilities because most swine facilities are managed using limited resources. 
It is common for livestock facilities to occur many problems in terms of maintaining 
optimum micro-climate. 

Recently, computational fluid dynamics (CFD) has been widely used for analysis of air 
flow, temperature, humidity, gas, and dust concentration under various environmental 
conditions. (Bartzanas, Kittas, Sapounas, & Nikita- Martzopoulou, 2007; Bjerg, Lee et 
al., 2002, 2004, 2009; Seo, Lee, Kwon, et al., 2009). However, livestock farmers and con-
sultants are not easy to understand these computed results. Therefore, educational 
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technology, which can effectively display the aerodynamic results, is necessary to help 
maintaining optimum micro-climate in livestock facility.

Virtual reality (VR) technology that can offer virtual experience of invisible things has 
been developed and used in various fields. It helps users to make clear decisions and 
visualization so that they can easily understand the environment in the facilities. In 
this study, aerodynamic approach was carried out using CFD (computational fluid dy-
namics) for combining with VR (virtual reality) technology and educational materials 
were made for general commercialization.

Material and methods

Experimental swine house
In South Korea, a lot of mechanically ventilated facilities are made based on 2009 Ko-
rean Standard of swine houses (Korea Pork Producers Association, 2009). In this study, 
one nursery swine room based on this standard design was chosen as the experimental 
room to make simulation model to analyse the inside micro-climate. The size of the 
experimental room was 5.5 m wide, 9.0 m long, and 2.4 m high, as shown in Figure 1.

Figure 1: Schematic diagram of the experimental nursery swine house.

Computational fluid dynamics (CFD)
CFD is a numerical method for computing the behavior of fluids by solving a non-
linear partial differential equation, such as the Navier-Stokes equation. CFD analysis 
is a technique that numerically solves equations based on the finite volume method 
(FVM), which consists of three design stages. In the pre-processing stage, the physical 
shape of the target area is designed, on which its grid mesh is generated. In the main 
processing stage, each governing equation for the physical phenomena is discretized 
and solved. A qualitative and quantitative analysis of computation results is conducted 
in the post-processing stage.

Virtual Reality (VR)
Virtual reality (VR) typically refers to computer technologies that use virtual reality 
headsets to generate the realistic images, sounds and other sensations. Recently, re-
searches focused on practical application and industrialization based on ICT have been 
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going on development. The invisible air and heat flow can be visualized through VR. 
Because of these advantages, in this study, VR technology was used to develop training 
materials.

Development of CFD simulation model
Design-modeler (Release 16.1, ANSYS Inc, U.S.A) was used to design the 3-D computation-
al domain with meshes. The designed mesh domain, as shown in Figure 2, was exported 
to OpenFOAM (version 2.1.1). Based on previous study, validated model was used in this 
study (Seo et al., 2009; Kwon et al., 2016). Therefore, turbulence model was determined as 
RNG k-ε and grid size was determined as 0.1 m based on grid independence tests.

Figure 2: Computational domain and mesh design for the nursery swine house.

Table 1: Statistics data of mesh and environment condition.

Contents Values

Model size 5.5 m width  9.0 m length  2.5 m height

Shapes of mesh Tetra, Multi-zone

Number of meshes 6,107,109

Orthogonal Quality Min 0.219 > 0.01

Skewness Max 0.850 < 0.95

Outdoor temperature 264 K (cold season), 304 K (hot season)

Velocity outlet (total) 0.9 m/s (cold season), 15.5 m/s (hot season)

Pig surface temperature 313 K

Results and Discussion

CFD simulation results
In cold season, while ventilating through the side slots in the swine house, cold air 
might come in contact with swine directly. Figure 3-(a) shows the temperature and di-
rection of inflow air through side slots. However, it is difficult to measure the temper-
ature distribution exactly through several thermometers because of non-uniformity of 
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indoor air temperature. The average temperature near the slots was about 274 K, while 
the average temperature of center was about 301 K. This temperature is far lower than 
appropriate temperature for nursery swine. Also, as shown in Figure 3-(a), ammonia 
gas was accumulated increasingly as the distance from the side slots. It means that the 
fresh air could not reach the end of the facility. In order to solve these problems, there 
is a method of making inlet angle. When the inlet angle is adjusted to 45 degrees at the 
side slot, the inflow air rises up to the top and falls down to the nursery swine, as shown 
Figure 3-(b). Since the risen air relatively mixes more with upper warm air, the differ-
ence between inflow air temperature and indoor temperature could be reduced about 
2-3 K. In cold season, however, the ventilation rate is low, so the inflow air does not stay 
long on top. The air temperature has still unsuitable and non-uniformity for nursery 
swine. Also, this modified structure cannot remove ammonia gas sufficiently. For alter-
native way, making a hole on the ceiling is available to avoid inflowing cold air and to 
improve internal uniformity (Figure 3-(b)). The cold air stays in the ceiling to warm up 
and it slowly flows out through small holes. In hot season, the air temperature in the 
ceiling is lower than outside. It could help to prevent hot-air-inflow from outside directly

Figure 3: Temperature (top row) and concentration of ammonia (bottom row) by using side slots (left 
column), modified side slots (middle column) and ceiling holes (right column)

Design of VR simulator model
It is important to make realistic swine model in virtual reality simulation. In CFD simu-
lation, structures and swine shapes were simplified for efficient computation. However, 
in virtual reality, they must be realistic models. As shown in Figure 4, to determine the 
optimal number of polygon, the proper quality was used for operating smoothly. Con-
sequently, for VR simulator, middle poly model was chosen as a VR simulation model.

Design of VR simulator
To combine CFD simulation data and virtual reality simulator, it is necessary to deter-
mine same data point to display same contour or vector field in virtual reality simu-
lation. The distance between points should be modified to reduce the total number of 
points. To find optimal distance, 0.05 m, 0.1 m, 0.15 m, and 0.2 m were used in the test. 
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The distance of points was determined 0.1 m based on the test. In virtual reality sim-
ulation, visualized air flow streamline, temperature, gas concentration with colors will 
be inserted with contour and vector field.

Figure 4: The comparative data of pig model quality (left) and the views of nursery house in virtual 
reality simulation (right)

In next step, virtual reality simulator, which provide micro-climate information for ed-
ucating farmers, will be developed with various case. In order to obtain sufficient data, 
various case must be computed by CFD. Each case has different structure, environment 
condition, and ventilation system. Because each case takes considerable computation 
time, computation should proceed with the most typical problems.

Figure 5: Various example application of virtual reality technology on swine house.

Conclusions
In this study, aerodynamic approach was carried out using CFD (computational fluid 
dynamics) for combining with VR (virtual reality) technology and educational materials 
were made for general commercialization. This results show the problems of side slot 
in the swine house. Also, the method of inflow through ceiling holes was proposed. 
It was an appropriate way to solve cold stress and non-uniformity. To develop virtual 
reality simulator, the data points including computed results should be converted for 
high quality resolution. Also, to prevent overloading of VR simulation, the number of 
polygons should be reduced until keeping high quality sufficiently. 

In a future study, to develop higher resolution simulator, the computed results must 
be optimized. The results have many data points including micro-climate information. 
The distance between the points must be modified for stable virtual reality simulation. 

 



1042 Precision Livestock Farming ’22

With improved computer resources, higher quality model and structural configura-
tions including the detail resolution could be considered. Also, more cases should be 
computed by CFD for various training situation. 
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Abstract
Optimal crop management is necessary for sustainable food and feed production. Con-
tinuous monitoring of crop canopies is important in order to adapt management pro-
cesses, e.g. fertilisation and plant protection, but also time-consuming. This task can be 
supported using remote sensing data. Many previous studies applied vegetation indi-
ces in order to retrieve information on crop canopies. They can be calculated easily and 
provide information on relative differences in crop canopies regarding e.g. plant health 
and biomass production. Vegetation indices, however, require continuous calibration 
as well as validation and often do not use the full spectral resolution of many sensor 
systems. An alternative to vegetation indices are radiative transfer models. These mod-
els describe the interaction of solar radiation and vegetation canopy. Radiative transfer 
models have low calibration as well as validation needs and allow the use of all availa-
ble spectral information. In this study, a dataset was simulated based on the radiative 
transfer model PROSAIL. An artificial neural network was trained and tested with this 
dataset. For further evaluation, field experimental data of autumn and spring sown 
wheat with different nitrogen fertilisation levels at the experimental farm Groß-En-
zersdorf of the University of Natural Resources and Life Sciences Vienna (BOKU) was 
used. Preliminary canopy parameter estimations on LAI and chlorophyll content were 
promising. In future, this work can help monitor crop canopies, optimise management 
processes and improve the sustainability of food as well as feed production.

Keywords: wheat, sowing date, nitrogen, remote sensing, radiative transfer modelling, 
artificial neural network

Introduction
Radiative Transfer Models (RTMs) were developed to better understand the complex 
interaction of solar radiation and vegetation canopy (Monteith, 1965). RTMs have low 
calibration and validation needs and therefore generalize well. Additionally, they allow 
the use of all available spectral information (Berger et al., 2018).



1044 Precision Livestock Farming ’22

The objective of this study was to estimate LAI and chlorophyll content of wheat (Triticum 
aestivum L.) by inversion of the RTM PROSAIL using an Artificial Neural Network (ANN).

Materials and Methods
The RTM PROSAIL estimates the spectral reflectance of plant canopies from 400 to  
2500 nm in 1 nm increments based on 16 input parameters (Figure 1).

Figure 1: Spectral reflectance estimation of plant canopies using the PROSPECT + SAIL model (PROSAIL) 
(Berger et al., 2018). N (leaf structure parameter), Cab (chlorophyll content a + b), Ccx (carotenoid content), 
Canth, (anthocyanin content), Cbp (brown pigments), Cm (dry matter content), Cw (water content), LAI (leaf 
area index), ALIA (average leaf inclination angle), Hot (hot spot parameter), ρsoil (soil reflectance), SZA 
(soil zenith angle), OZA (observer zenith angle) and rAA (relative azimuth angle).

A dataset of 10000 observations was simulated. Each observation consisted of a random 
set of PROSAIL input parameters, which were based on uniform distributions within low-
er and upper wheat specific boundary values by Danner et al. (2017). The spectral reflec-
tance for each simulated observation was estimated using the RTM PROSAIL. The sim-
ulated dataset was divided into a train and test set in a ratio of 9:1. A preliminary ANN 
consisting of three dense layers (128 neurons each, ReLu activation function) was set 
up. Selected loss function was ‘Mean Absolute Error’ (MAE) and selected optimizer was 
the adaptive optimization algorithm ‘Adam’. Training epochs were set to a maximum of 
500. Early stopping was applied to prevent overfitting. An existing Keras implementation 
in Python was applied to set up the ANN. Model performance of the ANN was evaluat-
ed using the simulated test set and experimental data. Spectral reflectance (FieldSpec 
Handheld 2, ASD Inc.), LAI (AccuPAR LP-80, Meter Group Inc.) and nitrogen content of 
green leaves was measured in a field experiment with autumn and spring sown wheat 
and five nitrogen fertilization levels (0, 5, 10, 15 and 20 g m-2) at the Experimental Farm 
Groß-Enzersdorf of the University of Natural Resources and Life Sciences, Vienna (BOKU). 
Since the spectral sensor provided data at a spectral resolution of 400 to 1075 nm in 1 nm 
increments, the same spectral resolution was applied in setting up the ANN.

Results and Discussion
Measured and estimated LAI based on the simulated test set showed high variation 
(Figure 2, left). The second order polynomial featured a high coefficient of determina-
tion (R2 = 0.81). MAE, however, was high (1.05, mean LAI: 3.94). This can be explained by 
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the reduction in spectral resolution due to the spectral sensor used in the field experi-
ment (400 to 1075 nm), as previously mentioned. A comparable ANN using the extend-
ed spectral resolution from 400 to 2500 nm resulted in a higher coefficient of determi-
nation and lower MAE (not shown). Estimated chlorophyll content matched measured 
chlorophyll content in the simulated test set (Figure 2, right). Outliers occurred due to 
extreme input parameter values.

Figure 2: Measured and estimated LAI (left) and chlorophyll content [µg cm-2] (right) based on the 
simulated test set.

Table 1: Analysis of LAI and nitrogen content of green leaves (N%) estimations based on field 
experimental data.

Date

Autumn sowing Spring sowing

BBCH
LAI N%

BBCH
LAI N%

Mean MAE R2 R2 Mean MAE R2 R2

09.03.2020 23 0.39

23.03.2020 24 0.00

06.04.2020 30 1.58 0.71 0.89 0.69

20.04.2020 32 1.92 1.94 0.86 0.63

04.05.2020 45 2.51 1.37 0.94 0.76 30 0.30 0.74 0.26 0.01

17.05.2020 59 2.88 0.22 0.97 0.85 37 0.77 0.48 0.22 0.14

01.06.2020 77 2.85 0.48 0.94 0.80 51 1.30 0.24 0.50 0.02

15.06.2020 85 2.27 0.35 0.96 0.80 71 1.80 0.21 0.92 0.70
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The results of field experimental data in Table 1 show, that the coefficients of determi-
nation of LAI estimations in winter wheat are high (April until June). MAE values were 
high early in the season (April until start of May) and were low later in the season (mid-
May until June). High MAE values early in the season indicate systematic deviations of 
LAI estimations. This can be explained by the low soil coverage early in the season. Soil 
reflectance was an important disturbing effect, when measuring spectral reflectance 
of plant canopy with low soil coverage. Nitrogen content estimations in winter wheat 
showed increasing coefficients of determination over the course of the season. LAI and 
nitrogen content estimations of spring wheat resulted in low coefficients of determina-
tion from May until start of June. In mid-June, coefficients of determination were high  
(Table 1).

Conclusion
The preliminary ANN resulted in promising LAI and chlorophyll content estimations 
for wheat. In future, the simulated dataset as well as the ANN structure will be opti-
mized and the ANN will be tested with more extensive field experimental data.
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Abstract
Integrated crop and livestock systems (ICLS) that rely on grazing of cover crops to 
control weed infestation and cover development depend on heterogeneous effects of 
grazing in space and time, as opposed to chemical or mechanical destruction. This 
heterogeneity affects grazing management, and a method is proposed to evaluate its 
evolution using remotely sensed vegetation indices. The study was performed on the 
ECOFOODSYSTEM platform of AgricultureIsLife in Gembloux (University of Liège, Bel-
gium) on four experimental fields of 0.15 ha each, sown with multispecies cover crop 
composed of oat, phacelia and two clover varieties. The four fields were grazed con-
secutively by ewes over 7-day periods from February to March 2021. Unmanned Aerial 
Vehicles (UAV) equipped with a multispectral camera were flown before and after the 
passage of the sheep on each field. Normalized difference vegetation index (NDVI) and 
grey level co-occurrence matrices (GLCM) were used to calculate the Angular Second 
Moment (ASM) to measure the local homogeneity of the grazing intensity within 5x5m² 
windows, with values ranging between 0 and 1. Results show distinct patches of ho-
mogenous and heterogenous grazing on each field and strong differences in the heter-
ogeneity in grazing between the fields. Further data processing will allow inference of 
these changes in heterogeneity to differences in time and space between the fields as 
well as animal grazing behaviour. In future works, the level of heterogeneity in grazing 
could be integrated with data from portable sensors to allow a better management of 
animals when they are used as an agroecological lever to control cover crops in ICLS.

Keywords: pasture heterogeneity, grazing, multispectral camera, ICLS

Introduction
Integrated Crop Livestock systems (ICLS) are farming systems in which animals are 
present on agricultural fields at a given moment within the crop rotation. If correctly 
managed, such systems experience advantages linked to the presence of animals such 
as diminished needs of fertilisers or complementary feed, profitability of cover crops 
that are generally not useful (Lemaire et al., 2014), and improvement of nutrients cy-
cles (Lemaire et al., 2014). The grazing of cover crops by ruminants in ICLS implies that 
the biomass will be destroyed by repetitive defoliation and trampling of the animals. 
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Heterogeneity of the vegetation height and biomass after the grazing session is a factor 
of importance in grazing management and especially in ICLS. It has been observed in 
ICLS conditions that a homogenous vegetation after grazing can be a sign of intensive 
grazing and sometimes overgrazing (Nunes et al., 2019).  The latter is something to 
avoid; the grazing target in ICLS is to effectively destroy the cover crop without having 
an animal experiencing excessive hunger or damaging the ability of the field to pro-
duce biomass. It has been also shown that heterogeneity can be managed by adapting 
the stocking method on the field and is a parameter that must be integrated in future 
grazing management planning (Pontes-Prates et al., 2020).

The use of unmanned aerial vehicles (UAV) for the assessment of pasture biomass and/
or chemical composition is a verified practice in the field of Precision Livestock Farming 
(PLF) with a great potential to assess plant-animal interactions and spatial heterogene-
ity of pastoral systems (Michez et al., 2020). It has also the advantage of being non-de-
structive and less time-consuming than usual field measurement methods, with a bet-
ter accuracy (Michez et al., 2019). One of the most common indexes used in remote 
sensing for vegetation monitoring is NDVI. It provides an indication of the standing 
biomass (Michez et al., 2019) and allows assessment of the evolution of crop phenology 
or yield (Wang et al., 2005; Zhao et al., 2009). Nonetheless, this index must be calibrated 
for each type of cover and geographical location, which implies that a lot of data must 
be collected beforehand, especially if the cover composition or the location has not 
been studied previously. The lack of pre-existing data, especially in the case of unusual 
mixed-species composition, makes it challenging to compare the evolution of vegeta-
tion between different pastures or crops. To avoid this limitation, a further treatment 
of UAV images that can be carried out, especially on multispectral images to extract 
information, is to work with texture, by assigning a defined value and resolution to the 
image’s primitives (Haralick, 1979). This is conducted in two steps: (1) create a nuanced 
matrix of several classes, represented by shades of grey (grey level co-occurrence ma-
trix (GLCM) (Haralick, 1979)), (2) then apply a second layer to obtain data on the spatial 
interrelationships of the matrix (Haralick, 1979). This second layer allows to extract 
many different indexes that reflect heterogeneity, homogeneity, entropy, etc. The ob-
jective in this work was to verify the possibility to use the GLCM technique to extract 
normalised, quantified, and comparable information between the fields concerning the 
heterogeneity of the grazing process without any measurement of the vegetation other 
than multispectral imaging.

Material and methods

Experimental data
Measurements were carried out between the 2nd and 30th of March 2021 on four 84 x 
14 m² experimental fields of the ECOFOODSYSTEM platform of AgricultureIsLife from 
Gembloux Agro-BioTech (University of Liège, Belgium). The cover crop was sown on 3 
December 2020 with the following grain density:  oats (Avena sativa, 20 kg ha-1), Phacelia 
(Phacelia tanacetifolia, 4 kg ha-1), Crimson Clover (Trifolium incarnatum, 10 kg ha-1) and Ber-
seem clover (Trifolium alexandrinum, 10 kg ha-1). The crops were partially damaged due 
to freezing temperatures between the 7th and 14th of February, when snow was present. 
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Ground sampling indicated that the dry above-ground biomass before grazing reached 
a mean (±standard deviation) of 1333 ± 193 kg ha-1. Each field was grazed during 7 con-
secutive days by three four-year old crossbred French Texel ewes. For each paddock, 
two flight surveys with UAV were planned with a DJI Phantom 4 Pro (DJI, Shenzen, Chi-
na) equipped with both an optical sensor (RGB) and a multispectral camera Micasense 
RedEdge (MicaSense, Seattle, USA). One flight was conducted on the day before the 
commencement of the grazing and the second on the day after the end of the grazing. 
Flight height was set to 30 m with cameras oriented to the nadir, with 80% front overlap 
and 85% side overlap. Ground control points (GCPs) were placed at each corner of each 
plot to calibrate the received imagery with the accuracy of an Emlid Reach RS+ GPS 
(EMLID, St Petersburg, Russia).

Data analysis
The collected multispectral images were processed with the QGIS software (OSGeo, 
Chicago, USA) as seen in Figure 1. Firstly, the multispectral images were processed fol-
lowing the NDVI formula (Raster calculator NDVI). Then the difference between NDVI 
values before grazing (BG) and after grazing (AG) was calculated.

 (1)

Figure 1: List of the operations and intermediate rasters used to determine the most accurate way 
of describing grazing heterogeneity. All raster examples are for the paddock N°3

During the process of data analysis through QGIS, several features have been tested to 
get the most relevant results. 

Firstly, quadrats used the nearest neighbour method, then recode classes, GLCM win-
dow sizes, and finally indexes were extracted. For the choice of quadrat’s resolution, 
the tests were run between 1and 2 m²resolution. Then, the recoding process involved 
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the setting of a reduced number of grey levels by sorting the data into a predetermined 
number of classes. During the exploration of the different possibilities of data process-
ing, we tested working with 5 and 8 classes (Figure 2).

Figure 2: separation of the NDVI into 5 or 8 classes. The values represent the difference of NDVI 
between After Grazing (AG) and Before Grazing (BG)

As shown on Figure 3, GLMC calculates indexes based for each quadrat and the neigh-
bouring quadrats disposed at 0°, 45°, 90° and 135° clockwise. The window size deter-
mines the number of quadrats taken into account for every orientation. For this survey 
we used 5×5 windows. This allowed the opportunity to observe areas with distinctive 
heterogeneity features, where 3×3 windows give many isolated quadrats. In our case 
the surface of the paddocks and 1m² resolution did not allow to test 7×7 windows.

Figure 3: Representation of GLCM index calculation for two different sizes of windows

Many different indexes based on relative distribution frequency have been proposed 
in the works of Haralick (1793). Three of them have been observed in this survey: ASM, 
contrast and entropy.
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 (2)

 (3)

 (4)

Where p(i,j) is the (i,j)th entry in a normalized grey-tone spatial-dependence matrix and 
Ng is the number of grey levels in the image (Haralick, 1793).

Results and Discussion
The results obtained encouraged the use of 1m² sized quadrats for resolution. Two m² 
quadrats led to less precise analysis. One m² is a good compromise from a grazing process 
perspective as it can be almost assimilated to the area of one feeding station (Andriaman-
droso et al., 2016). The recoding into 5 classes allows the opportunity to make the result of 
GLCM analysis more consistent and setting the NDVI interval to 0,1 between the classes, 
or 8 with 0,05 intervals. The results for 8 classes recoding showed mainly high levels of 
heterogeneity as well as isolated quadrats, which were more difficult to interpret than the 
5 classes system which allows the observance of patches of different heterogeneity levels.

The three indexes observed (ASM, contrast, entropy) gave very similar information. 
The ASM had the advantage over the other two in only giving values between 0 and 
1; this facilitates information on homogeneity that is both easily comparable between 
different paddocks, and quantified (Figure 4). We also observed that the first paddock, 
smaller than the other 3 (75m of length instead of 84), also had more homogeneous 
tendencies. This corresponds to the previous statement that more intensive grazing 
leads to more homogeneity (Nunes et al., 2019). A similar process was followed for the 
NDVI Before Grazing (BG) and After Grazing (AG) and showed that the homogeneity 
had indeed increased on paddock 1 (average ASM : 0.176±0.048 BG, 0.291±0.099 AG) 
and it had decreased on paddock 4 (average ASM : 0.186±0.056 BG, 0.171±0.044 AG). The 
ground observation matched those results.

Figure 4: ASM symbology and percentage repartition for each paddock’s difference of NDVI. High 
values represent high heterogeneity
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This use of multispectral imagery to quantify and observe grazing heterogeneity could 
be of use in different situations. First, in the case of rotational grazing management, 
homogeneity at the end of a grazing session is a sign that the animals made use of 
most of the paddock. More heterogeneity can lead to higher intake rates at the begin-
ning of grazing (Pontes-Prates et al., 2020) but is a risk to heading of ungrazed grasses 
and thus losses of nutritional value for the pasture. Also, if the homogeneity gets too 
high, it becomes an indicator of overgrazing (Nunes et al., 2019). The fact that this im-
agery treatment allows distinct zones of heterogeneity to be distinguished, then gen-
eral evolution of the vegetation could be combined with sensors to monitor behaviours 
and geolocation of the animals through the division of the paddocks in zones of equiv-
alent surfaces (Riaboff, 2020). Lastly, in the case of ICLS, heterogeneity of grazing is an 
important indicator because it is linked to (1) the possibility to put a new crop after 
the cover without too much additional work having to be done (2) fertiliser allowance 
(manure) and (3) the general behaviour of the animal.

Conclusions
This paper shows the possibility of using texture as an indicator for local heterogene-
ity of the grazing intensity using UAV, which are a way less time-consuming and more 
precise tool than traditional “on the ground” means. Moreover, this technique uses the 
ASM index, which gives quantified information and can be used without any previous 
measurement of the average NDVI values for the studied vegetation.

This advance could be very useful in grazing management, for ICLS or more classical 
application, if combined with other PLF devices such as behavioural monitoring sen-
sors based on accelerometers and/or GNSS systems to track the animal’s trajectory and 
favourite or avoided parts of the paddock, and behaviour. From there we could evaluate 
the correlation with biomass evolution, its intensity and heterogeneity. For example, 
in pasture composed of mixed species or to evaluate different duration of grazing in 
a rotational system.
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Abstract
The potential of using farm animal kinetic energy for powering wearable precision live-
stock farming devices has not been researched thus far. Kinetic energy harvesting is 
a process in which vibration or locomotion is converted by a transducer into electrical 
energy. This process could potentially enable autonomous livestock wearables. In this 
paper an approach for measuring and analyzing farm animal locomotion is detailed. By 
using triaxial accelerometers, free grazing Finncattle locomotion is logged at different 
cattle body parts and analyzed in MATLAB for future kinetic energy harvesting designs.

Keywords: accelerometer measurements, animal locomotion, kinetic energy 
harvesting

Introduction
In this paper we present details of locomotion measurements performed on Finncattle 
during project ENTRAP (CORDIS 2019). These measurements were performed to deter-
mine locomotion characteristics, like acceleration amplitudes, directions of excitation, 
or specific frequencies present in irregular livestock locomotion. This data was then 
employed to design and prototype a kinetic energy harvesting (KEH) device, as present-
ed in another paper at this conference (‘Cow locomotion energy harvester for powering 
IoT wearables’). KEH devices are designed to convert energy of vibrations or locomotion 
into electrical energy for enabling low power devices with autonomous power (Siang, J. 
et al., 2018). In the case of a precision livestock farming application, a KEH device would 
power an animal wearable with electrical energy produced by the animal itself.

The use of accelerometers to characterize animal locomotion specifics has long been 
employed by animal scientists and ethologists. Most commonly the research has been 
utilized to determine certain animal health or life cycle events. In this frame accel-
erometers have been used for lameness detection either from change in activity or 
gait differentiation, estrus cycle detection and detection of various metabolic disorders 
(Eckelkamp, E. A. 2019). More specifically cattle (Pastell, M. et al. 2009, Rahman, A. et 
al. 2018), sheep (Barwick, J. et al. 2018) and geese (Spink, A. et al.) locomotion has been 
previously measured and characterized by tri-axial accelerometers. Usually, data sam-
pling frequencies bordering the Nyquist frequency of animal locomotion have been 
used. These are inadequate to log a complete locomotion characteristic like a step or 
ear flap or to capture the exact number of high acceleration events during grazing. Here 
we propose a very robust measurement apparatus and innovative, simple and easy 
to use attachments based on 3-D printed casings or commercially available adhesive 
tapes capable of withstanding several hours of free grazing activity while logging data. 
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Figure 1: a) Axivity AX3/6, b) 3D printed sensor casings, c) Sensor locations and axes

Material and methods
This section will describe in detail the design of the experiment and the measurement 
apparatus employed during experiments. In the end, the tools for PSD data analysis 
will be presented.

Measurement apparatus and set-up
For the purpose of experiments presented here, two AX3 triaxial acceleration loggers 
and one AX6 triaxial accelerometer/gyroscope logger were chosen (manufactured by 
Axivity, Figure 1, a). These devices are small (23x32.5x8.9 mm) and lightweight, weigh-
ing 0.011 kg (important considering ear measurements). They can also be easily con-
figured and synchronized via a USB hub and the AX3/AX6 OMGUI Configuration and 
Analysis Tool. Both sensors are specified with measurement resolutions of up to 16-
bit, configurable accelerometer ranges - ±2/4/8/16 g, and sampling frequencies in the 
range of 12.5 Hz – 1600/3200 Hz (AX6/AX3) (Axivity 2015). Logging time depends on the 
configuration but is specified at 14 days configured to a 100 Hz sampling frequency. 
The sensors themselves do not provide a suitable means of attachment. To equip the 
animals with the sensors, suitable casings had to be manufactured which could then 
be used with standard collars and pedometer leg straps (through specifically designed 
slots) (Figure 1, b). Casings were at first 3D printed with PLA filament on a Prusa I3 MK3 
3D fused deposition modelling printer in the FabLab facility of Tampere University. Af-
ter the PLA cases broke or dismantled due to screws coming loose during grazing, they 
were replaced with stronger PETG filament printed cases which were also semi-trans-
parent allowing the sensor LEDs to be checked for operation. Also, antivibration nuts 
were used to secure the casings and these modifications proved to increase robustness. 

For the first set of the experiments the following locations were chosen for acceleration 
measurements: front leg (lateral outer side of the metacarpal just above the fetlock), 
collar (left side of the neck) and pendant (a casing fitted to freely hang from the mark-
ing weight akin to a bell pendulum) (Figure 1, c). Casings were designed to be robust 
and contoured for animal comfort (especially the front leg position). In the second set 

a) b) c)



1056 Precision Livestock Farming ’22

of experiments both ears were equipped with the sensors and again the collar sensor 
was used for control (Figure 2, b & c). Self-adhesive 3M SJ3560 Dual Lock reclosable 
fasteners were used to attach the sensors to the ears. First part of the Dual Lock was 
cut to size and glued to the back side of the ear tags (which were scrubbed clean with 
alcohol to achieve high level of adhesiveness). Second part of the Dual Lock was glued 
to the Axivity sensors themselves (Figure 2, a). In the initial set of cow experiments the 
devices were then mounted to the animals with a collar (equipped with two sensors, 
neck and pendant) and a leg strap. In the second set of experiments both ear sensors 
were simply mounted with Dual Lock’s easy click snapping mechanism (release with 
peeling motion) while a collar was used again for the neck measurement like in the 
initial experiments. The collars and leg straps have been fitted with a regular degree of 
tightness, collar thus being quite loose and the leg strap being a snug comfortable fit 
while the Dual Lock fasteners inherently provide a snug fit to the ear tag. 

Figure 2: a) Sensors fitted with Dual Lock, b) Sensor on right ear, c) Sensor on left ear

Measurement experiments
Eight free grazing cow locomotion measurements have been performed in August and 
September of 2020 at a dairy farm, Ahlman (Ahlmanin koulun saatio, Tampere, Finland). 
Five consecutive experiments were performed as a part of the ‘Set 1’ (collar, pendant 
and leg) with a four-year-old Eastern Finncattle cow Neilikka, while in the ‘Set 2’ (collar 
and both ears) three consecutive measurements were completed with a five-year-old 
Western Finncattle cow Miilu. Even though three experiments were compromised with 
faulty casings each data set resulted with more than 1 h of active grazing time with all 
sensors present on the animal. Experiment logs for measurement Set 1 & 2 are listed 
in Table 1.

Signal analysis
The data sets comprising of sampling time and acceleration level in units of grav-
ity were recorded in Axivity’s binary format which were all retrieved from the sen-
sors upon experiment completion with the Open Movement OMGUI Tool installed on 
a laptop. The data sets were then directly imported into MATLAB matrices with Open 
Movement’s recommended import function CWA_readFile.m (Open Movement, 2022). 
All data was passed through a low-pass filter included in the MATLAB’s Signal Ana-
lyzer App with the passband frequency set to 20 Hz to filter out the high frequency 

a) b) c)
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measurement noise. To remove the effects of sensor positioning with respect to the 
direction of gravity and its influence on the values, mean values of acceleration were 
calculated and subtracted for each axis. For ease of identifying overall levels of energy 
present at each measurement location, the resultant magnitude was first calculated as

 (1)

Table 1: Experimental logs per day of measurement in August and September 2022.

Set 1

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Date 11.08. 12.08. 13.08 14.08 15.08.

Subject Neilikka Neilikka Neilikka Neilikka Miilu

Length 5 h 4 h 6.5 h 5.5 h 5 h

Collar 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 8 g 800Hz / 8 g

Pendant 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 16 g 800 Hz / 16 g

Leg 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 8 g 800 Hz / 8 g

Casing fault – pendant pendant – collar

Set 2

Exp. 1 Exp. 2 Exp. 3

Date 11.09. 14.09. 15.09.

Subject Miilu Miilu Miilu

Length 6.5 h 6 h 4.5 h

Collar 400 Hz / 8 g 200 Hz / 8 g 400 Hz / 8 g

Right Ear 400 Hz / 8 g 200 Hz / 8 g 800 Hz / 8 g

Left Ear 400 Hz / 8 g 400 Hz / 8 g 800 Hz / 8 g

Casing fault – – –

Power spectral density of the data sets
To assess the levels of available energy and obtain frequency information of the re-
corded locomotion, power spectral density (PSD) estimations were used. Using a PSD 
estimation allows for quick identification of characteristic process frequencies and the 
levels of energy associated with each frequency emerging from random locomotion. 
To obtain a PSD, at first MATLAB’s fast fourier transform algorithm is used to compute 
a discrete fourier transform (DFT) of the signal, defined as
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where the x[n] is the sampled signal, N is the signal length, K is the number of points in 
the frequency domain (usually K = N), fk = k fs / K is the normalized frequency where fs is 

the sampling frequency of the recorded signal. For signals acquired at frequencies two 
times greater than the maximum frequency of the signal, the Nyquist frequency, the 
PSD can be estimated with a DFT (Pierre J. and Kubichek R. F. 2002) and easily computed 
in MATLAB as 

The following approach was used to obtain the results: 1) inspection of time series, 
2) PSD estimation of |a→| for a single day record, 3) isolate 1 h of active grazing data, 

4) PSD estimate of |a→| during 1 h, 5) PSD estimate for each separate axis during 1 h to 
obtain directional data. Each PSD was smoothed with a Savitzky-Golay finite impulse 
response smoothing 3rd order filter and a frame length of 101 samples.

Figure 3: PSDs of the resultant magnitude of acceleration from Set 1 – complete day logs

Table 2: Characteristic cattle locomotion frequencies, Hz

Position f|a→| fX fY fZ

Collar 2.5 1.5 1.5 1.5

Pendant 3.6 / 7.2 2 2 / 3.7 2

Leg 0.8 / 2.5 1.7 1.7 1.7

Right ear 3.3 / 5.5 2.7 5 2.7

Left ear 3.3 / 5.5 2.7 5 2.7

(2)

(3)
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a) b) c)

Figure 4: PSDs estimated from individual axis records from selected 1 h of active grazing time in Set 
1 - a) 11.08., b) 12.08. and c) 14.08

Figure 5: PSDs of the resultant magnitude of acceleration from Set 2 - complete day logs



1060 Precision Livestock Farming ’22

Figure 6: PSDs estimated from individual axis records from selected 1 h of active grazing time in Set 
1 – a) 11.08., b) 12.08. and c) 14.08 

Results and Discussion
In both Figure 3, (three days of Set 1) and Figure 5, (three days of Set 2) whole day re-
sultant |a→| was used for PSD estimations (idling included). Both figures show the largest 
power density amplitudes, in units of squared gravitational constant (g2) per frequency 
(Hz), present at low frequencies and aperiodic, random events (below 1 Hz) decreasing 
with frequency. The collar logs resulted with the lowest average amplitudes in both 
sets. In Set 1 (Figure 3), the first identifiable low frequency of leg motion with the larg-
est amplitude occurs at ~0.8 Hz (first peak on orange curves close to 1 Hz). This can be 
interpreted from the time series as the response of walking motion. Walking motion is 
transferred also to the collar, the effect of which can be seen in the ~2.5 Hz peak both 
in the collar and leg (more pronounced in the orange curves - leg, less but still present 
in blue curves - collar). The pendant has a higher frequency response, ~3.6 Hz / ~7.2 Hz 
(two peaks in the yellow and orange curves closer to the right side). In Set 2 (Figure 5), 

a) b) c)
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both ear sensors display two frequencies, ~3.3 Hz and ~5.5 Hz (first and second peak 
seen from the overlapping yellow and orange curves to the right side). Results from 
the collar are identical as in Set 1. When using acceleration magnitude |a→| as the basis 
of a PSD estimate, the directional information is lost. To preserve this information and 
gain insight for potential KEH device locations, individual estimates were performed 
for each axis during 1 h of grazing. Figure 4 displays individual axis PSD estimates 
during three days of Set 1. The most easily noticeable peak in all of three days, with 
the highest power density is the pendant’s vertical Y axis at ~3.7 Hz (first high orange 
curve peak) and the pendant’s X forward motion axis at ~2 Hz (first peak in the blue 
curve). Leg locomotion peaks in X, Y and Z at ~1.7 Hz, while the leg’s forward X motion 
shows higher average power density (blue leg curve). The collar response is again cou-
pling closely with leg locomotion at ~1.5 Hz (identifiable in Figure 4 b). Individual cow 
step durations were measured from the time series data, lasting 700-800 ms in average 
(cause of the identified leg frequency). Same principle of analysis has been applied to 
data from Set 2 (Figure 6), where the forward ear flapping motion peaks (the X axis, 
blue curves) are instantly noticeable in the right and left ear displaying the largest 
amplitude at ~2.7 Hz. Second component of the flapping motion is the lateral Z axis 
(yellow curves) peaking at the same frequency. Second interesting occurrence in the 
ear harmonics is the prominent peak of ~5 Hz in the vertical Y axis direction of loco-
motion (orange curve peak close to the right side of individual ear graphs) which could 
be attributed to free vibration ear response.

Conclusions
This paper proposes a method for measuring animal locomotion considering design 
practices for KEH devices and standard PLF wearables. The goal of the research was to 
identify positions and directions on a cow’s body which would be suitable for conver-
sion of kinetic into electrical energy either by strong impacts or by tuning the harvest-
er to operate at a specific animal locomotion frequency. Measurement locations - leg, 
collar, pendant and ear - were chosen considering the frequent forms of PLF wearables 
(ear tags, leg straps, collars or bells). Power spectral density estimations have been per-
formed from which it could be seen which body parts provide stronger excitations. In 
general, all PSD plots show that the largest power densities occur aperiodically due to 
random animal motion or at low frequencies. Specific frequencies have been identi-
fied related to walking, pendant swinging, or ear flapping (Table 2). Leg, pendant and 
ear motion have been identified to have the largest power densities at specific axial 
directions while the collar position displays the lowest average power densities. Some 
locations for animal KEH are more feasible than others. Legs and ears, with higher 
power density, cannot handle bulky devices which hinder movement, while the col-
lar with smaller average power densities can be equipped with a larger device with 
a heavier moving mass. Designing a low frequency KEH device is not a simple task due 
to an increase in sizes of the moving masses. Nonlinear and impact energy harvesting 
mechanisms will have to be considered as well as higher frequency components of the 
here identified basic frequencies to decrease size and weight. In the future this data 
will be used to calculate theoretically obtainable KEH powers using a finite element 
model of a 1D electromagnetic KEH device. The presented measurement data, although 
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acquired with KEH in mind, is objectively quantified with 3D accelerometers and fre-
quency analysis methods and can used to bring further insight into research of animal 
locomotion. The conclusions will also be important in developing a new class of farm 
animal kinetic energy harvesting devices.
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Abstract
The automation of stimulus-controlled operant conditioning gains more and more rel-
evance in management applications for farm animals. Recent examples are solutions 
for virtual fencing and latrine training. Such systems need to assess the learning pro-
gress of the animals in order not to overburden their adaptive capacity. Classically, the 
learning progress is evaluated based on the displayed behaviour using metrics for clas-
sification performance. However, the preconditions for applying these metrics, such as 
clear behavioural motivation and free access to the training device, are no longer given 
if the training is conducted with group-housed animals. In this case, such metrics may 
only serve as a heuristic for the learning progress and have to fulfil certain plausibility 
criteria to be applicable. These properties were investigated in a study based on an ex-
emplary signal discrimination task. This task was used to condition adult sows under 
three training conditions that differed in group size and the number of training oppor-
tunities. The study evaluated the suitability of sensitivity and precision - two metrics 
commonly used to measure classification performance. The results indicate that both 
metrics do not provide plausible results whereas a newly developed metric called nor-
malized precision does.

Keywords: cooperative livestock farming, precision livestock farming, animal learning, 
performance heuristics, classification metrics

Introduction
Cooperative livestock farming (CLF) as a sub-discipline of precision livestock farming 
(PLF) has the potential to significantly reduce the complexity and cost of animal-specific 
husbandry solutions. This can be achieved by complementing technical solutions and 
the practical experience of the herd managers by the sensory and cognitive abilities of 
farm animals. The fundamental concept dates back to Kilgour (1978). Recent examples 
are virtual fencing (Lomax et al., 2019), animal toilets for pigs (Tillmanns et al., 2022) 
and cattle (Dirksen et al., 2021) and signal feeding (Kirchner et al., 2014). All these ap-
proaches have in common that they use instrumental learning to elicit operant behav-
iour depending on a stimulus. In sophisticated learning tasks, metrics for the individual 
learning progress are necessary to avoid overburdening the animals. Under practical 
conditions of livestock farming, the training conditions can be very variable e.g. with 
regard to group size, group composition or the number of training opportunities. Thus, 
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appropriate metrics for learning progress have to be applicable in such a way that they 
allow universal learning criteria even under very diverse training conditions. 

To measure learning progress in stimulus controlled operant conditioning tasks, the an-
imals are taken as classifiers and their classification performance is inferred from their 
displayed behaviour i.e. their reaction to the stimulus (Marston, 1996). This approach is 
based on the assumption that the reward or punishment is sufficiently motivating to 
elicit the operant behaviour and that this is the only behavioural motivation for the ani-
mals. In most laboratory settings, these preconditions are enforced e.g. by fastening the 
animals in case of a feed reward and by using single animals in standardised test appara-
tuses. However, these preconditions are no longer guaranteed if the training is conducted 
under practical conditions in group-housed farm animals. Here, effects especially from 
social rank and the different accessibility of the training device may prevent that the 
expected behavioural reaction is displayed when the stimulus is recognised (Manteuffel 
et al., 2010). In this regard, the conditioning can be interpreted as a behaviour economic 
test (Dawkins, 1983) for the strength of the animal’s preference not to react as intended. 

As a consequence, the applicability of common metrics for classification performance 
such as the true positive rate (sensitivity) or the positive predictive value (precision) as 
an estimate for the learning progress has to be questioned. The present work is based 
on the hypothesis that these metrics cannot be utilized to directly measure the learn-
ing progress of group-housed animals. They may be useful as a heuristic if they fulfil 
a number of plausibility criteria. Given that a training procedure is working it can be as-
sumed that all animals have a low learning status when the training starts. The learn-
ing status is improved during the training and reaches under all training conditions 
a comparable level once all animals consolidated their conditioning. Thus, the value of 
a suitable learning metric needs to be low for all naive animals regardless of the con-
ditions. Furthermore, the metric must reflect the improvement due to the training and 
eventually result in similar high values for fully trained animals. 

The present work evaluates sensitivity and precision as established metrics for signal 
classification performance with regard to these plausibility criteria. In addition, the 
novel normalized precision is proposed as a heuristic that may be better suited for prac-
tical applications. The suitability of these three metrics was compared using signal 
feeding as an exemplary signal discrimination task. Here, adult sows learned to enter 
a feeding station contingent upon the emission of individual acoustic signals (spoken 
names). To allow an evaluation of the transferability of the learning metrics under dif-
ferent training conditions, the conditioning was performed in groups of different sizes 
and with different numbers of reaction opportunities (feedings) per day. This confer-
ence article is a shortened and adjusted version of Manteuffel et al. (2021)

Material and methods

Experimental setup
Groups of gestating and nulliparous sows were automatically conditioned to identify 
individual acoustic signals (Manteuffel et al., 2011). Subsequently, these signals were 
used to selectively call single sows to an electronic feeding station. The training was 



 Precision Livestock Farming ’22 1065

performed for seven weeks in groups with few (<8) and many (<36) sows. The number 
of feedings per day varied between one to four (rarely) and up to eight feedings (often). 
The factors group size and feeding frequency formed the basis for a 2×2 trial design. 
However, the combination (many × often) was not feasible as the daily activity period of 
the sows would have been too short to supply all sows. 

Of the many × often setup, the initial learning progress of 17 gestating sows was ana-
lysed. These 17 sows were selected because their training was not interrupted by far-
rowing and mating. In the few × often setup the data from seven sows and in the  few ×  
rarely setup, data from 14 sows was analysed. After three weeks of training, a few sows 
left the training occasionally due to injuries or for re-insemination so that data of in 
total 28 sows was available for the whole observation period.

In small groups, the conditioning was performed simultaneously for all sows, while no 
more than eight sows were conditioned in the large groups at the same time. Hence, in 
each setup approximately the same number of sows were conditioned simultaneously, 
regardless of the group size. The sows in the small groups had to learn to interact with 
the feeding station during the first week of training because they were not familiar 
with this feeding system whereas sows in the large group were. The training consisted 
of scheduled feedings by which the learning progress was estimated and spontaneous 
feedings that were initiated autonomously by the animals. The autonomous feedings 
served the purpose to ensure sufficient feed supply regardless of the training progress. 
Based on the training progress and training duration, the probability for autonomously 
obtaining feed was continuously reduced. Difficulties in applying this mechanism in 
differently sized groups provided the motivation to develop the novel normalized preci-
sion learning metric. 

Data analysis
Behaviour data was autonomously recorded by the feeding station. It formed the ba-
sis for the data analysis. Reactions of the animals were detected by means of their 
radio frequency identification (RFID) ear-tags. The evaluation of the learning progress 
was solely based on scheduled feedings where the system used the acoustic signals 
to call a sow. Here, own feedings formed the class of positive events (P) and feeding of 
con-specifics the class of negative events (N). In the following, errors are denoted by the 
letter F (false) and correct reactions by the letter T (true). Correctly reacting to the own 
feeding signal is hence a true positive reaction (TP). 

The statistical analysis evaluated the fixed factors training condition with the levels 
(many × rarely (mr), few × often (fo) and few × rarely (fr)) and the fixed effect training 
duration in weeks with the levels (start (0), 1, 2, 3, 4, 5, 6). Response variables were the 
learning metrics with a [0, 1] value domain. A quasi-binomial generalised linear model 
was utilized to estimate least-square means and confidence intervals and the effect of 
the factors using the logit link function. Repeated measurements were incorporated by 
taking the sows as random factor and assuming a temporal autocorrelation. All calcu-
lations were performed using the R statistics software (R Core Team, 2013). Sources and 
data used to create the presented results can be acquired from https://doi.org/10.17632/
ngbxmgddz6.2 .
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Results and Discussion

Figure 1: Hypothetical learning curves based on conventional and normalized precision (NP─) for 
different error rates in relation to signal recognition. The graphs depict which learning progress 
would be indicated depending on the proportion of recognized signals (sensitivity = TPR) and the 
number of classification errors in terms of false-positive rate (FPR). All graphs assume a cardinality 
of N = 19 for the negative event class. Each of the curves represents different scenarios for FPR, 
starting from zero (topmost) and ending at one (lowest curve). (A) Precision given a cardinality P 
= 2 for the positive event class. (B) Precision given a cardinality P = 8. (C) Normalized precision. 
This metric is independent of the cardinality of the event classes as it uses their cardinality for 
normalization. This figure was adapted from Manteuffel et al. (2021).

Theoretical properties
Figure 1 demonstrates how the precision metric (= TP/(TP + FP)) gives different results 
for positive classes of different sizes. Depending on the context of the learning task, it 
evaluates the learning progress different even though the actual learning progress is 
identical. This dependency of the precision metric on the balance of the event classes 
can be eliminated by normalisation with the cardinality of these classes. Equation 1) 
shows a proposal for such a metric – the normalized precision.

 (1)

Besides being independent from class cardinality this metric satisfies more plausibil-
ity criteria. Its value is zero if either TPR (= TP/TP) or FPR (= FP/N) approach zero i.e. if 
many errors are made or few signals are responded. Its value is reciprocal to FPR if all 
events from P are responded. In turn, the metric value increases hyperbolically with 
sensitivity (TPR) if FPR approaches zero. Thus, erroneously reacting to events from N 
has a larger weight than reacting correctly to events from P. The rationale behind this 
design decision is that there are much more events in N than in P. This assumption can 
be inverted by exchanging the classes in the formula (NP+). A balanced metric can be 
calculated from the mean of NP- and NP+.

Practical properties
The results for the sensitivity metric (Fig. 2a) indicate that after five weeks the sows were 
under all three training conditions able to correctly respond to their acoustic signals 
(sensitivity > 0.75). This metric was, hence, suited to indicate the equivalence of the final 

𝑁𝑁𝑁𝑁− =
𝑇𝑇𝑁𝑁𝑇𝑇

𝑇𝑇𝑁𝑁𝑇𝑇 + 𝐹𝐹𝑁𝑁
𝑇𝑇𝑁𝑁

𝑁𝑁𝑁𝑁+ =
𝑇𝑇𝑁𝑁𝑇𝑇

𝑇𝑇𝑁𝑁𝑇𝑇 + 𝐹𝐹𝑁𝑁
𝑇𝑇𝑁𝑁
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learning status in all three conditions. On the other hand, it indicated significant differ-
ences in the initial learning status, even though all sows had by definition an equivalent 
status at the training start (mr0 < fo0: t35 = -4.0; p = 0.036 / mr0 < fr0: t35 = -7.0; p < 0.001). 
The increase in learning progress was reproduced in groups that were fed often as well as 
in large groups (mr0 < mr1: t1480 = -4.0; p = 0.009 / fo0 < fo2: t1480 = -3.8; p = 0.023). However, 
it was not reproduced in small groups that were fed rarely (fr0 < fr1: t1480 = -3.3; p = 0.12).

Figure 2: Learning progress over seven weeks for three different classification performance metrics 
and three different training conditions. (A) Proportion of detected events (sensitivity). (B) Proportion 
of correct detection (precision). (C) Proportion of correct detection normalized by the number 
of events in each category (normalized precision). Training conditions are represented by tuples 
characterizing group size and number of training events. Here, rare stands for one to four events 
per day while often represents up to eight events per day. The term many refers to a training group 
of up to eight animals that was embedded into a group of up to 35 animals, while few stands for 
overall group sizes of up to seven animals. (Data is presented as least square mean estimates ± 
confidence intervals. The headlines indicate the main properties found for the respective metric. 
n ≤ 38; significance limit P < 0.05; Transitive differences are not indicated.) This figure was adapted 
from Manteuffel et al. (2021).

The precision metric produced values that systematically violated the plausibility cri-
teria for the start and end of the training as well as the training progress. It estimated 
a significantly higher learning progress at the start in small groups (mr0 < fo0: t35 = -4.2; 
p = 0.019 / mr0 < fr0: t35 = -4.7; p = 0.005). In addition, the metric detected no learning 
progress in the small groups that were fed rarely (fr0 < fr6: t1480 = -2.9; p = 0.28).

For the same training condition, the normalized precision (NP-) metric indicated a signifi-
cantly improved classification performance in the first two weeks of training (fr0 < fr1: 
t1328 = -4.0; p = 0.011).  Similarly, the increase in learning performance was detected in the 
other groups (mr0 < mr4: t1328 = -5.7; p < 0.001 / fo0 < fo2: t1328 = -4.3; p = 0.003). This metric 
did not indicate differences in the classification performance of the initially naive sows 
especially with regard to the large groups (mr0 < fo0: t35 = -2.3; p = 0.73 / mr0 < fr0: 
t35 = -3.6; p = 0.08). According to this metric, the learning progress in the large groups was 
reduced from week one to week four (mr1 < fo1: t35 = -4.4; p = 0.013 / mr1 < fr1: t35 = -4.6; 
p = 0.006) but equivalent again from week five on (mr5 < fo5: t35 = -3.3; p = 0.17 / mr5 < 
fr5: t35 = -0.8; p = 0.99). Hence, the normalized precision indicated an equivalent learning 
progress in the animals of all groups once they had consolidated their conditioning. 
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Discussion
In the present study, it took five weeks until the sows from all three training conditions 
consolidated their training. This very long training period was necessary because the 
implementation of the signal discrimination task was oriented toward the limitations 
of practical husbandry conditions. The main limitation was here the utilisation of com-
mon electronic feeding stations that were only slightly modified in order to be able 
to interact with the signal-feeding module. Such feeding stations usually use low-fre-
quency RFID readers to identify animals at the trough and station entry. LF-RFID has 
a reading range of just a few centimetres and a reading rate of several seconds. In 
addition, only one ear-tag can be read at a time if several ear-tags are in the range of 
the antenna. Therefore, it could take up to 30 seconds or even longer until the correct 
reaction of a sow was recognised by the reward routine. Other sows nearby could pro-
long this period further or push forward into the station after the correct reaction of 
a different sow was detected. This prevented the rewarding of some correct reactions 
leading to uncertainty in the animals. Thus, the link between reaction and reward was 
relatively indirect compared to laboratory setups. In a previous study in small groups of 
up to ten sows, the training duration was up to 14 days (Kirchner et al., 2014). A similar 
learning speed was observed in the small groups of the present study.

Previous studies on signal-feeding (Ernst et al., 2005) and studies on other species in 
different experimental setups suggest (Erskine et al., 2019; van Horik et al., 2019) that 
20 to 60 interactions with the training setup are necessary to consolidate the condi-
tioning. Therefore, the overall training duration in the different setups was to a large 
extent governed by the number of feedings per day. In this regard, the training period 
of 49 days can be assumed to be sufficient to finish the training of most animals in 
the large group with only one scheduled feeding per day. Thus, a transferable learning 
metric should have indicated an equivalent learning progress at the end of the present 
study. This was not the case for the precision metric, which was clearly affected by the 
differences in the number of feedings. The sensitivity metric on the other hand seemed 
to be affected by the reduced accessibility of the feeding station in the large group. It 
could not reproduce the equivalent learning status of the sows at the beginning of the 
training but confirmed an equivalent signal recognition at the end of the training in all 
groups. 

The only metric that fulfilled all plausibility criteria in this study was the novel nor-
malized precision metric. This does not mean that there are no other metrics that can 
be used as a heuristic for learning progress and it does not imply that normalized pre-
cision is indispensable to evaluate learning tasks in group-housed animals. However, 
six more metrics for machine learning and for the evaluation of the effectiveness of 
medical treatments were shown to be not transferable with regard to the exemplary 
signal discrimination task (Manteuffel et al., 2021).

Conclusions
Transferable metrics for the learning progress of group-housed animals need to fulfil 
a number of plausibility criteria in order to achieve comparable results under different 
training conditions and allow the definition of universally applicable learning criteria. 
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In particular, they should indicate low progress if an animal does not react or makes 
many errors. They should give the same value regardless of whether the event classes 
are balanced. Furthermore, they should comply with the intuitive shape of the learning 
curve of an effective training which starts from a low plateau in naive animals and 
rises to a higher plateau when the conditioning is consolidated.

The present study conditioned adult sows on an exemplary signal discrimination task 
under three different training conditions to evaluate the suitability of different met-
rics for classification performance in this regard. The differences in group size and the 
number of training opportunities significantly affected the learning speed of the sows  
but also led to differences in the evaluation of objectively equivalent training levels by 
some learning metrics. Of the investigated metrics, only the novel normalized precision 
metric fulfilled all plausibility criteria. 
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Abstract
Livestock is transported by road in order to move towards the next location in the 
production process. The climate in the vehicle is of interest especially due to the var-
iable transport conditions in Europe. Temperature is an easy to measure indicator for 
climate and of great importance for the welfare of animals. Exposure to either too high 
(heat stress) or too low temperatures (cold stress) can lead to an impairment of welfare, 
exhaustion and in some cases even to death. In this research, temperature sensors 
were applied inside and outside animal transport vehicles during eight periods of com-
mercial Dutch livestock transports. In each period several transports were followed, the 
number of transports per period varied from one to twenty-three. Data was obtained 
from a total number of seventy-nine transports. Seven different animal categories were 
distinguished: newborn calves, weaner calves, veal calves for slaughter, piglets, pigs 
for slaughter, bulls and broiler chickens for slaughter. Temperature sensors were in-
stalled and started at the beginning of a period, measuring with a frequency of 101 
minutes during the whole period and were stopped and removed at the end of a period. 
The number of temperature sensors per period (and transport) varied between six and 
seventy-six. It was concluded that it is possible to measure temperature continuously 
during animal transports under varying circumstances. Measured temperatures were 
compared with legal temperature limits. The effects of location (length, width, height) 
of the sensor in the vehicle, animal species and outside temperature were estimated 
with a statistical model.

Keywords: animal transport, temperature, REML model

Introduction
Livestock is transported by road in order to move towards the next location in the pro-
duction process, including the slaughterhouse as the last location. During transport 
animals are exposed to various circumstances that can differ from those prior to or af-
ter transport, including sounds, movements, handling, deprivation from water or food, 
driving skills of the transporter, and climatic conditions. Those circumstances can in-
fluence physiological functioning of animals and are potential stressors and threats 
to homeostasis and welfare (Broom, 2003, Van De Water et al. 2003, Terlouw et al., 2008, 
Visser et al., 2014, Goumon & Faucitano, 2017).

Temperature is an easy to measure indicator for climatic conditions and of great im-
portance for the welfare of animals. Environmental temperature has a direct effect on 
the body temperature of an animal. When an animal fails to keep the body temperature 
constant, homeostasis is compromised first resulting in an uncomfortable situation for 
the animal and ultimately in damage to the body (Beakley & Findlay, 1955, Silanikove, 
2000). Exposure to either too high (heat stress) or too low temperatures (cold stress) 
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can therefore lead to an impairment of welfare, exhaustion and in some cases even to 
death. As a result of climate change, extreme temperatures occur more often during 
spring and summer. Tropical conditions with accompanying heat waves will be present 
more often in regions with temperate climates including north and central Europe and 
especially southern Europe. During these heat waves, temperatures inside livestock 
transport vehicles can rise to 30 °C or higher. In contrast to the above, in winter tem-
peratures inside transport vehicles can reach below the lower limit set by regulations. 
Transport of animals under these extreme circumstances is not allowed by European 
law. By improving transport vehicles and climate control systems the livestock trans-
port sector responds to climatic challenges. Up to now there is no independent proof 
that using these innovations ensures climatic comfort for the transported animals and 
that transport companies are complying with regulations when lower and higher envi-
ronmental temperatures occur. The Dutch government and livestock transport sector 
express concerns regarding the welfare of transported animals during more extreme 
environmental conditions and the continuation of animal transport during these peri-
ods. It is established by regulation in the EU that the temperature inside the livestock 
transport vehicle must be maintained withing 5 °C and 30 °C (± 5 °C tolerance) for 
all transported animals during the entire journey (Council Regulation (EC) No 1/2005). 
Based on EU regulations the Dutch Ministry of Agriculture, Nature and Food Quality 
formulated new regulations in 2020 regarding the transport of livestock during heat 
waves (expected outside temperatures of above 35 °C for national transports and above 
30 °C for international transports). The enforcement takes place at any moment of the 
journey, including stationary periods. 

Currently, livestock transport vehicles are equipped with one temperature sensor per 
level on the inside of the side wall of the vehicle and one on the outside of the vehicle. 
Data from these standard sensors gives limited insight into the different temperatures in 
the vehicle that animals are exposed to. To get a more complete picture of temperatures 
at animal level, more measurements need to be taken on different locations inside and 
outside the vehicle. This research focussed on measuring temperatures continuously on 
different locations in livestock transport vehicles to answer the following questions:

 — What is the effect of the location of the sensors on measured temperatures?
 — Are temperatures affected by the animal species that are transported?
 — What is the relation between the outside and inside temperature?
 — Are temperatures during transport in compliance with legal requirements?

In this report we describe findings from research performed during commercial Dutch 
livestock transport (see also Hoorweg et al., 2021). 

Material and Methods
Temperature data was collected during eight periods ranging from July 2020 till August 
2021 (Table 1) for seven different animal categories: newborn calves, weaner calves, veal 
calves for slaughter, bulls, piglets, pigs for slaughter and broiler chickens for slaughter. 
The length of the periods ranged from one day to two weeks. Temperature was meas-
ured with iButton sensors (Maxim Integrated, San Jose, USA) every twenty minutes 
with a resolution of 0.5 °C and an accuracy of ± 1 °C. For transport company 1 and 2 
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(cattle and pig transports), these devices were attached to fences separating different 
compartments within the truck or trailer. For transport company 3 (broiler transports) 
these devices were attached to the transport containers. The location of the devices 
was coded in four digits: first digit for truck (1) or trailer (2), second digit for height (1 for 
lowest level up to 2, 3 or 4 for the highest level; 0 for device outside vehicle), third digit 
for length (1 for front fence up to 3 or 6 for hindmost fence) and fourth digit for width 
(1 for leftmost up to 3 or 5 for rightmost location).

Furthermore, temperature was measured routinely by three (truck) and four (trailer) sen-
sors attached to inner side of the left wall of the vehicle, and one outside the vehicle of 
transport company 1 and 2. Besides temperature, these standard sensors also recorded 
data on driving speed of the vehicles. Standard data was not available for company 3.

Table 1: Survey of periods where temperature data was collected during animal transports: 
period, transport company, number of transports in period, animal categories, number of installed 
temperature sensors, availability of data from standard temperature sensors

Period Transport
company1

No of
transports Animal categories2 No of

sensors
Standard
sensors

1: July ‘20 1 9 calves, weaners, veals 23 yes

2: Aug. ‘20 1 22 calves, weaners, veals 28 yes

3: Aug. ‘20 2 17 calves, weaners, veals, piglets, pigs 50 yes

4: Sept. ‘20 2 15 weaners, veals, piglets, pigs 48 yes

5: Feb. ‘21 3 1 broilers 73 no

6: July ‘21 2 13 calves, veals, bulls, piglets, pigs 56 yes

7: Aug. ‘21 2 1 pigs 6 yes

8: Aug. ‘21 3 1 broilers 76 no

1 transport company 1 = mechanically ventilated truck & trailer without isolated walls, transport 
company 2 = mechanically ventilated truck & trailer with isolated walls, transport company 3 = 
truck & trailer for broiler transport with containers
2 calves = newborn calves, weaners = weaner calves, veals = veal calves for slaughter, pigs = pigs for 
slaughter, broilers = broiler chickens for slaughter

Sensor data was available by reading the devices offline after the ending of each period. 
The CSV files were imported into a Microsoft Access database and combined with other 
data like the placement codes and the standard data. Further processing of the data 
was done with the MATLAB software (version 9.9.0 (R2020b). Natick, Massachusetts: 
The MathWorks Inc). Only sensor data from locations where animals were present dur-
ing a transport were used in the analysis. Sensor data from strongly deviating sensors 
(apparently defect sensors) was excluded. The median value per transport and sensor 
was used instead of the average to compensate for possible outliers. The medians were 
explored in a restricted maximum likelihood (REML) analysis using the statistical soft-
ware package GenStat for Windows (VSN International Ltd., Hemel Hempstead, United 
Kingdom).
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Results and Discussion
Most transports concerned cattle and pigs, there were only two broiler transports (Ta-
ble 1). Therefore results were analysed separately for broilers and cattle/pigs. There was 
one transport of bulls, this transport is not included in the results.

Broiler transports
Two periods, 5 and 8, concerned each one broiler transport in different weather condi-
tions. Data from 73 (Period 5) and 76 (Period 8) temperature sensors was available dur-
ing these transports (Table 1). Broilers were transported in containers on a truck and 
trailer, a tarpaulin covered the outer walls during the transport in Period 5. The loca-
tion of the sensors was coded by: vehicle (truck/trailer), height (low-high in four steps), 
length (front-back in six steps) and width (left-right in five steps). Period 5 was in winter 
(average outside temperature -4.0 °C) and transport 8 was in summer (average outside 
temperature 22.4 °C). To illustrate the measured temperature levels during Period 5, the 
temperatures per sensor in the trailer are depicted in Figure 1. There was a large range 
in the temperatures, some sensors hardly reached temperatures above 0 °C, where oth-
er sensors reached the level of 30 °C. During Period 5, an average temperature range of 
24 °C between the lowest and highest temperature was measured. The average range 
was lower (8 °C), but still considerable during the broiler transport in Period 8.

Figure 1: Temperature per sensor on the trailer during the broiler transport in Period 5 on February 
10, 2021 from a broiler farm to the slaughterhouse (approx. 150 km); the solid black line in the lower 
part is an indication of the speed of the vehicle

The average temperature depended on the location of the sensor. This is illustrated in 
Figure 2 where a heat map is given for the average temperature per location. Lowest 
temperatures occurred in the corners and the highest temperatures occurred in the 
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centre of the trailer. Because of the low number of transports, no further analysis of the 
temperatures during the two broiler transports has been done.

Cattle and pig transports
Six periods concerned cattle and pigs transports. Two periods with a mechanically ven-
tilated truck and trailer without isolated walls (transport company 1), and four periods 
with a mechanically ventilated truck and trailer with isolated walls (transport company 2).

Figure 2: Heat map of the average temperature of all sensors in the trailer in the low-high direction 
and left-right direction during the broiler transport in Period 5 on February 10, 2021 from a broiler 
farm to the slaughterhouse (approx. 150 km)

The location of these sensors was coded by: vehicle (truck/trailer), height (low-high), 
length (front-back is two steps) and width (left-right in three steps). The height coding 
depended on the transport company, for transport company 1 the truck had only two 
low-high levels and the trailer three; for transport company 2 both the truck and the 
trailer had four low-high levels. As an example the temperature measurements during 
a transport in Period 3 (transport company 2) of veal calves for slaughter are shown in 
Figure 3. This transport was during a heat wave in The Netherlands. In this case, but also 
in general, the temperature range is much lower for cattle and pigs, compared to broilers. 
This is illustrated by a heat map for the temperature for the same transport (Figure 4).

The median of the inside temperature during each transport was used as response 
variable in a REML model with average outside temperature, animal category, trans-
port number, vehicle and other location variables as predictors. Most predictors were 
factors, only average outside temperature is a quantitative variable. The other location 
variables were coded by height (low-high with three levels), length (front-back with two 
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levels) and width (two levels: side or centre). This implies that some transformations 
were done for height and width.

Figure 4: Heat map of the average temperature of all sensors in the front-back direction and left-
right direction during the transport of veals for slaughter in Period 3 on August 10, 2020 from a veal 
farm to the slaughterhouse (approx. 75 km)

Figure 3: Temperature per sensor on the truck during the transport of veal calves for slaughter in 
Period 3 on August 10, 2020 from a veal farm to the slaughterhouse (approx. 75 km); the solid black 
line in the lower part is an indication of the speed of the vehicle

In a first step a complete model was tested with all variables and all two-way interac-
tions. Non-significant terms were not used in the final model, with outside tempera-
ture, animal category, height, width (with two-ways interactions) as fixed effects and 
transport number, vehicle (with two-ways interactions) as random effects.
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The results of the REML analysis indicated that:

 — Inside temperature for newborn calves and weaner calves was lower than for veal 
calves for slaughter, piglets and pigs for slaughter (if the outside temperature is 20 °C).

 — For all animal categories, inside temperature increased with higher outside temper-
ature. This effect was lowest for piglets and the strongest for newborn calves and 
weaner calves. Furthermore, this effect was strongest at the side, which implies that 
inside temperature was more increased at the side of the vehicle on warmer days.

 — Inside temperature was lower on the side of the vehicle for weaner calves, veal calves for 
slaughter and pigs for slaughter. This was not the case for piglets and newborn calves.

 — Differences in inside temperature in height depended on animal category: for ex-
ample, the middle level was warmer in case of piglets and pigs for slaughter.

 — Inside temperature is lower at the back side; this effect was strongest for pigs for 
slaughter.

 — The effect of width depended on height (apart from animal category). Inside tempera-
ture was higher at the lower level at the side. At the middle level this effect was negative.

 — For transport company 1, the inside temperature of the trailer was warmer than the 
truck; on the other hand for transport company 2 the trailer was cooler.

 — The other effects did not interact with the vehicle, with depth as an exception. This 
was lower in the trailer.

Figure 5: Bar graph of the temperature per sensor during the transport of veals for slaughter in 
Period 3 on August 10, 2020 (during a heat wave) from a veal farm to the slaughterhouse (approx. 75 
km); the height of a bar represents the average temperature, green represents the proportion of time 
with temperature between 5 °C and 30 °C, red between 30 °C and 35 °C and black above 35 °C; data 
from sensors without bar was excluded for this transport as the related level was not used
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Inside temperature during animal transports should be maintained within 5 °C and 30 °C 
(± 5 °C tolerance). This goal was not always reached, for example in Figure 5 tempera-
tures per sensor are depicted during a transport during a heat wave in Period 3. For this 
transport temperatures in the vehicle were mostly between 30 and 35 °C. The highest 
temperature was reached by the sensors outside the vehicle (when the first code is ‘0’). 
Temperatures outside the allowed range were also found in the broiler transport during 
wintertime (Figure 1 and 2) where the temperature sometimes was below the lower 
limit. The temperature range was bigger during broiler transports than during cattle 
and pigs transports, this is also found in similar research (Burlinguette et al. 2012). 

The main goal of this project was to get experience with sensor measurements during 
animal transports. In follow-up experiments, more transports will be followed, includ-
ing more animal categories. More sensors might be used, for example relative humidity 
sensors are candidates as they make it possible to calculate the temperature–humidity 
index (THI) which is of great importance for heat stress (Fiore et al., 2012).

The results make is possible to decide where to place sensors in follow-up research so 
that extreme values will be included.

Conclusions
It is possible to measure temperature inside and outside the vehicle during animal 
transports. Application of a high number of sensors makes it possible to analyse the 
effects of location, animal category and other influences on temperature inside the 
vehicle. This makes it possible to better quantify the risks of violating temperature 
limits during animal transports and to develop appropriate measures to prevent those 
extremes.
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Abstract
Over time, the increasing interest in animal-based product has led consumers to re-
quire that the production processes are performed in an ethical way and that food 
quality is assured. In this context, PLF may be a useful tool as a technology that can 
help farmers in monitoring the herds and improving animal welfare and health, as well 
as increase the productivity and enhance the welfare of farmers and workers. However, 
no methodology is currently available for the evaluation of the social performance of 
livestock activities implementing PLF. This paper proposes a preliminary methodolog-
ical framework for the assessment of the social impact of PLF in dairy cattle farms 
through the Social Life Cycle Assessment (S-LCA) methodology (type I), to evaluate with 
a life cycle perspective the impacts generated on the well-being of stakeholders by the 
activities of the studied system. 

Keywords: PLF, welfare, ethic farming, health, sustainability

Introduction
In recent years, the demand for animal-based products has increased considerably. In 
2020, in Europe the value of the animal-based products achieved 172 bn €, the 40% of 
the total agricultural output. Here, the dairy sector has always had a crucial importance 
in socio-economic terms. According to the data provided by the EU, the volumes of milk 
produced and intended for dairies involved 12.000 plants and employed 300.000 people. 
In 2018, the sector accounted for 12% of total agricultural outputs in the EU, thus con-
firming it as the second largest agricultural sector in terms of outputs (Brie, 2018). 
Also in Italy, where in 2020 the dairy cows number was estimated to be around 1,521,000 
cows distributed in about 25915 Italian farms, the sector is confirmed to be of remarkable 
relevance (Ismea, 2022). Furthermore, according to some estimates, Italian milk produc-
tion is expected to increase by 10-15% and the trend could persist until 2030 (Ismea, 2022).

In parallel with the growth faced in recent and coming years, the market for animal 
products needs to face significant changes to meet the new consumers’ habits and the 
new political frameworks that regulate production processes. Consumers are increas-
ingly demanding transparency in production, not only in terms of food quality but also 
in relation with the social and environmental impact of food production, and of social 
and ethical aspects in animal-based food production (Lovarelli et al., 2020). 

Consistently, similarly to what has happened with “Farm to Fork strategy”, new rules 
are expected for dealing with social sustainability and animal welfare. In the light of 
social pressures and the policy adopted by the EU, the dairy cattle sector is called to 
a big challenge to implement its environmental and social sustainability. 
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At that end, there is an urgent need to develop analytical tools to assess the social sus-
tainability of the sector in a common and uncontroversial way. In this context, the aim 
of this contribution is to evaluate the social impact of Italian dairy cattle farms through 
the analysis of a set of social indicators on the different categories of stakeholders se-
lected: workers, local communities, society and animals.  

Material and methods
Of the methodologies useful for assessing the social sustainability of production pro-
cesses, the social life cycle assessment defined by the United Nations Environmental 
Program guidelines is undoubtedly one of the most widely used.

Following the guidelines of the United Nations Environment Program (UNEP, 2019), the 
Social-Life Cycle Assessment (S-LCA) has been structured in 4 phases: definition of ob-
jectives and scope, inventory analysis, impact assessment and interpretation of results.  

The analysis aims to assess the negative and positive social impacts related to the 
activities carried out in two dairy cows’ farms in Italy in 2021 for the following stake-
holders: Workers, Society, Local Communities and Animals. The “Value Chain Partners” 
stakeholder was not considered because the analyzed farms are not large enough to 
impose vexatious conditions on their commercial partners.

The chosen functional unit is the farm. As for the system boundaries, due to the lack of 
available data for S-LCA studies in the upstream processes, a gate-to-gate perspective 
was selected to assess the actual (and not only potential) social impacts. 

The “Reference Scale” approach was chosen as the methodology for assessing the 
social impacts. As alternative, the UNEP guidelines defines the “Impact Pathway” as 
a possible assessment methodology, however this option was discarded since the char-
acterization factors needed to translate inventory data into quantified social impacts 
are still to be defined. The “Reference Scale” methodology, on the other hand, does not 
quantify social impacts (whether positive or negative), but it aims to assess the social 
performance of organizations operating within the system boundaries by comparing 
data for each chosen indicators to the selected reference values; these values may refer 
to sector average values (e.g., the average wage of agricultural workers), to legal provi-
sions (e.g., hours of training for workers) or to international conventions (e.g., the Inter-
national Labour Organization’s maximum limit of 44 working hours per week). 

The “Reference Scale” approach involves the following steps: 

1. Identification of indicators, carried out by adopting a participatory approach.  
Stakeholder representatives were asked to prioritize the list of indicators report-
ed in the UNEP guidelines. The list was further implemented to define appropri-
ate indicators for the “Animal” stakeholder. 

2. Evaluation scale definition for each selected indicator. The definition of the 
threshold values of the rating scales was carried out on the basis of an analysis 
of literature and/or public databases (e.g., ISTAT, Eurostat).

3. Social sustainability analysis by comparing values collected and/or selected 
from the literature with identified threshold values.
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Table 1: Workers, Local Community, Society and Animals indicators

Stakehol. Indicator Reference Scale Source
W

O
R

K
ER

S

Average Hourly Salary

Committed > 13.86 €/h
Proactive < 13.86 €/h
Compliant <12.65 €/ 
Risky < 10.86 €/h

Agriregionieuropa 
(2018)
CCNL - OPERAI 
AGRICOLI E 
FLOROVIVAISTI (2019)

Percentage of Workers with 
a Permanent Contract

>36.24= Committed
<36.24% = Proactive
< 30.2 % = Compliant
< 24 %= Risky

Gli Operai Agricoli in 
Lombardia (2019) 

Injuries
0: Proactive
1: Compliant
>1: Risky

Inail 2019 

Weekly Working Hours
<39h: Proactive
39h<and <44 h: Compliant
> 44h: Risky

International Labour 
Organization,
CCNL 2019

Hours Devoted to Workers 
Training

>12h: Proactive 
12h: Compliant 
<12 h:  Risky 

Art. 37 - D.Lgs. 81/2008, 
Accordo - 21/12/2011 - 
n. 221/CSR 

LO
C

A
L 

C
O

M
M

U
N

IT
Y

Number of Accidents in the 
last 2 years

0: Complaint
>0: Risky Authors elaboration

Complaints Regarding Nuisance 
Issues in the last 2 years

0: Complaint
>0: Risky Authors elaboration 

Local Hiring Rate 

>30%: Committed
<30%: Proactive
<25%: Compliant
<20%: Risky  

Zira et al., 2020

Local Sourcing of Feed

>22.8%: Committed
<22.8%: Proactive
<19%: Compliant 
<15.84%: Risky

Gislon et al., 2020

Number of Engagement 
Moments

>1: Proactive
1: Compliant 
0: Risky

Zira et al., 2020

Expenditure for Common 
Infrastructure, for the local 
community, or in charitable 
donations for the local 
community

>0€: Compliant 
0 €: Risky Authors elaboration

SO
C

IE
T

Y

Workers Younger than 30 
years old

>30%: Committed
<30%: Proactive
<25%: Compliant 
<20%: Risky  

Gli operai agricoli in 
Italia secondo i dati 
INPS, 2019

Percentage of Feeds Edible for 
Humans

<9.56%: Committed
>9.56%: Proactive
>14.34%: Compliant
>16.49%: Risky

Mottet et al., 2017

Antimicrobial use
0: Proactive 
4.8: Compliant 
>4.8: Risky

Mazza et al., 2021
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A
N

IM
A

LS
Oestrus events identification

>80%: Committed
>75%: Proactive
>50%: Compliant 
<50%: Risky

Reith & Hoy, 2018

Milk production

>35kg/d: Committed
>30kg/d: Proactive
30kg/d: Compliant 
<28 kg/d: Risky

Lovarelli et al., 2019

Heat Stress

<68: Committed
<72: Proactive
72: Compliant 
>72: Risky

Allen et al., 2015

Lying Time

>12: Committed
>10: Proactive
10: Compliant 
<10: Risky

Lovarelli et al., 2020

Clinical Mastitis

0: Committed
1: Proactive
2: Compliant 
>2: Risky

Vitali et al., 2020

Lameness

<20%: Committed 
<25%: Proactive
25%: Compliant 
>25%: Risky

Whitaker et al., 1983

Summarizing, a series of indicators have been identified for each stakeholder, and each 
indicator was then included in an impact subcategory suggested by the UNEP guide-
lines. Each subcategory refers to a specific stakeholder and it identifies a social issue 
that contributes to his well-being (e.g., fair wages for workers, employment rate for 
local communities, economic development for the company).  

Methodological framework definition
Table 1 shows the selected indicators for the “Workers”, “Society”, “Local Communities” 
and “Animals” stakeholders. 

As for the “Workers” stakeholder, 5 indicators were selected, both quantitative, all re-
lated to the following subcategories: fair wages, working hours, health and safety, and 
workplace safety. The “Society” stakeholder is instead represented by 3 quantitative 
indicators, which refer to the themes of health, economic development and food se-
curity. With regard to the “Local Communities” stakeholder, 6 quantitative indicators 
were selected, all included in the following sub-categories: health and safety, local eco-
nomic development, access to resources and involvement of local communities. Lastly, 
6 semi-quantitative indicators were identified for the “Animals” stakeholder. 

A reference value was selected for each indicator. Starting from the identified reference 
value, an evaluation scale was defined to assess the conditions for each specific indica-
tor (e.g., working hours, salary level, use of antibiotics, housing practices), and then to 
determine the impact (e.g., neutral, positive or negative) that affects the stakeholders’ 
“welfare”. 4 ranges have been identified in the defined rating scales. Compared with the 
respective reference values, different scores can be assigned to the indicators: 
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 — “Committed” if collected data are significantly higher than the reference value (e.g., 
if the hourly wage paid by the company is significantly higher than the average 
hourly wage received by agricultural workers in Italy); the “Committed” score indi-
cates a noticeably positive impact on stakeholder;  

 — “Proactive” if the data are slightly better than the reference values; the “Proactive” 
score indicates a fairly positive impact on stakeholder; 

 — “Compliant” if the data are equivalent to the defined reference value or range; this is 
a neutral situation, in which it is assessed that no impact is generated; 

 — “Risky” if the data describe a worse situation compared to the reference value; the 
“Risky” score indicates a negative impact on stakeholders’ well-being. 

Multiple ranges rating scales were not applied to all the selected indicators. The im-
possibility for some indicators to generate positive effects on stakeholders was indeed 
taken into consideration: for instance, as for the “ Number of Accidents in the last 2 years” 
indicator, we have considered that the firm behaviour can only be defined “Risky”, and 
therefore generate a negative impact on stakeholders or “Compliant” if the firm can be 
considered conform to a standard or norm, without causing any impact.

Preliminary Results and Discussion
This analysis framework (indicators and rating scales) was preliminarily applied to two 
dairy cows’ farms in northern Italy which is a livestock intensive area. Farm A has 
a herd of 135 dairy cows in which no technological support is introduced. Farm B in-
stead has a herd of 345 dairy cows, and it is equipped with neck collars for behavior 
observations and a milking system collecting data from each milking session. 

Figure 1a-c shows the results obtained respectively for the “Workers”, “Local Commu-
nity” and “Animals” stakeholders. The values 1- 4 in the figure refer respectively to the 
Risky (1), Compliant (2), Proactive (3) and Committed (4) scores. 

The figures show the indicators with value for at least one of the two selected farms. 
For missing data, a value of 0 has been assigned. Consistently, “Antimicrobial use” and 
“Oestrus events identification” indicators have been excluded from the figures due to 
the lack of possibilities in collecting data for both farm A and farm B. Lack in data may 
be due to difficulties in collecting data from comparable methods (e.g., unavailability 
of tools useful in detecting specific data) and/or to differences in specific stakeholder 
category (e.g., the absence of employees in farm A). 

For all stakeholder categories, farm B shows on average a lower social impact. In the 
category “Workers”, although several indicators are not applicable as farm A has no 
employees, the comparable indicators show a lower social impact. For the indicator 
“Weekly Working Hours”, data show substantial differences between farm A (72 work-
ing hours/week) and farm B (39 working hours/week). The gap could be the result of 
a greater division of labour among employees compared to the working organization of 
the family farm, and a greater exploitation of technologies (such as PLF) able to allevi-
ate the workload of operators.
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The “Local Community” stakeholder does not show many differences between farms 
A and B, except for indicator “Local sourcing of feed” since farm B self-produces about 
50% of the rations given to dairy cows - against 30% self-produced by farm A. 

Respect to the “Society” stakeholder only 2 indicators were analyzed from which it 
emerged that “Percentage of Feeds Edible for Humans” indicators resulted the same 
while the second indicator “Workers Younger than 30 years” old is not applicable for 
Farm A. The stakeholder “Animals” in farm B refers a lower social impact for the animal 
welfare indicators “Milk production”, “Heat stress” and “Lying Time” (n.a. in farm A due to 
absence of PLF technologies to monitor cows behavior). Farm A, on the other hand, shows 
a lower social impact for the “Clinical Mastitis” and “Lameness” indicators. However, the 
limited use of technologies in farm A could lead to a reduced probability of identifying 
mastitis and lameness than the technologies used by farm B, thus biasing data. 

Figure 1: Social Impact on the stakeholders: (a) Workers, (b) Local Community, (c) Animals.

Conclusions
In conclusion, in dairy cows’ farms, S-LCA can be a useful analytical tool, to be inte-
grated with other life cycle analysis methodologies (LCA and LCC). However, further 
improvements of the methodology are needed to develop specific analytical frame-
works for the sector. The homogeneity of tools for data collection causes several diffi-
culties in indicators selection and data comparison. Preliminary results confirm that, 
in this first attempt of assessing S-LCA of the sector, the application of technologies 
may help in reducing the social impact of dairy farming. Notwithstanding, the defini-
tion of indicators specifically designed for this sector and able to read its specificities 
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is a fundamental aspect and more than ever necessary to make the S-LCA a useful 
approach to assess the social sustainability of livestock systems. 
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2Precision Livestock Farming as One Health Technology
The One Health concept states that infections are travelling around from water, 
soil and air to wildlife, next to livestock and then to humans. Planet earth counts 
today around 150 billion wildlife animals (not considering birds and sea animals), 
every year over 70 billion animals are slaughtered for the worldwide food demand 
and there are around 7.8 billion humans. In human diseases, more than 60 per 
cent of them are zoonotic and 75 per cent of new, “emerging” infectious diseases 
are zoonotic. While we did not yet get rid of the Covid-19 pandemic, the question 
is not whether another pandemic will come, the question is when.

Animal protein remains a very efficient way to feed humans. Especially in de-
veloping countries, livestock plays an important role to produce food and to give 
social status to people. Due to growing population and changing diets, the world-
wide demand for animal products is increasing with over 65% by 2050. It is how-
ever unthinkable that we would keep more animals in the livestock sector. The 
worldwide livestock sector is facing huge problems such as animal health in re-
lation to human health, animal welfare, lack of efficient process management 
leading to unacceptable environmental impact. Today, governments struggle with 
keeping a balance between the polluting livestock sector, the use of water and 
the protection of the nature and biodiversity. Rather than investing in technical 
and management solutions, in different countries legislation aims to reduce the 
number of farms and animals per farm while the worldwide demand for animal 
products is increasing.

Each of us should contribute to the solution. We need to improve the efficiency 
of the core process in the livestock sector: transforming feed energy, especially 
which is not suitable for human consumption into animal product. Here, it is par-
ticularly important to avoid unnecessary energy and product losses (meat, eggs, 
milk), e.g. as a result of suboptimal husbandry conditions and diseases. We need 
more animal product with less feed input and consequently less environmental 
impact. The continuous real-time monitoring 24/7 allows to realize active man-
agement solving problems when they occur, opposite to detecting problems after 
the facts in the slaughterhouse or once a year in a visit. The PLF technology has 
the potential to create a worldwide infection monitoring system for humans, for 
livestock and for wildlife. This will help fast detection and early warning of diseas-
es, allowing immediate actions and reduce spreading of infections.

We are the ones to create science and knowledge required by the livestock sector 
and the world. Therefore, we must produce solutions by collaborating in a most 
professional way within and between our different research disciplines, with 
farmers, industrial partners and governments to bring solutions for a more sus-
tainable planet earth.
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